Yang YL, Yang F, Huang ZQ, Li YY, Shi HY, Sun Q, et al. T cells, NK cells, and tumor-associated macrophages in cancer immunotherapy and the current state of the art of drug delivery systems. Front Immunol. 2023;14:1199173.
Shen X, Zhou S, Yang Y, Hong T, Xiang Z, Zhao J, et al. TAM-targeted re-education for enhanced cancer immunotherapy: mechanism and recent progress. Front Oncol. 2022;12:1034842.
Kim SK, Cho SW. The evasion mechanisms of cancer immunity and drug intervention in the tumor microenvironment. Front Pharmacol. 2022;13:868695.
Bai R, Cui J. Development of immunotherapy strategies targeting tumor microenvironment is fiercely ongoing. Front Immunol. 2022;13:890166.
Bol KF, Schreibelt G, Gerritsen WR, De Vries IJ, Figdor CG. Dendritic cell–based immunotherapy: state of the art and beyond. Clin Cancer Res. 2016;22(8):1897–906.
Tai Y, Chen M, Wang F, Fan Y, Zhang J, Cai B, et al. The role of dendritic cells in cancer immunity and therapeutic strategies. Int Immunopharmacol. 2024;128:111548.
Wculek SK, Cueto FJ, Mujal AM, Melero I, Krummel MF, Sancho D. Dendritic cells in cancer immunology and immunotherapy. Nat Rev Immunol. 2020;20(1):7–24.
Yu J, Sun H, Cao W, Song Y, Jiang Z. Research progress on dendritic cell vaccines in cancer immunotherapy. Exp Hematol Oncol. 2022;11(1):3.
Taefehshokr S, Parhizkar A, Hayati S, Mousapour M, Mahmoudpour A, Eleid L, et al. Cancer immunotherapy: Challenges and limitations. Pathology-Research and Practice. 2022;229:153723.
Perez CR, De Palma M. Engineering dendritic cell vaccines to improve cancer immunotherapy. Nat Commun. 2019;10(1):5408.
Joffre OP, Segura E, Savina A, Amigorena S. Cross-presentation by dendritic cells. Nat Rev Immunol. 2012;12(8):557–69.
Wakim LM, Bevan MJ. Cross-dressed dendritic cells drive memory CD8+ T-cell activation after viral infection. Nature. 2011;471(7340):629–32.
Marino J, Babiker-Mohamed MH, Crosby-Bertorini P, Paster JT, LeGuern C, Germana S, Abdi R, Uehara M, Kim JI, Markmann JF, Tocco G. Donor exosomes rather than passenger leukocytes initiate alloreactive T cell responses after transplantation. Sci Immunol. 2016;1(1):aaf8759.
Saccheri F, Pozzi C, Avogadri F, Barozzi S, Faretta M, Fusi P, Rescigno M. Bacteria-induced gap junctions in tumors favor antigen cross-presentation and antitumor immunity. Sci Transl Med. 2010;2(44):44ra57.
Mendoza-Naranjo A, Saéz PJ, Johansson CC, Ramírez M, Mandakovic D, Pereda C, et al. Functional gap junctions facilitate melanoma antigen transfer and cross-presentation between human dendritic cells. J Immunol. 2007;178(11):6949–57.
Roche PA, Furuta K. The ins and outs of MHC class II-mediated antigen processing and presentation. Nat Rev Immunol. 2015;15(4):203–16.
Wang GZ, Tang XD, Lü MH, Gao JH, Liang GP, Li N, et al. Multiple antigenic peptides of human heparanase elicit a much more potent immune response against tumors. Cancer Prev Res. 2011;4(8):1285–95.
Sika-Paotonu D. Increasing the potency of dendritic cell-based vaccines for the treatment of cancer (Doctoral dissertation, Te Herenga Waka-Victoria University of Wellington). 2014.
Sánchez-León ML, Jiménez-Cortegana C, Cabrera G, Vermeulen EM, de la Cruz-Merino L, Sánchez-Margalet V. The effects of dendritic cell-based vaccines in the tumor microenvironment: impact on myeloid-derived suppressor cells. Front Immunol. 2022;13:1050484.
MacDonald KP, Munster DJ, Clark GJ, Dzionek A, Schmitz J, Hart DN. Characterization of human blood dendritic cell subsets. Blood J Am Soc Hematol. 2002;100(13):4512–20.
Liu YJ. Dendritic cell subsets and lineages, and their functions in innate and adaptive immunity. Cell. 2001;106(3):259–62.
Böttcher JP, Sousa CR. The role of type 1 conventional dendritic cells in cancer immunity. Trends Cancer. 2018;4(11):784–92.
Merad M, Sathe P, Helft J, Miller J, Mortha A. The dendritic cell lineage: ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting. Annu Rev Immunol. 2013;31(1):563–604.
Schlitzer A, McGovern N, Ginhoux F. Dendritic cells and monocyte-derived cells: two complementary and integrated functional systems. Semin Cell Dev Biol. 2015;41:9–22.
Lee KW, Yam JW, Mao X. Dendritic cell vaccines: a shift from conventional approach to new generations. Cells. 2023;12(17):2147.
Higano CS, Schellhammer PF, Small EJ, Burch PA, Nemunaitis J, Yuh L, Provost N, Frohlich MW. Integrated data from 2 randomized, double‐blind, placebo‐controlled, phase 3 trials of active cellular immunotherapy with sipuleucel‐T in advanced prostate cancer. Cancer Interdisc Int J Am Cancer Soc. 2009;115(16):3670–9.
Cheever MA, Higano CS. PROVENGE (Sipuleucel-T) in prostate cancer: the first FDA-approved therapeutic cancer vaccine. Clin Cancer Res. 2011;17(11):3520–6.
Kantoff PW, Higano CS, Shore ND, Berger ER, Small EJ, Penson DF, et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med. 2010;363(5):411–22.
Ratzinger G, Baggers J, de Cos MA, Yuan J, Dao T, Reagan JL, et al. Mature human Langerhans cells derived from CD34+ hematopoietic progenitors stimulate greater cytolytic T lymphocyte activity in the absence of bioactive IL-12p70, by either single peptide presentation or cross-priming, than do dermal-interstitial or monocyte-derived dendritic cells. J Immunol. 2004;173(4):2780–91.
Chung DJ, Carvajal RD, Postow MA, Sharma S, Pronschinske KB, Shyer JA, et al. Langerhans-type dendritic cells electroporated with TRP-2 mRNA stimulate cellular immunity against melanoma: results of a phase I vaccine trial. Oncoimmunology. 2018;7(1):e1372081.
Laoui D, Keirsse J, Morias Y, Van Overmeire E, Geeraerts X, Elkrim Y, et al. The tumor microenvironment harbours ontogenically distinct dendritic cell populations with opposing effects on tumor immunity. Nat Commun. 2016;7(1):13720.
Mastelic-Gavillet B, Balint K, Boudousquie C, Gannon PO, Kandalaft LE. Personalized dendritic cell vaccines—recent breakthroughs and encouraging clinical results. Front Immunol. 2019;11(10):766.
Tel J, Benitez-Ribas D, Hoosemans S, Cambi A, Adema GJ, Figdor CG, et al. DEC-205 mediates antigen uptake and presentation by both resting and activated human plasmacytoid dendritic cells. Eur J Immunol. 2011;41(4):1014–23.
Bonifaz L, Bonnyay D, Mahnke K, Rivera M, Nussenzweig MC, Steinman RM. Efficient targeting of protein antigen to the dendritic cell receptor DEC-205 in the steady state leads to antigen presentation on major histocompatibility complex class I products and peripheral CD8+ T cell tolerance. J Exp Med. 2002;196(12):1627–38.
Naseri M, Bozorgmehr M, Zöller M, Ranaei Pirmardan E, Madjd Z. Tumor-derived exosomes: the next generation of promising cell-free vaccines in cancer immunotherapy. Oncoimmunology. 2020;9(1):1779991.
Gu L, Mooney DJ. Biomaterials and emerging anticancer therapeutics: engineering the microenvironment. Nat Rev Cancer. 2016;16(1):56–66.
Ali OA, Huebsch N, Cao L, Dranoff G, Mooney DJ. Infection-mimicking materials to program dendritic cells in situ. Nat Mater. 2009;8(2):151–8.
Gentile P, Chiono V, Carmagnola I, Hatton PV. An overview of poly (lactic-co-glycolic) acid (PLGA)-based biomaterials for bone tissue engineering. Int J Mol Sci. 2014;15(3):3640–59.
Bencherif SA, Sands RW, Bhatta D, Arany P, Verbeke CS, Edwards DA, et al. Injectable preformed scaffolds with shape-memory properties. Proc Natl Acad Sci. 2012;109(48):19590–5.
Long GV, Dummer R, Hamid O, Gajewski TF, Caglevic C, Dalle S, et al. Epacadostat plus pembrolizumab versus placebo plus pembrolizumab in patients with unresectable or metastatic melanoma (ECHO-301/KEYNOTE-252): a phase 3, randomised, double-blind study. Lancet Oncol. 2019;20(8):1083–97.
Galluzzi L, Vitale I, Warren S, Adjemian S, Agostinis P, Martinez AB, et al. Consensus guidelines for the definition, detection and interpretation of immunogenic cell death. J Immunother Cancer. 2020;8(1):e000337.
Vedunova M, Turubanova V, Vershinina O, Savyuk M, Efimova I, Mishchenko T, et al. DC vaccines loaded with glioma cells killed by photodynamic therapy induce Th17 antitumor immunity and provide a four-gene signature for glioma prognosis. Cell Death Dis. 2022;13(12):1062.
