Hanai N, Ozawa T, Hirakawa H, et al. The nodal response to chemoselection predicts the risk of recurrence following definitive chemoradiotherapy for pharyngeal cancer [J]. Acta Otolaryngol. 2014;134(8):865–71.
Wolf G T, Fisher SG. Effectiveness of salvage neck dissection for advanced regional metastases when induction chemotherapy and radiation are used for organ preservation [J]. Laryngoscope. 1992;102(8):934–9.
Liauw SL, Amdur RJ, Morris CG, et al. Isolated neck recurrence after definitive radiotherapy for node-positive head and neck cancer: salvage in the dissected or undissected neck [J]. Head Neck. 2007;29(8):715–9.
Li F, Hsueh C, Huang H, et al. A nomogram to predict nodal response after induction chemotherapy for hypopharyngeal carcinoma [J]. Laryngoscope. 2022; 133(4):849–55
Huang CK, Chang PH, Kuo WH, et al. Adipocytes promote malignant growth of breast tumours with monocarboxylate transporter 2 expression via β-hydroxybutyrate [J]. Nat Commun. 2017;8:14706.
Takehara M, Sato Y, Kimura T, et al. Cancer-associated adipocytes promote pancreatic cancer progression through SAA1 expression [J]. Cancer Sci. 2020;111(8):2883–94.
Hu W, Ru Z, Zhou Y, et al. Lung cancer-derived extracellular vesicles induced myotube atrophy and adipocyte lipolysis via the extracellular IL-6-mediated STAT3 pathway [J]. Biochim Biophys Acta Mol Cell Biol Lipids. 2019;1864(8):1091–102.
Nieman KM, Kenny HA, Penicka CV, et al. Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth [J]. Nat Med. 2011;17(11):1498–503.
He JY, Wei XH, Li SJ, et al. Adipocyte-derived IL-6 and leptin promote breast cancer metastasis via upregulation of Lysyl Hydroxylase-2 expression [J]. Cell Commun Signal. 2018;16(1):100.
Zhang Q, Deng T, Zhang H et al. Adipocyte-Derived Exosomal MTTP suppresses ferroptosis and promotes chemoresistance in colorectal cancer [J]. Advanced science (Weinheim, Baden-Wurttemberg, Germany). 2022;9(28):e2203357.
Li K, Bihan M, Yooseph S, et al. Analyses of the microbial diversity across the human Microbiome [J]. PLoS ONE. 2012;7(6):e32118.
Gong HL, Shi Y, Zhou L, et al. The composition of Microbiome in larynx and the throat biodiversity between laryngeal squamous cell carcinoma patients and control population [J]. PLoS ONE. 2013;8(6):e66476.
Gong H, Shi Y, Zhou X, et al. Microbiota in the throat and risk factors for laryngeal carcinoma [J]. Appl Environ Microbiol. 2014;80(23):7356–63.
Hsueh CY, Gong H, Cong N, et al. Throat microbial community structure and functional changes in postsurgery laryngeal carcinoma patients [J]. Appl Environ Microbiol. 2020;86(24):e01849–20.
Gong H, Shi Y, XiaO X, et al. Alterations of microbiota structure in the larynx relevant to laryngeal carcinoma [J]. Sci Rep. 2017;7(1):5507.
Hsueh C Y, Huang Q, Gong H, et al. A positive feed-forward loop between Fusobacterium nucleatum and ethanol metabolism reprogramming drives laryngeal cancer progression and metastasis [J]. iScience. 2022;25(2):103829.
Hsueh CY, Lau HC, Huang Q, et al. Fusobacterium nucleatum impairs DNA mismatch repair and stability in patients with squamous cell carcinoma of the head and neck [J]. Cancer. 2022;128(17):3170–84.
Park HR, Ju EJ, Jo SK, et al. Enhanced antitumor efficacy of cisplatin in combination with HemoHIM in tumor-bearing mice [J]. BMC Cancer. 2009;9:85.
Yang F, Yuan C, Chen F, et al. Combined IL6 and CCR2 Blockade potentiates antitumor activity of NK cells in HPV-negative head and neck cancer [J]. J Exp Clin Cancer Res. 2024;43(1):76.
Yu J, Chen Y, Fu X, et al. Invasive Fusobacterium nucleatum May play a role in the carcinogenesis of proximal colon cancer through the serrated neoplasia pathway [J]. Int J Cancer. 2016;139(6):1318–26.
Furukawa N, Ongusaha P, Jahng WJ, et al. Role of Rho-kinase in regulation of insulin action and glucose homeostasis [J]. Cell Metab. 2005;2(2):119–29.
Fontana F, Anselmi M. Carollo E, Adipocyte-Derived extracellular vesicles promote prostate cancer cell aggressiveness by enabling multiple phenotypic and metabolic changes [J]. Cells. 2022;11(15):2388.
Maguire OA, Ackerman SE, Szwed SK, et al. Creatine-mediated crosstalk between adipocytes and cancer cells regulates obesity-driven breast cancer [J]. Cell Metab. 2021;33(3):499–e5126.
Newman NK, Zhang Y, Padiadpu J, et al. Reducing gut microbiome-driven adipose tissue inflammation alleviates metabolic syndrome [J]. Microbiome. 2023;11(1):208.
