Ramirez TA, Jourdan-Le SC, Joy A, Zhang J, Dai Q, Mifflin S, et al. Chronic and intermittent hypoxia differentially regulate left ventricular inflammatory and extracellular matrix responses. Hypertens Res. 2012;35(8):811–8.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Lee JW, Ko J, Ju C, Eltzschig HK. Hypoxia signaling in human diseases and therapeutic targets. Exp Mol Med. 2019;51(6):1–13.

PubMed 
PubMed Central 

Google Scholar
 

Fu Y, Zhang N, Tang W, Bi Y, Zhu D, Chu X, et al. Chronic intermittent hypoxia contributes to non-alcoholic steatohepatitis progression in patients with obesity. Hepatol Int. 2022;16(4):824–34.

PubMed 

Google Scholar
 

Wang R, Lv Y, Ni Z, Feng W, Fan P, Wang Y, et al. Intermittent hypoxia exacerbates metabolic dysfunction-associated fatty liver disease by aggravating hepatic copper deficiency-induced ferroptosis. FASEB J. 2024;38(13):e23788.

CAS 
PubMed 

Google Scholar
 

Kudo J, Hirono H, Ohkoshi S. Low-frequency, mild-gradient chronic intermittent hypoxia still induces liver fibrogenesis in mice on a high-fat diet. Biochem Biophys Res Commun. 2025;761:151744.

CAS 
PubMed 

Google Scholar
 

Xiong Y, Wang Y, Xiong Y, Teng L. Protective effect of salidroside on hypoxia-related liver oxidative stress and inflammation via Nrf2 and JAK2/STAT3 signaling pathways. Food Sci Nutr. 2021;9(9):5060–9.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Das KK, Jargar JG, Saha S, Yendigeri SM, Singh SB. Alpha-tocopherol supplementation prevents lead acetate and hypoxia-induced hepatic dysfunction. Indian J Pharmacol. 2015;47(3):285–91.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Xiong Y, Wang Y, Xiong Y, Teng L. 4-PBA inhibits hypoxia-induced lipolysis in rat adipose tissue and lipid accumulation in the liver through regulating ER stress. Food Sci Nutr. 2023;11(3):1223–31.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

O’Brien KA, McNally BD, Sowton AP, Murgia A, Armitage J, Thomas LW, et al. Enhanced hepatic respiratory capacity and altered lipid metabolism support metabolic homeostasis during short-term hypoxic stress. BMC Biol. 2021;19(1):265.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Luo M, Li T, Sang H. The role of hypoxia-inducible factor 1alpha in hepatic lipid metabolism. J MOL MED. 2023;101(5):487–500.

CAS 
PubMed 

Google Scholar
 

Gao J, Guo Z, Zhao M, Cheng X, Jiang X, Liu Y, et al. Lipidomics and mass spectrometry imaging unveil alterations in mice hippocampus lipid composition exposed to hypoxia. J Lipid Res. 2024;65(7):100575.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Hayakawa J, Wang M, Wang C, Han RH, Jiang ZY, Han X. Lipidomic analysis reveals significant lipogenesis and accumulation of lipotoxic components in ob/ob mouse organs. PROSTAG LEUKOTR ESS. 2018;136:161–9.

CAS 

Google Scholar
 

Chaurasia B, Tippetts TS, Mayoral MR, Liu J, Li Y, Wang L, et al. Targeting a ceramide double bond improves insulin resistance and hepatic steatosis. Science. 2019;365(6451):386–92.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Simon J, Ouro A, Ala-Ibanibo L, Presa N, Delgado TC, Martinez-Chantar ML. Sphingolipids in non-alcoholic fatty liver disease and hepatocellular carcinoma: ceramide turnover. Int J Mol Sci. 2019. https://doi.org/10.3390/ijms21010040.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Tsukamoto S, Hirotsu K, Kumazoe M, Goto Y, Sugihara K, Suda T, et al. Green tea polyphenol EGCG induces lipid-raft clustering and apoptotic cell death by activating protein kinase Cdelta and acid sphingomyelinase through a 67 kDa laminin receptor in multiple myeloma cells. Biochem J. 2012;443(2):525–34.

CAS 
PubMed 

Google Scholar
 

Zeidan YH, Hannun YA. Activation of acid sphingomyelinase by protein kinase Cdelta-mediated phosphorylation. J Biol Chem. 2007;282(15):11549–61.

CAS 
PubMed 

Google Scholar
 

Chung HY, Witt CJ, Jbeily N, Hurtado-Oliveros J, Giszas B, Lupp A, et al. Acid sphingomyelinase inhibition prevents development of sepsis sequelae in the murine liver. Sci Rep. 2017;7(1):12348.