Wang X, Ji J, Zhang H, Fan Z, Zhang L, Shi L, et al. Stimulation of dendritic cells by DAMPs in ALA-PDT treated SCC tumor cells. Oncotarget. 2015;6(42):44688.
Gu YZ, Zhao X, Song XR. Ex vivo pulsed dendritic cell vaccination against cancer. Acta Pharmacol Sin. 2020;41(7):959–69.
Aarntzen EH, Schreibelt G, Bol K, Lesterhuis WJ, Croockewit AJ, De Wilt JH, et al. Vaccination with mRNA-electroporated dendritic cells induces robust tumor antigen-specific CD4+ and CD8+ T cells responses in stage III and IV melanoma patients. Clin Cancer Res. 2012;18(19):5460–70.
Kreiter S, Selmi A, Diken M, Sebastian M, Osterloh P, Schild H, et al. Increased antigen presentation efficiency by coupling antigens to MHC class I trafficking signals. J Immunol. 2008;180(1):309–18.
Dannull J, Nair S, Su Z, Boczkowski D, DeBeck C, Yang B, et al. Enhancing the immunostimulatory function of dendritic cells by transfection with mRNA encoding OX40 ligand. Blood. 2005;105(8):3206–13.
Tcherepanova IY, Adams MD, Feng X, Hinohara A, Horvatinovich J, Calderhead D, et al. Ectopic expression of a truncated CD40L protein from synthetic post-transcriptionally capped RNA in dendritic cells induces high levels of IL-12 secretion. BMC Mol Biol. 2008;9(1):90.
Carneiro BA, Zamarin D, Marron T, Mehmi I, Patel SP, Subbiah V, El-Khoueiry A, Grand D, Garcia-Reyes K, Goel S, Martin P. Abstract CT183: first-in-human study of MEDI1191 (mRNA encoding IL-12) plus durvalumab in patients (pts) with advanced solid tumors. Cancer Res. 2022 Jun 15;82(12_Supplement):CT183-.
Pitt JM, André F, Amigorena S, Soria JC, Eggermont A, Kroemer G, et al. Dendritic cell–derived exosomes for cancer therapy. J Clin Investig. 2016;126(4):1224–32.
Fu C, Peng P, Loschko J, Feng L, Pham P, Cui W, et al. Plasmacytoid dendritic cells cross-prime naive CD8 T cells by transferring antigen to conventional dendritic cells through exosomes. Proc Natl Acad Sci. 2020;117(38):23730–41.
Dai Phung C, Pham TT, Nguyen HT, Nguyen TT, Ou W, Jeong JH, et al. Anti-CTLA-4 antibody-functionalized dendritic cell-derived exosomes targeting tumor-draining lymph nodes for effective induction of antitumor T-cell responses. Acta Biomater. 2020;1(115):371–82.
Mohammadzadeh Y, De Palma M. Boosting dendritic cell nanovaccines. Nat Nanotechnol. 2022;17(5):442–4.
Chen J, Duan Y, Che J, Zhu J. Dysfunction of dendritic cells in tumor microenvironment and immunotherapy. Cancer Commun. 2024;44(9):1047–70.
Stevens D, Ingels J, Van Lint S, Vandekerckhove B, Vermaelen K. Dendritic cell-based immunotherapy in lung cancer. Front Immunol. 2021;11:620374.
Zheng J, Li X, He A, Zhang Y, Yang Y, Dang M, et al. In situ antigen-capture strategies for enhancing dendritic cell-mediated antitumor immunity. J Control Release. 2025;29:113984.
Ng YH, Chalasani G. Role of secondary lymphoid tissues in primary and memory T-cell responses to a transplanted organ. Transplant Rev. 2010;24(1):32–41.
Sharma S, Stolina M, Luo J, Strieter RM, Burdick M, Zhu LX, et al. Secondary lymphoid tissue chemokine mediates T cell-dependent antitumor responses in vivo. J Immunol. 2000;164(9):4558–63.
von Renesse J, Lin MC, Ho PC. Tumor-draining lymph nodes–friend or foe during immune checkpoint therapy? Trends Cancer. 2025.
Böttcher JP, Bonavita E, Chakravarty P, Blees H, Cabeza-Cabrerizo M, Sammicheli S, Rogers NC, Sahai E, Zelenay S, Sousa CR. NK cells stimulate recruitment of cDC1 into the tumor microenvironment promoting cancer immune control. Cell. 2018;172(5):1022–37.
Alfei F, Ho PC, Lo WL. DCision-making in tumors governs T cell antitumor immunity. Oncogene. 2021;40(34):5253–61.
Peng X, He Y, Huang J, Tao Y, Liu S. Metabolism of dendritic cells in tumor microenvironment: for immunotherapy. Front Immunol. 2021;12:613492.
McGettrick AF, O’Neill LA. How metabolism generates signals during innate immunity and inflammation. J Biol Chem. 2013;288(32):22893–8.
Møller SH, Wang L, Ho PC. Metabolic programming in dendritic cells tailors immune responses and homeostasis. Cell Mol Immunol. 2022;19(3):370–83.
Wculek SK, Khouili SC, Priego E, Heras-Murillo I, Sancho D. Metabolic control of dendritic cell functions: digesting information. Front Immunol. 2019;10:775.
Naldini A, Morena E, Pucci A, Miglietta D, Riboldi E, Sozzani S, et al. Hypoxia affects dendritic cell survival: role of the hypoxia-inducible factor-1α and lipopolysaccharide. J Cell Physiol. 2012;227(2):587–95.
Carraro F, Pucci A, Pellegrini M, Giuseppe Pelicci P, Baldari CT, Naldini A. p66Shc is involved in promoting HIF-1α accumulation and cell death in hypoxic T cells. J Cell Physiol. 2007;211(2):439–47.
Mortezaee K, Majidpoor J. The impact of hypoxia on immune state in cancer. Life Sci. 2021;286:120057.
Márquez S, Fernández JJ, Terán-Cabanillas E, Herrero C, Alonso S, Azogil A, et al. Endoplasmic reticulum stress sensor IRE1α enhances IL-23 expression by human dendritic cells. Front Immunol. 2017;8:639.
Hackstein H, Taner T, Zahorchak AF, Morelli AE, Logar AJ, Gessner A, et al. Rapamycin inhibits IL-4—induced dendritic cell maturation in vitro and dendritic cell mobilization and function in vivo. Blood. 2003;101(11):4457–63.
Cao W, Manicassamy S, Tang H, Kasturi SP, Pirani A, Murthy N, et al. Toll-like receptor–mediated induction of type I interferon in plasmacytoid dendritic cells requires the rapamycin-sensitive PI (3) K-mTOR-p70S6K pathway. Nat Immunol. 2008;9(10):1157–64.
Turnquist HR, Raimondi G, Zahorchak AF, Fischer RT, Wang Z, Thomson AW. Rapamycin-conditioned dendritic cells are poor stimulators of allogeneic CD4+ T cells, but enrich for antigen-specific Foxp3+ T regulatory cells and promote organ transplant tolerance. J Immunol. 2007;178(11):7018–31.
Herber DL, Cao W, Nefedova Y, Novitskiy SV, Nagaraj S, Tyurin VA, et al. Lipid accumulation and dendritic cell dysfunction in cancer. Nat Med. 2010;16(8):880–6.
Lu H, Forbes RA, Verma A. Hypoxia-inducible factor 1 activation by aerobic glycolysis implicates the Warburg effect in carcinogenesis. J Biol Chem. 2002;277(26):23111–5.
Carstensen LS, Lie-Andersen O, Obers A, Crowther MD, Svane IM, Hansen M. Long-term exposure to inflammation induces differential cytokine patterns and apoptosis in dendritic cells. Front Immunol. 2019;10:2702.
Hansen M, Andersen MH. The role of dendritic cells in cancer. InSeminars Immunopathol. 2017;39:307–16.
Jin HR, Wang J, Wang ZJ, Xi MJ, Xia BH, Deng K, et al. Lipid metabolic reprogramming in tumor microenvironment: from mechanisms to therapeutics. J Hematol Oncol. 2023;16(1):103.
Giovanelli P, Sandoval TA, Cubillos-Ruiz JR. Dendritic cell metabolism and function in tumors. Trends Immunol. 2019;40(8):699–718.
Veglia F, Tyurin VA, Mohammadyani D, Blasi M, Duperret EK, Donthireddy L, et al. Lipid bodies containing oxidatively truncated lipids block antigen cross-presentation by dendritic cells in cancer. Nat Commun. 2017;8(1):2122.
Caronni N, Simoncello F, Stafetta F, Guarnaccia C, Ruiz-Moreno JS, Opitz B, et al. Downregulation of membrane trafficking proteins and lactate conditioning determine loss of dendritic cell function in lung cancer. Can Res. 2018;78(7):1685–99.
Cubillos-Ruiz JR, Silberman PC, Rutkowski MR, Chopra S, Perales-Puchalt A, Song M, et al. ER stress sensor XBP1 controls antitumor immunity by disrupting dendritic cell homeostasis. Cell. 2015;161(7):1527–38.
Song M, Cubillos-Ruiz JR. Endoplasmic reticulum stress responses in intratumoral immune cells: implications for cancer immunotherapy. Trends Immunol. 2019;40(2):128–41.
Zhu C, Dixon KO, Newcomer K, Gu G, Xiao S, Zaghouani S, Schramm MA, Wang C, Zhang H, Goto K, Christian E. Tim-3 adaptor protein Bat3 is a molecular checkpoint of T cell terminal differentiation and exhaustion. Sci Adv. 2021;7(18):eabd2710.