Cani PD, Van Hul M. Gut microbiota in overweight and obesity: crosstalk with adipose tissue [J]. Nat Rev Gastroenterol Hepatol. 2024;21(3):164–83.
Cani PD. Crosstalk between the gut microbiota and the endocannabinoid system: impact on the gut barrier function and the adipose tissue [J]. Clin Microbiol Infect. 2012;18(Suppl 4):50–3.
Yamaguchi M, Nishimura F, Naruishi H, et al. Thiazolidinedione (pioglitazone) blocks P. gingivalis- and F. nucleatum, but not E. coli, lipopolysaccharide (LPS)-induced interleukin-6 (IL-6) production in adipocytes [J]. J Dent Res. 2005;84(3):240–4.
Liu SC, Tsang NM Leepj, et al. Epstein-Barr virus induces adipocyte dedifferentiation to modulate the tumor microenvironment [J]. Cancer Res. 2021;81(12):3283–94.
Planellas P, Cornejo L, Farrés R et al. Prognostic significance of the microbiome-adipose tissue axis in rectal cancer: protocol of a prospective observational study [J]. BJS Open. 2022;6(2):zrac009.
Chua DT, Sham JS, Kwong DL, et al. Evaluation of cervical nodal necrosis in nasopharyngeal carcinoma by computed tomography: incidence and prognostic significance [J]. Head Neck. 1997;19(4):266–75.
Liang SB, Chen LS, Yang XL, et al. Influence of tumor necrosis on treatment sensitivity and long-term survival in nasopharyngeal carcinoma [J]. Radiother Oncol. 2021;155:219–25.
Fu JY, Yue XH, Dong M J, et al. Assessment of neoadjuvant chemotherapy with docetaxel, cisplatin, and fluorouracil in patients with oral cavity cancer [J]. Cancer Med. 2023;12(3):2417–26.
Jiang Y, Liang Z, Chen K, et al. A dynamic nomogram combining tumor stage and magnetic resonance imaging features to predict the response to induction chemotherapy in locally advanced nasopharyngeal carcinoma [J]. Eur Radiol. 2023;33(3):2171–84.
Zapletal E, Vasiljevic T, Busson P et al. Dialog beyond the grave: necrosis in the tumor microenvironment and its contribution to tumor growth [J]. Int J Mol Sci. 2023;24(6):5278.
Karsch-Bluman A, Feiglin A, Arbib E, et al. Tissue necrosis and its role in cancer progression [J]. Oncogene. 2019;38(11):1920–35.
Rajasekaran K, Carey RM, Lin X, et al. The Microbiome of HPV-positive tonsil squamous cell carcinoma and neck metastasis [J]. Oral Oncol. 2021;117:105305.
Fu A, Yao B, Dong T, et al. Tumor-resident intracellular microbiota promotes metastatic colonization in breast cancer [J]. Cell. 2022;185(8):1356–e7226.
Iwamoto H, Izumi K, Nakagawa R et al. Serum CCL2 is a prognostic biomarker for Non-Metastatic Castration-Sensitive prostate cancer [J]. Biomedicines. 2022;10(10):2369.
Dong Y, Zhang S, ZHAO S, et al. CCL2 promotes lymphatic metastasis via activating RhoA and Rac1 pathway and predict prognosis to some extent in tongue cancer [J]. Cancer Biol Ther. 2023;24(1):2205342.
Qian Y, DING P, Xu J, et al. CCL2 activates AKT signaling to promote Glycolysis and chemoresistance in glioma cells [J]. Cell Biol Int. 2022;46(5):819–28.
Sun W, Wang X, Wang D et al. CD40×HER2 bispecific antibody overcomes the CCL2-induced trastuzumab resistance in HER2-positive gastric cancer [J]. J Immunother Cancer. 2022;10(7):e005063.
Yang H, Zhang Q, Xu M, et al. CCL2-CCR2 axis recruits tumor associated macrophages to induce immune evasion through PD-1 signaling in esophageal carcinogenesis [J]. Mol Cancer. 2020;19(1):41.
Nywening TM, Wang-Gillam A, Sanford D E, et al. Targeting tumour-associated macrophages with CCR2 Inhibition in combination with FOLFIRINOX in patients with borderline resectable and locally advanced pancreatic cancer: a single-centre, open-label, dose-finding, non-randomised, phase 1b trial [J]. Lancet Oncol. 2016;17(5):651–62.
Pervushin NV, Yapryntseva MA, Panteleev MA, et al. Cisplatin resistance and metabolism: simplification of complexity [J]. Cancers (Basel). 2024;16(17):3082.
Guo J, Satoh K, Tabata S, et al. Reprogramming of glutamine metabolism via glutamine synthetase Silencing induces cisplatin resistance in A2780 ovarian cancer cells [J]. BMC Cancer. 2021;21(1):174.
Liu WJ, Pan PY, Sun Y, et al. Deferoxamine counteracts cisplatin resistance in A549 lung adenocarcinoma cells by increasing vulnerability to glutamine Deprivation-Induced cell death [J]. Front Oncol. 2021;11:794735.
Shen X, Wang G, He H, et al. SLC38A5 promotes glutamine metabolism and inhibits cisplatin chemosensitivity in breast cancer [J]. Breast Cancer (Tokyo Japan). 2024;31(1):96–104.