PubMed 
PubMed Central 

Google Scholar
 

Obuchowicz E, Prymus A, Bielecka AM, Drzyzga L, Paul-Samojedny M, Kot M, et al. Desipramine administered chronically inhibits lipopolysaccharide-stimulated production of IL-1beta in the brain and plasma of rats. Cytokine. 2016;80:26–34.

CAS 
PubMed 

Google Scholar
 

Huang M, Tang SN, Upadhyay G, Marsh JL, Jackman CP, Srivastava RK, et al. Rottlerin suppresses growth of human pancreatic tumors in nude mice, and pancreatic cancer cells isolated from Kras(G12D) mice. Cancer Lett. 2014;353(1):32–40.

CAS 
PubMed 

Google Scholar
 

Nair AB, Jacob S. A simple practice guide for dose conversion between animals and human. J Basic Clin Pharm. 2016;7(2):27–31.

PubMed 
PubMed Central 

Google Scholar
 

Min M, Yan BX, Wang P, Landeck L, Chen JQ, Li W, et al. Rottlerin as a therapeutic approach in psoriasis: evidence from in vitro and in vivo studies. PLoS ONE. 2017;12(12):e190051.


Google Scholar
 

Sharma M, Naura AS, Singla SK. Modulatory effect of 4-phenyl butyric acid on hyperoxaluria-induced renal injury and inflammation. Mol Cell Biochem. 2019;451(1–2):185–96.

CAS 
PubMed 

Google Scholar
 

Wu Y, Adi D, Long M, Wang J, Liu F, Gai MT, et al. 4-phenylbutyric acid induces protection against pulmonary arterial hypertension in rats. PLoS ONE. 2016;11(6):e157538.


Google Scholar
 

Zhang P, Qin Y, Wang H, Wang J. Vagus nerve stimulation alleviates myocardial injury following hepatic ischemia-reperfusion in rats by inhibiting ferroptosis via the activation of the SLC7A11/GPX4 axis. Eur J Med Res. 2025;30(1):162.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Ates B, Dogru MI, Gul M, Erdogan A, Dogru AK, Yilmaz I, et al. Protective role of caffeic acid phenethyl ester in the liver of rats exposed to cold stress. FUND CLIN PHARMACOL. 2006;20(3):283–9.

CAS 

Google Scholar
 

Shaker NS, Sahib HB. Fraxin in combination with dexamethasone attenuates LPS-induced liver and heart injury and their anticytokine activity in mice. Adv Virus Res. 2023;2023:5536933.


Google Scholar
 

Zhou X, Zhao R, Lv M, Xu X, Liu W, Li X, et al. ACSL4 promotes microglia-mediated neuroinflammation by regulating lipid metabolism and VGLL4 expression. Brain Behav Immun. 2023;109:331–43.

CAS 
PubMed 

Google Scholar
 

Guo HZ, Feng RX, Zhang YJ, Yu YH, Lu W, Liu JJ, et al. A CD36-dependent non-canonical lipid metabolism program promotes immune escape and resistance to hypomethylating agent therapy in AML. Cell Rep Med. 2024;5(6):101592.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Liu Z, Xu P, Gong F, Tan Y, Han J, Tian L, et al. Altered lipidomic profiles in lung and serum of rat after sub-chronic exposure to ozone. Sci Total Environ. 2022;806(Pt 2):150630.

CAS 
PubMed 

Google Scholar
 

Chaurasia B, Summers SA. Ceramides in metabolism: key lipotoxic players. Annu Rev Physiol. 2021;83:303–30.

CAS 
PubMed 

Google Scholar
 

Pewzner-Jung Y, Park H, Laviad EL, Silva LC, Lahiri S, Stiban J, Erez-Roman R, Brugger B, Sachsenheimer T, Wieland F et al. A critical role for ceramide synthase 2 in liver homeostasis: I. alterations in lipid metabolic pathways. J Biol Chem. 2010;285(14):10902–10.

Khallaf W, Taha A, Ahmed AS, Hassan M, Abo-Youssef AM, Hemeida R. Sildenafil abrogates radiation-induced hepatotoxicity in animal model: the impact of NF-kappaB-p65, P53, Nrf2, and SIRT 1 pathway. Food Chem Toxicol. 2025;200:115373.