Cubillos-Ruiz JR, Bettigole SE, Glimcher LH. Tumorigenic and immunosuppressive effects of endoplasmic reticulum stress in cancer. Cell. 2017;168(4):692–706.
Werfel TA, Cook RS. Efferocytosis in the tumor microenvironment. InSeminars in immunopathology. 2018;40(6).
Gottfried E, Kunz-Schughart LA, Ebner S, Mueller-Klieser W, Hoves S, Andreesen R, et al. Tumor-derived lactic acid modulates dendritic cell activation and antigen expression. Blood. 2006;107(5):2013–21.
Wobser M, Voigt H, Houben R, Eggert AO, Freiwald M, Kaemmerer U, et al. Dendritic cell based antitumor vaccination: impact of functional indoleamine 2, 3-dioxygenase expression. Cancer Immunol Immunother. 2007;56:1017–24.
Fallarino F, Grohmann U, Hwang KW, Orabona C, Vacca C, Bianchi R, et al. Modulation of tryptophan catabolism by regulatory T cells. Nat Immunol. 2003;4(12):1206–12.
Munn DH, Mellor AL. IDO in the tumor microenvironment: inflammation, counter-regulation, and tolerance. Trends Immunol. 2016;37(3):193–207.
McDonnell AM, Robinson BW, Currie AJ. Tumor antigen cross-presentation and the dendritic cell: where it all begins? J Immunol Res. 2010;2010(1):539519.
Xiao Z, Wang R, Wang X, Yang H, Dong J, He X, et al. Impaired function of dendritic cells within the tumor microenvironment. Front Immunol. 2023;27(14):1213629.
Wu Y, Pu X, Wang X, Xu M. Reprogramming of lipid metabolism in the tumor microenvironment: a strategy for tumor immunotherapy. Lipids Health Dis. 2024;23(1):35.
He S, Zheng L, Qi C. Myeloid-derived suppressor cells (MDSCs) in the tumor microenvironment and their targeting in cancer therapy. Mol Cancer. 2025;24(1):5.
Wang H, Zhou F, Qin W, Yang Y, Li X, Liu R. Metabolic regulation of myeloid-derived suppressor cells in tumor immune microenvironment: targets and therapeutic strategies. Theranostics. 2025;15(6):2159.
Grzywa TM, Sosnowska A, Matryba P, Rydzynska Z, Jasinski M, Nowis D, Golab J. Myeloid cell-derived arginase in cancer immune response. Front Immunol. 2020;11:938.
Wang F, Lou J, Gao X, Zhang L, Sun F, Wang Z, et al. Spleen-targeted nanosystems for immunomodulation. Nano Today. 2023;1(52):101943.
Cao W, Ramakrishnan R, Tuyrin VA, Veglia F, Condamine T, Amoscato A, et al. Oxidized lipids block antigen cross-presentation by dendritic cells in cancer. J Immunol. 2014;192(6):2920–31.
Traversari C, Sozzani S, Steffensen KR, Russo V. LXR-dependent and-independent effects of oxysterols on immunity and tumor growth. Eur J Immunol. 2014;44(7):1896–903.
Villablanca EJ, Raccosta L, Zhou D, Fontana R, Maggioni D, Negro A, et al. Tumor-mediated liver X receptor-α activation inhibits CC chemokine receptor-7 expression on dendritic cells and dampens antitumor responses. Nat Med. 2010;16(1):98–105.
Bosteels V, Maréchal S, De Nolf C, Rennen S, Maelfait J, Tavernier SJ, Vetters J, Van De Velde E, Fayazpour F, Deswarte K, Lamoot A. LXR signaling controls homeostatic dendritic cell maturation. Sci Immunol. 2023;8(83):eadd3955.
Shen M, Jiang X, Peng Q, Oyang L, Ren Z, Wang J, et al. The cGAS-STING pathway in cancer immunity: mechanisms, challenges, and therapeutic implications. J Hematol Oncol. 2025;18(1):40.
Apetoh L, Ghiringhelli F, Tesniere A, Obeid M, Ortiz C, Criollo A, et al. Toll-like receptor 4–dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat Med. 2007;13(9):1050–9.
Yanai H, Ban T, Wang Z, Choi MK, Kawamura T, Negishi H, et al. HMGB proteins function as universal sentinels for nucleic-acid-mediated innate immune responses. Nature. 2009;462(7269):99–103.
Chiba S, Baghdadi M, Akiba H, Yoshiyama H, Kinoshita I, Dosaka-Akita H, et al. Tumor-infiltrating DCs suppress nucleic acid–mediated innate immune responses through interactions between the receptor TIM-3 and the alarmin HMGB1. Nat Immunol. 2012;13(9):832–42.
Xu MM, Pu Y, Han D, Shi Y, Cao X, Liang H, et al. Dendritic cells but not macrophages sense tumor mitochondrial DNA for cross-priming through signal regulatory protein α signaling. Immunity. 2017;47(2):363–73.
Huang CY, Ye ZH, Huang MY, Lu JJ. Regulation of CD47 expression in cancer cells. Transl Oncol. 2020;13(12):100862.
Sockolosky JT, Dougan M, Ingram JR, Ho CC, Kauke MJ, Almo SC, et al. Durable antitumor responses to CD47 blockade require adaptive immune stimulation. Proc Natl Acad Sci. 2016;113(19):E2646–54.
Ng II, Zhang Z, Xiao K, Ye M, Tian T, Zhu Y, He Y, Chu L, Tang H. Targeting WEE1 in tumor-associated dendritic cells potentiates antitumor immunity via the cGAS/STING pathway. Cell Reports. 2025;44(6).
Ishikawa H, Ma Z, Barber GN. STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity. Nature. 2009;461(7265):788–92.
Fu J, Kanne DB, Leong M, Glickman LH, McWhirter SM, Lemmens E, Mechette K, Leong JJ, Lauer P, Liu W, Sivick KE. STING agonist formulated cancer vaccines can cure established tumors resistant to PD-1 blockade. Sci Transl Med. 2015;7(283):283ra52.
Motedayen Aval L, Pease JE, Sharma R, Pinato DJ. Challenges and opportunities in the clinical development of STING agonists for cancer immunotherapy. J Clin Med. 2020;9(10):3323.
Spranger S, Dai D, Horton B, Gajewski TF. Tumor-residing Batf3 dendritic cells are required for effector T cell trafficking and adoptive T cell therapy. Cancer Cell. 2017;31(5):711–23.
Spranger S, Bao R, Gajewski TF. Melanoma-intrinsic β-catenin signaling prevents anti-tumor immunity. Nature. 2015;523(7559):231–5.
Barry KC, Hsu J, Broz ML, Cueto FJ, Binnewies M, Combes AJ, et al. A natural killer–dendritic cell axis defines checkpoint therapy–responsive tumor microenvironments. Nat Med. 2018;24(8):1178–91.
Zong J, Keskinov AA, Shurin GV, Shurin MR. Tumor-derived factors modulating dendritic cell function. Cancer Immunol Immunother. 2016;65:821–33.
Zelenay S, Van Der Veen AG, Böttcher JP, Snelgrove KJ, Rogers N, Acton SE, et al. Cyclooxygenase-dependent tumor growth through evasion of immunity. Cell. 2015;162(6):1257–70.
Tang M, Diao J, Gu H, Khatri I, Zhao J, Cattral MS. Toll-like receptor 2 activation promotes tumor dendritic cell dysfunction by regulating IL-6 and IL-10 receptor signaling. Cell Rep. 2015;13(12):2851–64.
Nirschl CJ, Suárez-Fariñas M, Izar B, Prakadan S, Dannenfelser R, Tirosh I, et al. IFNγ-dependent tissue-immune homeostasis is co-opted in the tumor microenvironment. Cell. 2017;170(1):127–41.
Fu C, Liang X, Cui W, Ober-Blöbaum JL, Vazzana J, Shrikant PA, et al. β-Catenin in dendritic cells exerts opposite functions in cross-priming and maintenance of CD8+ T cells through regulation of IL-10. Proc Natl Acad Sci. 2015;112(9):2823–8.
Ramalingam R. Importance of TGF-beta signaling in dendritic cells to maintain immune tolerance. 2012; Doctoral dissertation, The University of Arizona.
Flavell RA, Sanjabi S, Wrzesinski SH, Licona-Limón P. The polarization of immune cells in the tumor environment by TGFβ. Nat Rev Immunol. 2010;10(8):554–67.
Hsu JM, Li CW, Lai YJ, Hung MC. Posttranslational modifications of PD-L1 and their applications in cancer therapy. Can Res. 2018;78(22):6349–53.
Zhang L, Nishi H. Transcriptome analysis of Homo sapiens and Mus musculus reveals mechanisms of CD8+ T cell exhaustion caused by different factors. PLoS ONE. 2022;17(9):e0274494.
Kagoya Y. Molecular profiles of exhausted T cells and their impact on response to immune checkpoint blockade. Gan to kagaku ryoho. Cancer Chemother. 2022;49(6):609–14.
Verdon DJ, Mulazzani M, Jenkins MR. Cellular and molecular mechanisms of CD8+ T cell differentiation, dysfunction and exhaustion. Int J Mol Sci. 2020;21(19):7357.
Mende I, Engleman EG. Breaking self-tolerance to tumor-associated antigens by in vivo manipulation of dendritic cells. InImmunological Tolerance Methods Protocols. 2007;457–468. Totowa, NJ: Humana Press.
Mende I, Engleman EG. Breaking tolerance to tumors with dendritic cell-based immunotherapy. Ann N Y Acad Sci. 2005;1058(1):96–104.
Gehrcken L, Deben C, Smits E, Van Audenaerde JR. STING agonists and how to reach their full potential in cancer immunotherapy. Adv Sci. 2025;12(17):2500296.
Pavlovic K, Tristán-Manzano M, Maldonado-Pérez N, Cortijo-Gutierrez M, Sánchez-Hernández S, Justicia-Lirio P, et al. Using gene editing approaches to fine-tune the immune system. Front Immunol. 2020;11:570672.
Xu Y, Chen C, Guo Y, Hu S, Sun Z. Effect of CRISPR/Cas9-edited PD-1/PD-L1 on tumor immunity and immunotherapy. Front Immunol. 2022;13:848327.
Allemailem KS, Alsahli MA, Almatroudi A, Alrumaihi F, Al Abdulmonem W, Moawad AA, Alwanian WM, Almansour NM, Rahmani AH, Khan AA. Innovative strategies of reprogramming immune system cells by targeting CRISPR/Cas9-based genome-editing tools: a new era of cancer management. Int J Nanomed. 2023; 5531–59.
Becker AM. Exploring the modulation and development of type 3 dendritic cells in cancer and autoimmunity. Sl:Sn; 2023.
Turnis ME, Rooney CM. Enhancement of dendritic cells as vaccines for cancer. Immunotherapy. 2010;2(6):847–62.
Cornel AM, Van Til NP, Boelens JJ, Nierkens S. Strategies to genetically modulate dendritic cells to potentiate antitumor responses in hematologic malignancies. Front Immunol. 2018;9:982.
Caux C, Massacrier C, Vanbervliet B, Dubois B, Durand I, Cella M, Lanzavecchia A, Banchereau J. CD34+ hematopoietic progenitors from human cord blood differentiate along two independent dendritic cell pathways in response to granulocyte-macrophage colony-stimulating factor plus tumor necrosis factor α: II. Functional analysis. Blood J Am Soc Hematol. 1997;90(4):1458–70.
Kumar J, Kale V, Limaye L. Umbilical cord blood-derived CD11c+ dendritic cells could serve as an alternative allogeneic source of dendritic cells for cancer immunotherapy. Stem Cell Res Ther. 2015;6:1–5.
Kikuchi T. Genetically modified dendritic cells for therapeutic immunity. Tohoku J Exp Med. 2006;208(1):1–8.
Rossi A, Dupaty L, Aillot L, Zhang L, Gallien C, Hallek M, et al. Vector uncoating limits adeno-associated viral vector-mediated transduction of human dendritic cells and vector immunogenicity. Sci Rep. 2019;9(1):3631.
Jost M, Jacobson AN, Hussmann JA, Cirolia G, Fischbach MA, Weissman JS. CRISPR-based functional genomics in human dendritic cells. Elife. 2021;10:e65856.
Hutten T, Thordardottir S, Hobo W, Hübel J, van der Waart AB, Cany J, et al. Ex vivo generation of interstitial and langerhans cell-like dendritic cell subset–based vaccines for hematological malignancies. J Immunother. 2014;37(5):267–77.
Gundry MC, Brunetti L, Lin A, Mayle AE, Kitano A, Wagner D, et al. Highly efficient genome editing of murine and human hematopoietic progenitor cells by CRISPR/Cas9. Cell Rep. 2016;17(5):1453–61.
Mao K, Tan H, Cong X, Liu J, Xin Y, Wang J, et al. Optimized lipid nanoparticles enable effective CRISPR/Cas9-mediated gene editing in dendritic cells for enhanced immunotherapy. Acta Pharmaceutica Sinica B. 2025;15(1):642–56.
Hung KL, Meitlis I, Hale M, Chen CY, Singh S, Jackson SW, et al. Engineering protein-secreting plasma cells by homology-directed repair in primary human B cells. Mol Ther. 2018;26(2):456–67.
Okada N, Mori N, Koretomo R, Okada Y, Nakayama T, Yoshie O, et al. Augmentation of the migratory ability of DC-based vaccine into regional lymph nodes by efficient CCR7 gene transduction. Gene Ther. 2005;12(2):129–39.
Alvarez D, Vollmann EH, von Andrian UH. Mechanisms and consequences of dendritic cell migration. Immunity. 2008;29(3):325–42.
Jiang A, Bloom O, Ono S, Cui W, Unternaehrer J, Jiang S, et al. Disruption of E-cadherin-mediated adhesion induces a functionally distinct pathway of dendritic cell maturation. Immunity. 2007;27(4):610–24.
Bonehill A, Tuyaerts S, Van Nuffel AM, Heirman C, Bos TJ, Fostier K, et al. Enhancing the T-cell stimulatory capacity of human dendritic cells by co-electroporation with CD40L, CD70 and constitutively active TLR4 encoding mRNA. Mol Ther. 2008;16(6):1170–80.
Grünebach F, Kayser K, Weck MM, Müller MR, Appel S, Brossart P. Cotransfection of dendritic cells with RNA coding for HER-2/neu and 4–1BBL increases the induction of tumor antigen specific cytotoxic T lymphocytes. Cancer Gene Ther. 2005;12(9):749–56.
De Keersmaecker B, Heirman C, Corthals J, Empsen C, van Grunsven LA, Allard SD, et al. The combination of 4–1BBL and CD40L strongly enhances the capacity of dendritic cells to stimulate HIV-specific T cell responses. J Leukoc Biol. 2011;89(6):989–99.
Boczkowski D, Lee J, Pruitt S, Nair S. Dendritic cells engineered to secrete anti-GITR antibodies are effective adjuvants to dendritic cell-based immunotherapy. Cancer Gene Ther. 2009;16(12):900–11.
Han D, Liu J, Chen C, Dong L, Liu Y, Chang R, et al. Anti-tumor immunity controlled through mRNA m6A methylation and YTHDF1 in dendritic cells. Nature. 2019;566(7743):270–4.
Murphy TL, Murphy KM. Dendritic cells in cancer immunology. Cell Mol Immunol. 2022;19(1):3–13.
Theisen DJ, Davidson JT IV, Briseño CG, Gargaro M, Lauron EJ, Wang Q, et al. WDFY4 is required for cross-presentation in response to viral and tumor antigens. Science. 2018;362(6415):694–9.
Parnas O, Jovanovic M, Eisenhaure TM, Herbst RH, Dixit A, Ye CJ, et al. A genome-wide CRISPR screen in primary immune cells to dissect regulatory networks. Cell. 2015;162(3):675–86.
Albrecht V, Hofer TP, Foxwell B, Frankenberger M, Ziegler-Heitbrock L. Tolerance induced via TLR2 and TLR4 in human dendritic cells: role of IRAK-1. BMC Immunol. 2008;9:1–4.
Zhang Y, Shen S, Zhao G, Xu CF, Zhang HB, Luo YL, et al. In situ repurposing of dendritic cells with CRISPR/Cas9-based nanomedicine to induce transplant tolerance. Biomaterials. 2019;217:119302.
Fu Y, Foden JA, Khayter C, Maeder ML, Reyon D, Joung JK, et al. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol. 2013;31(9):822–6.
Tsai SQ, Nguyen N, Zheng Z, Joung JK. High-fidelity CRISPR-Cas9 variants with undetectable genome-wide off-targets. Nature. 2016;529(7587):490–5.
Xu H, Look T, Prithiviraj S, Lennartz D, Cáceres MD, Götz K, et al. CRISPR/Cas9 editing in conditionally immortalized HoxB8 cells for studying gene regulation in mouse dendritic cells. Eur J Immunol. 2022;52(11):1859–62.
He M, Roussak K, Ma F, Borcherding N, Garin V, White M, Schutt C, Jensen TI, Zhao Y, Iberg CA, Shah K. CD5 expression by dendritic cells directs T cell immunity and sustains immunotherapy responses. Science. 2023;379(6633):eabg2752.
Groom JR. Regulators of T-cell fate: integration of cell migration, differentiation and function. Immunol Rev. 2019;289(1):101–14.
Kwon YW, Ahn HS, Lee JW, Yang HM, Cho HJ, Kim SJ, et al. HLA DR genome editing with TALENs in human iPSCs produced immune-tolerant dendritic cells. Stem Cells Int. 2021;2021(1):8873383.
Menger L, Sledzinska A, Bergerhoff K, Vargas FA, Smith J, Poirot L, et al. TALEN-mediated inactivation of PD-1 in tumor-reactive lymphocytes promotes intratumoral T-cell persistence and rejection of established tumors. Can Res. 2016;76(8):2087–93.
Bhardwaj A, Nain V. TALENs—an indispensable tool in the era of CRISPR: a mini review. J Genetic Eng Biotechnol. 2021;19(1):125.
Hashimoto M, Bacman SR, Peralta S, Falk MJ, Chomyn A, Chan DC, et al. MitoTALEN: a general approach to reduce mutant mtDNA loads and restore oxidative phosphorylation function in mitochondrial diseases. Mol Ther. 2015;23(10):1592–9.
Hivroz C, Chemin K, Tourret M, Bohineust A. Crosstalk between T lymphocytes and dendritic cells. Crit Reviews™ Immunol. 2012;32(2).
Rittiner JE, Moncalvo M, Chiba-Falek O, Kantor B. Gene-editing technologies paired with viral vectors for translational research into neurodegenerative diseases. Front Mol Neurosci. 2020;12(13):148.
Mahfouz MM, Piatek A, Stewart CN Jr. Genome engineering via TALENs and CRISPR/Cas9 systems: challenges and perspectives. Plant Biotechnol J. 2014;12(8):1006–14.
Tenjo-Castaño F, Montoya G, Carabias A. Transposons and CRISPR: rewiring gene editing. Biochemistry. 2022;62(24):3521–32.