PubMed 

Google Scholar
 

Shiga Y, Rangel OA, El HS, Belforte N, Quintero H, Dotigny F, et al. Endoplasmic reticulum stress-related deficits in calcium clearance promote neuronal dysfunction that is prevented by SERCA2 gene augmentation. Cell Rep Med. 2024;5(12):101839.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Bednarski TK, Rahim M, Hasenour CM, Banerjee DR, Trenary IA, Wasserman DH, et al. Pharmacological SERCA activation limits diet-induced steatohepatitis and restores liver metabolic function in mice. J Lipid Res. 2024;65(6):100558.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Ibrahim E, Sohail SK, Ihunwo A, Eid RA, Al-Shahrani Y, Rezigalla AA. Effect of high-altitude hypoxia on function and cytoarchitecture of rats’ liver. Sci Rep. 2025;15(1):12771.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Liu J, Zhao J, He J, Li Y, Xu J, Xiao C, et al. Hepcidin mediates the disorder of iron homeostasis and mitochondrial function in mice under hypobaric hypoxia exposure. Apoptosis. 2025;30(3–4):1076–91.

CAS 
PubMed 

Google Scholar
 

Zhen X, Moya EA, Gautane M, Zhao H, Lawrence ES, Gu W, et al. Combined intermittent and sustained hypoxia is a novel and deleterious cardio-metabolic phenotype. Sleep. 2022. https://doi.org/10.1093/sleep/zsab290.

Article 
PubMed 

Google Scholar
 

Wagih SS, Abd EM, Abdel RA, Yousef AM, El SW. Clinical spectrum of nonalcoholic fatty liver disease in patients with chronic obstructive pulmonary disease. Turk Thorac J. 2022;23(6):420–5.


Google Scholar
 

Suzuki K, Claggett B, Minamisawa M, Packer M, Zile MR, Rouleau J, et al. Liver function and prognosis, and influence of sacubitril/valsartan in patients with heart failure with reduced ejection fraction. Eur J Heart Fail. 2020;22(9):1662–71.

CAS 
PubMed 

Google Scholar
 

Cao Y, Wang Y, Zhou Z, Pan C, Jiang L, Zhou Z, et al. Liver-heart cross-talk mediated by coagulation factor XI protects against heart failure. Science. 2022;377(6613):1399–406.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Wang F, So KF, Xiao J, Wang H. Organ-organ communication: the liver’s perspective. Theranostics. 2021;11(7):3317–30.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Royo F, Moreno L, Mleczko J, Palomo L, Gonzalez E, Cabrera D, et al. Hepatocyte-secreted extracellular vesicles modify blood metabolome and endothelial function by an arginase-dependent mechanism. SCI REP-UK. 2017;7:42798.

CAS 

Google Scholar
 

Njoku DB, Schilling JD, Finck BN. Mechanisms of nonalcoholic steatohepatitis-associated cardiomyopathy: key roles for liver-heart crosstalk. CURR OPIN LIPIDOL. 2022;33(5):295–9.

CAS 
PubMed 

Google Scholar
 

Peng Z, Duggan MR, Dark HE, Daya GN, An Y, Davatzikos C, et al. Association of liver disease with brain volume loss, cognitive decline, and plasma neurodegenerative disease biomarkers. Neurobiol Aging. 2022;120:34–42.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Marra F, Svegliati-Baroni G. Lipotoxicity and the gut-liver axis in NASH pathogenesis. J Hepatol. 2018;68(2):280–95.

CAS 
PubMed 

Google Scholar
 

Sherpa LY. Deji, Stigum H, Chongsuvivatwong V, Luobu O, Thelle DS, Nafstad P, Bjertness E: Lipid profile and its association with risk factors for coronary heart disease in the highlanders of Lhasa. Tibet HIGH ALT MED BIOL. 2011;12(1):57–63.

CAS 
PubMed 

Google Scholar
 

Baracco R, Mohanna S, Seclen S. A comparison of the prevalence of metabolic syndrome and its components in high and low altitude populations in Peru. Metab Syndr Relat Disord. 2007;5(1):55–62.

PubMed 

Google Scholar
 

Choi RH, Tatum SM, Symons JD, Summers SA, Holland WL. Ceramides and other sphingolipids as drivers of cardiovascular disease. Nat Rev Cardiol. 2021;18(10):701–11.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Katz MG, Hadas Y, Vincek A, Freage-Kahn L, Shtraizent N, Madjarov JM, et al. Acid ceramidase gene therapy ameliorates pulmonary arterial hypertension with right heart dysfunction. Respir Res. 2023;24(1):197.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Schmidt S, Gallego SF, Zelnik ID, Kovalchuk S, Albaek N, Sprenger RR, et al. Silencing of ceramide synthase 2 in hepatocytes modulates plasma ceramide biomarkers predictive of cardiovascular death. MOL THER. 2022;30(4):1661–74.