Hanlon KS, Kleinstiver BP, Garcia SP, Zaborowski MP, Volak A, Spirig SE, et al. High levels of AAV vector integration into CRISPR-induced DNA breaks. Nat Commun. 2019;10(1):4439.
Nelson CE, Wu Y, Gemberling MP, Oliver ML, Waller MA, Bohning JD, et al. Long-term evaluation of AAV-CRISPR genome editing for Duchenne muscular dystrophy. Nat Med. 2019;25(3):427–32.
Nerys-Junior A, Braga-Dias LP, Pezzuto P, Cotta-de-Almeida V, Tanuri A. Comparison of the editing patterns and editing efficiencies of TALEN and CRISPR-Cas9 when targeting the human CCR5 gene. Genet Mol Biol. 2018;19(41):167–79.
Miro F, Nobile C, Blanchard N, Lind M, Filipe-Santos O, Fieschi C, et al. T cell-dependent activation of dendritic cells requires IL-12 and IFN-γ signaling in T cells. J Immunol. 2006;177(6):3625–34.
Gupta YH, Khanom A, Acton SE. Control of dendritic cell function within the tumor microenvironment. Front Immunol. 2022;13:733800.
Tenbusch M, Kuate S, Tippler B, Gerlach N, Schimmer S, Dittmer U, et al. Coexpression of GM-CSF and antigen in DNA prime-adenoviral vector boost immunization enhances polyfunctional CD8+ T cell responses, whereas expression of GM-CSF antigen fusion protein induces autoimmunity. BMC Immunol. 2008;9:1–5.
Stam AG, Santegoets SJ, Westers TM, Sombroek CC, Janssen JJ, Tillman BW, et al. CD40-targeted adenoviral GM-CSF gene transfer enhances and prolongs the maturation of human CML-derived dendritic cells upon cytokine deprivation. Br J Cancer. 2003;89(7):1162–5.
Ghasemi A, Martinez-Usatorre A, Li L, Hicham M, Guichard A, Marcone R, et al. Cytokine-armed dendritic cell progenitors for antigen-agnostic cancer immunotherapy. Nature Cancer. 2024;5(2):240–61.
Zhang L, Morgan RA, Beane JD, Zheng Z, Dudley ME, Kassim SH, et al. Tumor-infiltrating lymphocytes genetically engineered with an inducible gene encoding interleukin-12 for the immunotherapy of metastatic melanoma. Clin Cancer Res. 2015;21(10):2278–88.
Nguyen KG, Vrabel MR, Mantooth SM, Hopkins JJ, Wagner ES, Gabaldon TA, et al. Localized interleukin-12 for cancer immunotherapy. Front Immunol. 2020;11:575597.
Kim YS. Tumor therapy applying membrane-bound form of cytokines. Immune network. 2009;9(5):158.
Han J, Wang H. Cytokine-overexpressing dendritic cells for cancer immunotherapy. Exper Mole Med. 2024:1.
Stripecke R. Lentivirus-induced dendritic cells (iDC) for immune-regenerative therapies in cancer and stem cell transplantation. Biomedicines. 2014;2(3):229–46.
Gorodilova AV, Kitaeva KV, Filin IY, Mayasin YP, Kharisova CB, Issa SS, et al. The potential of dendritic cell subsets in the development of personalized immunotherapy for cancer treatment. Curr Issues Mol Biol. 2023;45(10):8053–70.
Panya A, Thepmalee C, Sawasdee N, Sujjitjoon J, Phanthaphol N, Junking M, et al. Cytotoxic activity of effector T cells against cholangiocarcinoma is enhanced by self-differentiated monocyte-derived dendritic cells. Cancer Immunol Immunother. 2018;67:1579–88.
Shi J, Kantoff PW, Wooster R, Farokhzad OC. Cancer nanomedicine: progress, challenges and opportunities. Nat Rev Cancer. 2017;17(1):20–37.
Lu Q, Kou D, Lou S, Ashrafizadeh M, Aref AR, Canadas I, et al. Nanoparticles in tumor microenvironment remodeling and cancer immunotherapy. J Hematol Oncol. 2024;17(1):16.
Wang B, Hu S, Teng Y, Chen J, Wang H, Xu Y, et al. Current advance of nanotechnology in diagnosis and treatment for malignant tumors. Signal Transduct Target Ther. 2024;9(1):200.
Hu X, Wu T, Bao Y, Zhang Z. Nanotechnology based therapeutic modality to boost antitumor immunity and collapse tumor defense. J Control Release. 2017;256:26–45.
Tran TH, Tran TT, Nguyen HT, Dai Phung C, Jeong JH, Stenzel MH, et al. Nanoparticles for dendritic cell-based immunotherapy. Int J Pharm. 2018;542(1–2):253–65.
Sui Y, Berzofsky JA. Trained immunity inducers in cancer immunotherapy. Front Immunol. 2024;15:1427443.
Yang D, Liu B, Sha H. Advances and prospects of cell-penetrating peptides in tumor immunotherapy. Sci Rep. 2025;15(1):3392.
Abd-Aziz N, Poh CL. Development of peptide-based vaccines for cancer. Journal of Oncology. 2022;2022(1):9749363.
Srivastava P, Rütter M, Antoniraj G, Ventura Y, David A. dendritic cell-targeted nanoparticles enhance T cell activation and antitumor immune responses by boosting antigen presentation and blocking PD-L1 pathways. ACS Appl Mater Interfaces. 2024;16(40):53577–90.
Cao Z, Yang X, Yang W, Chen F, Jiang W, Zhan S, et al. Modulation of dendritic cell function via nanoparticle-induced cytosolic calcium changes. ACS Nano. 2024;18(10):7618–32.
Blanco E, Shen H, Ferrari M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol. 2015;33(9):941–51.
Zelepukin IV, Shevchenko KG, Deyev SM. Rediscovery of mononuclear phagocyte system blockade for nanoparticle drug delivery. Nat Commun. 2024;15(1):4366.
Handa M, Beg S, Shukla R, Barkat MA, Choudhry H, Singh KK. Recent advances in lipid-engineered multifunctional nanophytomedicines for cancer targeting. J Control Release. 2021;340:48–59.
Hajj KA, Whitehead KA. Tools for translation: non-viral materials for therapeutic mRNA delivery. Nat Rev Mater. 2017;2:10 [Internet]. 2017 Sep 12 [cited 2025 Aug 25];2(10):1–17. Available from: https://www.nature.com/articles/natrevmats201756
Sabnis S, Kumarasinghe ES, Salerno T, Mihai C, Ketova T, Senn JJ, et al. A Novel Amino Lipid Series for mRNA Delivery: Improved Endosomal Escape and Sustained Pharmacology and Safety in Non-human Primates. Molecular Therapy [Internet]. 2018 Jun 6 [cited 2025 Aug 25];26(6):1509–19. Available from: https://www.sciencedirect.com/science/article/pii/S1525001618301187
Miao L, Lin J, Huang Y, Li L, Delcassian D, Ge Y, et al. Synergistic lipid compositions for albumin receptor mediated delivery of mRNA to the liver. Nature Commun. 2020;11:1 [Internet]. 2020 May 15 [cited 2025 Aug 25];11(1):1–13. Available from: https://www.nature.com/articles/s41467-020-16248-y
Kauffman KJ, Dorkin JR, Yang JH, Heartlein MW, Derosa F, Mir FF, et al. Optimization of Lipid Nanoparticle Formulations for mRNA Delivery in Vivo with Fractional Factorial and Definitive Screening Designs. Nano Lett [Internet]. 2015 [cited 2025 Aug 25];15(11):7300–6. Available from: /doi/pdf/https://doi.org/10.1021/acs.nanolett.5b02497
Liu H, Moynihan KD, Zheng Y, Szeto GL, Li AV, Huang B, et al. Structure-based programming of lymph-node targeting in molecular vaccines. Nature. 2014;507(7493):519–22.
Gbian DL, Omri A. Lipid-based drug delivery systems for diseases managements. Biomedicines. 2022;10(9):2137.
Ndeupen S, Qin Z, Jacobsen S, Bouteau A, Estanbouli H, Igyártó BZ. The mRNA-LNP platform’s lipid nanoparticle component used in preclinical vaccine studies is highly inflammatory. Iscience. 2021;24(12).
Alameh MG, Tombácz I, Bettini E, Lederer K, Ndeupen S, Sittplangkoon C, et al. Lipid nanoparticles enhance the efficacy of mRNA and protein subunit vaccines by inducing robust T follicular helper cell and humoral responses. Immunity. 2021;54(12):2877–92.
Miao L, Li L, Huang Y, Delcassian D, Chahal J, Han J, et al. Delivery of mRNA vaccines with heterocyclic lipids increases antitumor efficacy by STING-mediated immune cell activation. Nat Biotechnol. 2019;37(10):1174–85.
Connors J, Joyner D, Mege NJ, Cusimano GM, Bell MR, Marcy J, et al. Lipid nanoparticles (LNP) induce activation and maturation of antigen presenting cells in young and aged individuals. Communications biology. 2023;6(1):188.
Zhang M, Wang Y, Li B, Yang B, Zhao M, Li B, Liu J, Hu Y, Wu Z, Ong Y, Han X. STING‐activating polymers boost lymphatic delivery of mRNA vaccine to potentiate cancer immunotherapy. Adv Mater. 2025:2412654.
Nguyen NT, Le XT, Lee WT, Lim YT, Oh KT, Lee ES, et al. STING-activating dendritic cell-targeted nanovaccines that evoke potent antigen cross-presentation for cancer immunotherapy. Bioactive Mater. 2024;42:345–65.
Chin EN, Yu C, Vartabedian VF, Jia Y, Kumar M, Gamo AM, et al. Antitumor activity of a systemic STING-activating non-nucleotide cGAMP mimetic. Science. 2020;369(6506):993–9.
Wang Y, Li S, Hu M, Yang Y, McCabe E, Zhang L, et al. Universal STING mimic boosts antitumor immunity via preferential activation of tumor control signaling pathways. Nat Nanotechnol. 2024;19(6):856–66.
Nagy NA, De Haas AM, Geijtenbeek TB, Van Ree R, Tas SW, Van Kooyk Y, et al. Therapeutic liposomal vaccines for dendritic cell activation or tolerance. Front Immunol. 2021;12:674048.
Li S, Luo M, Wang Z, Feng Q, Wilhelm J, Wang X, et al. Prolonged activation of innate immune pathways by a polyvalent STING agonist. Nat Biomed Eng. 2021;5(5):455–66.
Corrales L, Glickman LH, McWhirter SM, Kanne DB, Sivick KE, Katibah GE, et al. Direct activation of STING in the tumor microenvironment leads to potent and systemic tumor regression and immunity. Cell Rep. 2015;11(7):1018–30.
Hong C, Schubert M, Tijhuis AE, Requesens M, Roorda M, van den Brink A, et al. cGAS–STING drives the IL-6-dependent survival of chromosomally instable cancers. Nature. 2022;607(7918):366–73.
Zhang C, Shang G, Gui X, Zhang X, Bai XC, Chen ZJ. Structural basis of STING binding with and phosphorylation by TBK1. Nature. 2019;567(7748):394–8.
He Y, Hong C, Yan EZ, Fletcher SJ, Zhu G, Yang M, Li Y, Sun X, Irvine DJ, Li J, Hammond PT. Self-assembled cGAMP-STINGΔTM signaling complex as a bioinspired platform for cGAMP delivery. Sci Adv. 2020;6(24):eaba7589.
Tse SW, McKinney K, Walker W, Nguyen M, Iacovelli J, Small C, et al. mRNA-encoded, constitutively active STINGV155M is a potent genetic adjuvant of antigen-specific CD8+ T cell response. Mol Ther. 2021;29(7):2227–38.
Shumilina E, Huber SM, Lang F. Ca2+ signaling in the regulation of dendritic cell functions. Am J Physiol Cell Physiol. 2011;300(6):C1205–14.
Salter RD, Watkins SC. Dendritic cell altered states: what role for calcium? Immunol Rev. 2009;231(1):278–88.
Santegoets SJ, van den Eertwegh AJ, van de Loosdrecht AA, Scheper RJ, de Gruijl TD. Human dendritic cell line models for DC differentiation and clinical DC vaccination studies. J Leucocyte Biol. 2008;84(6):1364–73.
Cabeza-Cabrerizo M, Cardoso A, Minutti CM, Pereira da Costa M, Reis e Sousa C. Dendritic cells revisited. Annu Rev Immunol. 2021;39(1):131–66.
Herbst C, Harshyne LA, Igyártó BZ. Intracellular monitoring by dendritic cells–a new way to stay informed–from a simple scavenger to an active gatherer. Front Immunol. 2022;13:1053582.
Sun X, Zhang Y, Li J, Park KS, Han K, Zhou X, et al. Amplifying STING activation by cyclic dinucleotide–manganese particles for local and systemic cancer metalloimmunotherapy. Nat Nanotechnol. 2021;16(11):1260–70.
Grippin A, Sayour E, Wummer B, Monsalve A, Wildes T, Dyson K, Mitchell DA. mRNA-nanoparticles to enhance and track dendritic cell migration. 2018;72.
Huang L, Liu Z, Wu C, Lin J, Liu N. Magnetic nanoparticles enhance the cellular immune response of dendritic cell tumor vaccines by realizing the cytoplasmic delivery of tumor antigens. Bioeng Transl Med. 2023;8(2):e10400.
Lv M, Chen M, Zhang R, Zhang W, Wang C, Zhang Y, et al. Manganese is critical for antitumor immune responses via cGAS-STING and improves the efficacy of clinical immunotherapy. Cell Res. 2020;30(11):966–79.
Wang S, Ni D, Yue H, Luo N, Xi X, Wang Y, et al. Exploration of antigen induced CaCO3 nanoparticles for therapeutic vaccine. Small. 2018;14(14):1704272.
Hu YX, Han XS, Jing Q. Ca (2+) ion and autophagy. Autophagy Biol Diseases Basic Sci. 2019;28:151–66.
Wang D, Rayani S, Marshall JL. Carcinoembryonic antigen as a vaccine target. Expert Rev Vaccines. 2008;7(7):987–93.
Zhuang X, Wu T, Zhao Y, Hu X, Bao Y, Guo Y, et al. Lipid-enveloped zinc phosphate hybrid nanoparticles for codelivery of H-2Kb and H-2Db-restricted antigenic peptides and monophosphoryl lipid A to induce antitumor immunity against melanoma. J Control Release. 2016;228:26–37.
Heng BC, Zhao X, Tan EC, Khamis N, Assodani A, Xiong S, et al. Evaluation of the cytotoxic and inflammatory potential of differentially shaped zinc oxide nanoparticles. Arch Toxicol. 2011;85:1517–28.
Shi C, Jian C, Wang L, Gao C, Yang T, Fu Z, et al. Dendritic cell hybrid nanovaccine for mild heat inspired cancer immunotherapy. J Nanobiotechnol. 2023;21(1):347.
Lee SB, Ahn SB, Lee SW, Jeong SY, Ghilsuk Y, Ahn BC, Kim EM, Jeong HJ, Lee J, Lim DK, Jeon YH. Radionuclide-embedded gold nanoparticles for enhanced dendritic cell-based cancer immunotherapy, sensitive and quantitative tracking of dendritic cells with PET and Cerenkov luminescence. NPG Asia Mater. 2016;8(6):e281.
Lee IH, Kwon HK, An S, Kim D, Kim S, Yu MK, et al. Imageable antigen-presenting gold nanoparticle vaccines for effective cancer immunotherapy in vivo. Angewandte Chemie-International Edition. 2012;51(35):8800.
Kang S, Ahn S, Lee J, Kim JY, Choi M, Gujrati V, et al. Effects of gold nanoparticle-based vaccine size on lymph node delivery and cytotoxic T-lymphocyte responses. J Control Release. 2017;256:56–67.
Fernández TD, Pearson JR, Leal MP, Torres MJ, Blanca M, Mayorga C, et al. Intracellular accumulation and immunological properties of fluorescent gold nanoclusters in human dendritic cells. Biomaterials. 2015;43:1–2.
Le Guével X, Perez Perrino M, Fernández TD, Palomares F, Torres MJ, Blanca M, et al. Multivalent glycosylation of fluorescent gold nanoclusters promotes increased human dendritic cell targeting via multiple endocytic pathways. ACS Appl Mater Interfaces. 2015;7(37):20945–56.
Tomić S, Đokić J, Vasilijić S, Ogrinc N, Rudolf R, Pelicon P, et al. Size-dependent effects of gold nanoparticles uptake on maturation and antitumor functions of human dendritic cells in vitro. PLoS ONE. 2014;9(5):e96584.
Affandi AJ, Grabowska J, Olesek K, Lopez Venegas M, Barbaria A, Rodríguez E, et al. Selective tumor antigen vaccine delivery to human CD169+ antigen-presenting cells using ganglioside-liposomes. Proc Natl Acad Sci. 2020;117(44):27528–39.
Rosalia RA, Cruz LJ, van Duikeren S, Tromp AT, Silva AL, Jiskoot W, et al. CD40-targeted dendritic cell delivery of PLGA-nanoparticle vaccines induce potent antitumor responses. Biomaterials. 2015;40:88–97.
Fransen MF, Sluijter M, Morreau H, Arens R, Melief CJ. Local activation of CD8 T cells and systemic tumor eradication without toxicity via slow release and local delivery of agonistic CD40 antibody. Clin Cancer Res. 2011;17(8):2270–80.
Rueda F, Eich C, Cordobilla B, Domingo P, Acosta G, Albericio F, et al. Effect of TLR ligands co-encapsulated with multiepitopic antigen in nanoliposomes targeted to human DCs via Fc receptor for cancer vaccines. Immunobiology. 2017;222(11):989–97.
Suzuki R, Utoguchi N, Kawamura K, Kadowaki N, Okada N, Takizawa T, Uchiyama T, Maruyama K. Development of effective antigen delivery carrier to dendritic cells via Fc receptor in cancer immunotherapy. Yakugaku Zasshi: J Pharmaceutical Soc Japan. 127(2):301–6.
Hossain MK, Vartak A, Sucheck S, Wall KA. Augmenting vaccine immunogenicity through the use of natural human anti-Rha antibodies and monoclonal Fc domains. J Immunol. 2018;200(1_Supplement):181–4.
Hossain MK, Vartak A, Sucheck SJ, Wall KA. Liposomal fc domain conjugated to a cancer vaccine enhances both humoral and cellular immunity. ACS Omega. 2019;4(3):5204–8.
Lahoud MH, Ahmet F, Zhang JG, Meuter S, Policheni AN, Kitsoulis S, et al. DEC-205 is a cell surface receptor for CpG oligonucleotides. Proc Natl Acad Sci. 2012;109(40):16270–5.
Saluja SS, Hanlon DJ, Sharp FA, Hong E, Khalil D, Robinson E, Tigelaar R, Fahmy TM, Edelson RL. Targeting human dendritic cells via DEC-205 using PLGA nanoparticles leads to enhanced cross-presentation of a melanoma-associated antigen. Int J Nanomed. 2014:5231–46.