CAS 
PubMed 

Google Scholar
 

Guo L, Tan G, Liu P, Li H, Tang L, Huang L, et al. Three plasma metabolite signatures for diagnosing high altitude pulmonary edema. Sci Rep. 2015;5:15126.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Vrentzos E, Ikonomidis I, Pavlidis G, Katogiannis K, Korakas E, Kountouri A, et al. Six-month supplementation with high dose coenzyme Q10 improves liver steatosis, endothelial, vascular and myocardial function in patients with metabolic-dysfunction associated steatotic liver disease: a randomized double-blind, placebo-controlled trial. Cardiovasc Diabetol. 2024;23(1):245.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Shou JW, Ma J, Wang X, Li XX, Chen SC, Kang BH, et al. Free cholesterol-induced liver injury in non-alcoholic fatty liver disease: mechanisms and a therapeutic intervention using dihydrotanshinone I. Adv Sci. 2025;12(2):e2406191.


Google Scholar
 

Wang Z, Wang Z, Lin M, Zheng B, Zhang J. A study on cholesterol-cholesteryl ester metabolic homeostasis and drug intervention in hyperlipidemic hamsters using UHPLC-MS/MS. J PHARMACEUT BIOMED. 2024;240:115933.

CAS 

Google Scholar
 

Sazaki I, Sakurai T, Yamahata A, Mogi S, Inoue N, Ishida K, et al. Oxidized low-density lipoproteins trigger hepatocellular oxidative stress with the formation of cholesteryl ester hydroperoxide-enriched lipid droplets. Int J Mol Sci. 2023. https://doi.org/10.3390/ijms24054281.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Fox TE, Houck KL, O’Neill SM, Nagarajan M, Stover TC, Pomianowski PT, et al. Ceramide recruits and activates protein kinase C zeta (PKC zeta) within structured membrane microdomains. J Biol Chem. 2007;282(17):12450–7.

CAS 
PubMed 

Google Scholar
 

Chen TC, Lee RA, Tsai SL, Kanamaluru D, Gray NE, Yiv N, et al. An ANGPTL4-ceramide-protein kinase Czeta axis mediates chronic glucocorticoid exposure-induced hepatic steatosis and hypertriglyceridemia in mice. J Biol Chem. 2019;294(23):9213–24.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Takahashi H, Ashikawa H, Nakamura H, Murayama T. Phosphorylation and inhibition of ceramide kinase by protein kinase C-beta: their changes by serine residue mutations. Cell Signal. 2019;54:59–68.

CAS 
PubMed 

Google Scholar
 

Zeng C, Liang B, Jiang R, Shi Y, Du Y. Protein kinase C isozyme expression in right ventricular hypertrophy induced by pulmonary hypertension in chronically hypoxic rats. Mol Med Rep. 2017;16(4):3833–40.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Ajoolabady A, Kaplowitz N, Lebeaupin C, Kroemer G, Kaufman RJ, Malhi H, et al. Endoplasmic reticulum stress in liver diseases. Hepatology. 2023;77(2):619–39.

PubMed 

Google Scholar
 

Lebeaupin C, Vallee D, Hazari Y, Hetz C, Chevet E, Bailly-Maitre B. Endoplasmic reticulum stress signalling and the pathogenesis of non-alcoholic fatty liver disease. J Hepatol. 2018;69(4):927–47.

CAS 
PubMed 

Google Scholar
 

Meares GP, Liu Y, Rajbhandari R, Qin H, Nozell SE, Mobley JA, et al. PERK-dependent activation of JAK1 and STAT3 contributes to endoplasmic reticulum stress-induced inflammation. Mol Cell Biol. 2014;34(20):3911–25.

PubMed 
PubMed Central 

Google Scholar
 

Chen X, Zhong J, Dong D, Liu G, Yang P. Endoplasmic reticulum stress-induced CHOP inhibits PGC-1alpha and causes mitochondrial dysfunction in diabetic embryopathy. Toxicol Sci. 2017;158(2):275–85.

PubMed 
PubMed Central 

Google Scholar
 

Kim JY, Garcia-Carbonell R, Yamachika S, Zhao P, Dhar D, Loomba R, et al. ER stress drives lipogenesis and steatohepatitis via caspase-2 activation of S1P. Cell. 2018;175(1):133–45.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Huang M, Wang Y, Wu X, Li W. Crosstalk between endoplasmic reticulum stress and ferroptosis in liver diseases. Frontiers in Bioscience-Landmark. 2024;29(6):221.