Dudziak D, Kamphorst AO, Heidkamp GF, Buchholz VR, Trumpfheller C, Yamazaki S, et al. Differential antigen processing by dendritic cell subsets in vivo. Science. 2007;315(5808):107–11.
Neubert K, Lehmann CH, Heger L, Baranska A, Staedtler AM, Buchholz VR, et al. Antigen delivery to CD11c+ CD8− dendritic cells induces protective immune responses against experimental melanoma in mice in vivo. J Immunol. 2014;192(12):5830–8.
Luci C, Anjuère F. IFN-λs and BDCA3+/CD8α+ dendritic cells: towards the design of novel vaccine adjuvants? Expert Rev Vaccines. 2011;10(2):159–61.
Tullett KM, Rojas IM, Minoda Y, Tan PS, Zhang JG, Smith C, et al. Targeting CLEC9A delivers antigen to human CD141+ DC for CD4+ and CD8+ T cell recognition. JCI insight. 2016;1(7):e87102.
Sehgal K, Ragheb R, Fahmy TM, Dhodapkar MV, Dhodapkar KM. Nanoparticle-mediated combinatorial targeting of multiple human dendritic cell (DC) subsets leads to enhanced T cell activation via IL-15–dependent DC crosstalk. J Immunol. 2014;193(5):2297–305.
Ghinnagow R, De Meester J, Cruz LJ, Aspord C, Corgnac S, Macho-Fernandez E, et al. Co-delivery of the NKT agonist α-galactosylceramide and tumor antigens to cross-priming dendritic cells breaks tolerance to self-antigens and promotes antitumor responses. Oncoimmunology. 2017;6(9):e1339855.
Schetters ST, Kruijssen LJ, Crommentuijn MH, Kalay H, Ochando J, Den Haan JM, et al. Mouse DC-SIGN/CD209a as target for antigen delivery and adaptive immunity. Front Immunol. 2018;9:990.
Stolk DA, De Haas A, Vree J, Duinkerken S, Lübbers J, Van de Ven R, et al. Lipo-based vaccines as an approach to target dendritic cells for induction of T-and iNKT cell responses. Front Immunol. 2020;11:990.
Gargett T, Abbas MN, Rolan P, Price JD, Gosling KM, Ferrante A, et al. Phase I trial of Lipovaxin-MM, a novel dendritic cell-targeted liposomal vaccine for malignant melanoma. Cancer Immunol Immunother. 2018;67:1461–72.
Kumar MA, Baba SK, Sadida HQ, Marzooqi SA, Jerobin J, Altemani FH, et al. Extracellular vesicles as tools and targets in therapy for diseases. Signal Transduct Target Ther. 2024;9(1):27.
Lorite P, Domínguez JN, Palomeque T, Torres MI. Extracellular vesicles: advanced tools for disease diagnosis, monitoring, and therapies. Int J Mol Sci. 2024;26(1):189.
Alexander M, Hu R, Runtsch MC, Kagele DA, Mosbruger TL, Tolmachova T, et al. Exosome-delivered microRNAs modulate the inflammatory response to endotoxin. Nat Commun. 2015;6(1):7321.
Henao Agudelo JS, Braga TT, Amano MT, Cenedeze MA, Cavinato RA, Peixoto-Santos AR, et al. Mesenchymal stromal cell-derived microvesicles regulate an internal pro-inflammatory program in activated macrophages. Front Immunol. 2017;8:881.
Bian X, Xiao YT, Wu T, Yao M, Du L, Ren S, et al. Microvesicles and chemokines in tumor microenvironment: mediators of intercellular communications in tumor progression. Mol Cancer. 2019;18(1):50.
Patil SM, Sawant SS, Kunda NK. Exosomes as drug delivery systems: a brief overview and progress update. Eur J Pharm Biopharm. 2020;154:259–69.
Johnson V, Vasu S, Kumar US, Kumar M. Surface-engineered extracellular vesicles in cancer immunotherapy. Cancers. 2023;15(10):2838.
Damo M, Wilson DS, Simeoni E, Hubbell JA. TLR-3 stimulation improves antitumor immunity elicited by dendritic cell exosome-based vaccines in a murine model of melanoma. Sci Rep. 2015;5(1):17622.
Matsuzaka Y, Yashiro R. Regulation of extracellular vesicle-mediated immune responses against antigen-specific presentation. Vaccines. 2022;10(10):1691.
Horrevorts SK, Stolk DA, van de Ven R, Hulst M, van Het Hof B, Duinkerken S, et al. Glycan-modified apoptotic melanoma-derived extracellular vesicles as antigen source for antitumor vaccination. Cancers. 2019;11(9):1266.
Choi ES, Song J, Kang YY, Mok H. Mannose-modified serum exosomes for the elevated uptake to murine dendritic cells and lymphatic accumulation. Macromol Biosci. 2019;19(7):1900042.
Yang Q, Li S, Ou H, Zhang Y, Zhu G, Li S, et al. Exosome-based delivery strategies for tumor therapy: an update on modification, loading, and clinical application. J Nanobiotechnol. 2024;22(1):41.
Kalkusova K, Taborska P, Stakheev D, Smrz D. The role of miR-155 in antitumor immunity. Cancers. 2022;14(21):5414.
Asadirad A, Hashemi SM, Baghaei K, Ghanbarian H, Mortaz E, Zali MR, et al. Phenotypical and functional evaluation of dendritic cells after exosomal delivery of miRNA-155. Life Sci. 2019;219:152–62.
Katti A, Diaz BJ, Caragine CM, Sanjana NE, Dow LE. CRISPR in cancer biology and therapy. Nat Rev Cancer. 2022;22(5):259–79.
Jung IY, Lee J. Unleashing the therapeutic potential of CAR-T cell therapy using gene-editing technologies. Mol Cells. 2018;41(8):717–23.
Sahin U, Karikó K, Türeci Ö. mRNA-based therapeutics—developing a new class of drugs. Nat Rev Drug Discovery. 2014;13(10):759–80.
Gerlach AM, Steimle A, Krampen L, Wittmann A, Gronbach K, Geisel J, et al. Role of CD40 ligation in dendritic cell semimaturation. BMC Immunol. 2012;13:1–1.
Ferrer IR, Wagener ME, Song M, Kirk AD, Larsen CP, Ford ML. Antigen-specific induced Foxp3+ regulatory T cells are generated following CD40/CD154 blockade. Proc Natl Acad Sci. 2011;108(51):20701–6.
Liu J, Chang J, Jiang Y, Meng X, Sun T, Mao L, et al. Fast and efficient CRISPR/Cas9 genome editing in vivo enabled by bioreducible lipid and messenger RNA nanoparticles. Adv Mater. 2019;31(33):1902575.
Oh SA, Wu DC, Cheung J, Navarro A, Xiong H, Cubas R, et al. PD-L1 expression by dendritic cells is a key regulator of T-cell immunity in cancer. Nature cancer. 2020;1(7):681–91.
Wan T, Zhong J, Pan Q, Zhou T, Ping Y, Liu X. Exosome-mediated delivery of Cas9 ribonucleoprotein complexes for tissue-specific gene therapy of liver diseases. Sci Adv. 2022;8(37):eabp9435.
Usman WM, Pham TC, Kwok YY, Vu LT, Ma V, Peng B, et al. Efficient RNA drug delivery using red blood cell extracellular vesicles. Nat Commun. 2018;9(1):2359.
Gupta N, Polkoff K, Qiao L, Cheng K, Piedrahita J. 200 Developing exosomes as a mediator for CRISPR/Cas-9 delivery. Reprod Fertility Dev. 2019;31(1):225.
Abbasi R, Alamdari-Mahd G, Maleki-Kakelar H, Momen-Mesgin R, Ahmadi M, Sharafkhani M, Rezaie J. Recent advances in the application of engineered exosomes from mesenchymal stem cells for regenerative medicine. Euro J Pharmacol. 2025;177236.
Busatto S, Iannotta D, Walker SA, Di Marzio L, Wolfram J. A simple and quick method for loading proteins in extracellular vesicles. Pharmaceuticals. 2021;14(4):356.
Dubey S, Chen Z, Talis A, Molotkov A, Ali A, Mintz A, Momen-Heravi F. An exosome-based gene delivery platform for cell-specific CRISPR/Cas9 genome editing. bioRxiv. 2023;2023–06.
Bahadorani M, Nasiri M, Dellinger K, Aravamudhan S, Zadegan R. Engineering exosomes for therapeutic applications: decoding biogenesis, content modification, and cargo loading strategies. Int J Nanomed. 2024;7137–64.
Ye Y, Zhang X, Xie F, Xu B, Xie P, Yang T, et al. An engineered exosome for delivering sgRNA: Cas9 ribonucleoprotein complex and genome editing in recipient cells. Biomater Sci. 2020;8(10):2966–76.
Whitley JA, Kim S, Lou L, Ye C, Alsaidan OA, Sulejmani E, et al. Encapsulating Cas9 into extracellular vesicles by protein myristoylation. J Extracellular Vesicles. 2022;11(4):e12196.
Osteikoetxea X, Silva A, Lázaro-Ibáñez E, Salmond N, Shatnyeva O, Stein J, et al. Engineered Cas9 extracellular vesicles as a novel gene editing tool. J Extracellular Vesicles. 2022;11(5):e12225.
Elsharkasy OM, Hegeman CV, Lansweers I, Cotugno OL, de Groot IY, de Wit ZE, Liang X, Garcia-Guerra A, Moorman NJ, Lefferts J, de Voogt WS. A modular strategy for extracellular vesicle-mediated CRISPR-Cas9 delivery through aptamer-based loading and UV-activated cargo release. BioRxiv. 2024;2024–05.