CAS 

Google Scholar
 

Bhattarai KR, Riaz TA, Kim HR, Chae HJ. The aftermath of the interplay between the endoplasmic reticulum stress response and redox signaling. Exp Mol Med. 2021;53(2):151–67.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Zelnik ID, Ventura AE, Kim JL, Silva LC, Futerman AH. The role of ceramide in regulating endoplasmic reticulum function. Biochimica et Biophysica Acta (BBA). 2020;1865(1):158489.

CAS 

Google Scholar
 

Vangheluwe P, Raeymaekers L, Dode L, Wuytack F. Modulating sarco(endo)plasmic reticulum Ca2+ ATPase 2 (SERCA2) activity: cell biological implications. Cell Calcium. 2005;38(3–4):291–302.

CAS 
PubMed 

Google Scholar
 

Solana-Manrique C, Munoz-Soriano V, Sanz FJ, Paricio N. Oxidative modification impairs SERCA activity in Drosophila and human cell models of Parkinson’s disease. Biochimica et Biophysica Acta (BBA). 2021;1867(7):166152.

CAS 

Google Scholar
 

Song Q, Liu H, Zhang Y, Qiao C, Ge S. Lipidomics revealed alteration of the sphingolipid metabolism in the liver of nonalcoholic steatohepatitis mice treated with Scoparone. ACS Omega. 2022;7(16):14121–7.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Mah M, Febbraio M, Turpin-Nolan S. Circulating ceramides- are origins important for sphingolipid biomarkers and treatments? FRONT ENDOCRINOL. 2021;12:684448.


Google Scholar
 

Meeusen JW, Donato LJ, Bryant SC, Baudhuin LM, Berger PB, Jaffe AS. Plasma ceramides. Arterioscler Thromb Vasc Biol. 2018;38(8):1933–9.

CAS 
PubMed 

Google Scholar
 

Pan W, Dong H, Sun R, Zhao L, Sun M, Li L, et al. Plasma ceramides in relation to coronary plaque characterization determined by optical coherence tomography. J CARDIOVASC TRANSL. 2021;14(1):140–9.


Google Scholar
 

Kim J, Suresh B, Lim MN, Hong SH, Kim KS, Song HE, et al. Metabolomics reveals dysregulated sphingolipid and amino acid metabolism associated with chronic obstructive pulmonary disease. INT J CHRONIC OBSTR. 2022;17:2343–53.

CAS 

Google Scholar
 

Wang HN, Wang Y, Zhang SY, Bai L. Emerging roles of the acid sphingomyelinase/ceramide pathway in metabolic and cardiovascular diseases: mechanistic insights and therapeutic implications. World J Cardiol. 2025;17(2):102308.

PubMed 
PubMed Central 

Google Scholar
 

Choi BJ, Park MH, Jin HK, Bae JS. Acid sphingomyelinase as a pathological and therapeutic target in neurological disorders: focus on Alzheimer’s disease. Exp Mol Med. 2024;56(2):301–10.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Huang FC, Du Y, Zhang XF, Guan L, Liu XM, Zeng M. SiO(2) dust induces inflammation and pulmonary fibrosis in rat lungs through activation of ASMase/ceramide pathway. J APPL TOXICOL. 2023;43(9):1319–31.

CAS 
PubMed 

Google Scholar
 

Chen C, Ji Y, Liu H, Pang L, Chen J, Chen H, et al. Acid sphingomyelinase downregulation alleviates diabetic myocardial fibrosis in mice. Mol Cell Biochem. 2025. https://doi.org/10.1007/s11010-025-05206-1.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Juneja M, Kobelt D, Walther W, Voss C, Smith J, Specker E, et al. Statin and rottlerin small-molecule inhibitors restrict colon cancer progression and metastasis via MACC1. PLoS Biol. 2017;15(6):e2000784.

PubMed 
PubMed Central 

Google Scholar
 

Du Y, Zhao Y, Li C, Zheng Q, Tian J, Li Z, et al. Inhibition of PKCdelta reduces amyloid-beta levels and reverses Alzheimer disease phenotypes. J Exp Med. 2018;215(6):1665–77.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Zhou S, Lin Q, Huang C, Luo X, Tian X, Liu C, et al. Rottlerin plays an antiviral role at early and late steps of Zika virus infection. Virol Sin. 2022;37(5):685–94.

CAS 
PubMed 
PubMed Central 

Google Scholar