Yao X, Lyu P, Yoo K, Yadav MK, Singh R, Atala A, et al. Engineered extracellular vesicles as versatile ribonucleoprotein delivery vehicles for efficient and safe CRISPR genome editing. J Extracellular Vesicles. 2021;10(5):e12076.
Wang YL, Lee YH, Chou CL, Chang YS, Liu WC, Chiu HW. Oxidative stress and potential effects of metal nanoparticles: a review of biocompatibility and toxicity concerns. Environ Pollution [Internet]. 2024 Apr 1 [cited 2025 Aug 25];346:123617. Available from: https://www.sciencedirect.com/science/article/pii/S0269749124003312
Mitchell MJ, Billingsley MM, Haley RM, Wechsler ME, Peppas NA, Langer R. Engineering precision nanoparticles for drug delivery. Nat Reviews Drug Discovery 2020 20:2 [Internet]. 2020 Dec 4 [cited 2025 Aug 25];20(2):101–24. Available from: https://www.nature.com/articles/s41573-020-0090-8
Pan Y, Zeng F, Luan X, He G, Qin S, Lu Q, et al. Polyamine-depleting hydrogen-bond organic frameworks unleash dendritic cell and T cell vigor for targeted CRISPR/Cas-assisted cancer immunotherapy. Adv Mater. 2025;37(13):2411886.
Lanza G, Gafà R, Maestri I, Santini A, Matteuzzi M, Cavazzini L. Immunohistochemical pattern of MLH1/MSH2 expression is related to clinical and pathological features in colorectal adenocarcinomas with microsatellite instability. Mod Pathol. 2002;15(7):741–9.
Wylie B, Macri C, Mintern JD, Waithman J. Dendritic cells and cancer: from biology to therapeutic intervention. Cancers. 2019;11(4):521.
Gardner A, Ruffell B. Dendritic cells and cancer immunity. Trends Immunol. 2016;37(12):855–65.
Rosa FF, Pires CF, Kurochkin I, Ferreira AG, Gomes AM, Palma LG, Shaiv K, Solanas L, Azenha C, Papatsenko D, Schulz O. Direct reprogramming of fibroblasts into antigen-presenting dendritic cells. Sci Immunol. 2018;3(30):eaau4292.
Rosa FF, Pires CF, Zimmermannova O, Pereira CF. Direct reprogramming of mouse embryonic fibroblasts to conventional type 1 dendritic cells by enforced expression of transcription factors. Bio-protocol. 2020;10(10):e3619.
Shimosakai R, Khalil IA, Kimura S, Harashima H. mRNA-Loaded lipid nanoparticles targeting immune cells in the spleen for use as cancer vaccines. Pharmaceuticals [Internet]. 2022 Aug 1 [cited 2025 Aug 25];15(8):1017. Available from: https://www.mdpi.com/1424-8247/15/8/1017/htm
Luozhong S, Yuan Z, Sarmiento T, Chen Y, Gu W, McCurdy C, et al. Phosphatidylserine lipid nanoparticles promote systemic RNA delivery to secondary lymphoid organs. Nano Lett [Internet]. 2022 Oct 26 [cited 2025 Aug 25];22(20):8304–11. Available from: /doi/pdf/https://doi.org/10.1021/acs.nanolett.2c03234
Verma A, Uzun O, Hu Y, Hu Y, Han HS, Watson N, et al. Surface-structure-regulated cell-membrane penetration by monolayer-protected nanoparticles. Nat Mater. 2008;7(7):588–95.
Wang S, Zhu Y, Du S, Zheng Y. Preclinical Advances in LNP-CRISPR therapeutics for solid tumor treatment. Cells. 2024;13(7):568.
Chen G, Abdeen AA, Wang Y, Shahi PK, Robertson S, Xie R, et al. A biodegradable nanocapsule delivers a Cas9 ribonucleoprotein complex for in vivo genome editing. Nat Nanotechnol. 2019;14(10):974–80.
Wei T, Cheng Q, Min YL, Olson EN, Siegwart DJ. Systemic nanoparticle delivery of CRISPR-Cas9 ribonucleoproteins for effective tissue specific genome editing. Nat Commun. 2020;11(1):3232.
Zuris JA, Thompson DB, Shu Y, Guilinger JP, Bessen JL, Hu JH, et al. Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo. Nat Biotechnol. 2015;33(1):73–80.
Lin MJ, Svensson-Arvelund J, Lubitz GS, Marabelle A, Melero I, Brown BD, et al. Cancer vaccines: the next immunotherapy frontier. Nat Cancer. 2022;3(8):911–26.
Lee YJ, Kim Y, Park SH, Jo JC. Plasmacytoid dendritic cell neoplasms. Blood Res. 2023;58(S1):S90–5.
Jeng LB, Liao LY, Shih FY, Teng CF. Dendritic-cell-vaccine-based immunotherapy for hepatocellular carcinoma: clinical trials and recent preclinical studies. Cancers. 2022;14(18):4380.
Stevens D, Ingels J, Van Lint S, Vandekerckhove B, Vermaelen K. Dendritic cell-based immunotherapy in lung cancer. Front Immunol. 2021;12(11):620374.
Najafi S, Mortezaee K. Advances in dendritic cell vaccination therapy of cancer. Biomed Pharmacother. 2023;1(164):114954.
Pittet MJ, Di Pilato M, Garris C, Mempel TR. Dendritic cells as shepherds of T cell immunity in cancer. Immunity. 2023;56(10):2218–30.
Kumar C, Kohli S, Chiliveru S, Jain M, Sharan B. Complete remission of rare adenocarcinoma of the oropharynx with APCEDEN®(dendritic cell-based vaccine): a case report. Clinical Case Reports. 2017;5(10):1692.
Squadrito ML, Cianciaruso C, Hansen SK, De Palma M. EVIR: chimeric receptors that enhance dendritic cell cross-dressing with tumor antigens. Nat Methods. 2018;15(3):183–6.
Hurvitz SA, Timmerman JM. Recombinant, tumor-derived idiotype vaccination for indolent B cell non-Hodgkin’s lymphomas: a focus on FavId™. Expert Opin Biol Ther. 2005;5(6):841–52.
Dahan R, Barnhart BC, Li F, Yamniuk AP, Korman AJ, Ravetch JV. Therapeutic activity of agonistic, human anti-CD40 monoclonal antibodies requires selective FcγR engagement. Cancer Cell. 2016;29(6):820–31.
Salomon R, Rotem H, Katzenelenbogen Y, Weiner A, Cohen Saban N, Feferman T, et al. Bispecific antibodies increase the therapeutic window of CD40 agonists through selective dendritic cell targeting. Nat Cancer. 2022;3(3):287–302.
Study Details. A study to investigate the novel agent BNT111 and cemiplimab in combination or as single agents in patients with advanced melanoma that has not responded to other forms of treatment. ClinicalTrials.gov [Internet]. [cited 2025 Aug 25]. Available from: https://clinicaltrials.gov/study/NCT04526899
Study Details. A study of the efficacy and safety of adjuvant autogene cevumeran plus atezolizumab and mFOLFIRINOX Versus mFOLFIRINOX Alone in Participants With Resected PDAC. ClinicalTrials.gov [Internet]. [cited 2025 Aug 25]. Available from: https://clinicaltrials.gov/study/NCT05968326
Study Details. A study of ELI-002 in subjects with KRAS mutated pancreatic ductal adenocarcinoma (PDAC) and other solid tumors. ClinicalTrials.gov [Internet]. [cited 2025 Aug 25]. Available from: https://clinicaltrials.gov/study/NCT04853017
Aznar MA, Planelles L, Perez-Olivares M, Molina C, Garasa S, Etxeberría I, et al. Immunotherapeutic effects of intratumoral nanoplexed poly I:C. J Immunother Cancer [Internet]. 2019 May 2 [cited 2025 Aug 25];7(1). Available from: https://jitc.bmj.com/content/7/1/116
Study Details. Study of TLR9 agonist vidutolimod (CMP-001) in Combination with Nivolumab Vs. Nivolumab. ClinicalTrials.gov [Internet]. [cited 2025 Aug 25]. Available from: https://clinicaltrials.gov/study/NCT04401995
Cornel AM, Van Til NP, Boelens JJ, Nierkens S. Strategies to genetically modulate dendritic cells to potentiate antitumor responses in hematologic malignancies. Front Immunol. 2018;18(9):982.
Veron P, Allo V, Riviere C, Bernard J, Douar AM, Masurier C. Major subsets of human dendritic cells are efficiently transduced by self-complementary adeno-associated virus vectors 1 and 2. J Virol. 2007;81(10):5385–94.
Li Z, Wang X, Janssen JM, Liu J, Tasca F, Hoeben RC, Gonçalves MA. Precision genome editing using combinatorial viral vector delivery of CRISPR-Cas9 nucleases and donor DNA constructs. Nucleic Acids Res. 2025;53(2):gkae1213.
Zhang Y, Peng L, Mumper RJ, Huang L. Combinational delivery of c-myc siRNA and nucleoside analogs in a single, synthetic nanocarrier for targeted cancer therapy. Biomaterials [Internet]. 2013 Nov 1 [cited 2025 Aug 25];34(33):8459–68. Available from: https://www.sciencedirect.com/science/article/pii/S014296121300848X
Tan PH, Beutelspacher SC, Xue SA, Wang YH, Mitchell P, McAlister JC, et al. Modulation of human dendritic-cell function following transduction with viral vectors: implications for gene therapy. Blood. 2005;105(10):3824–32.
Khan SH. Genome-editing technologies: concept, pros, and cons of various genome-editing techniques and bioethical concerns for clinical application. Molecular Therapy Nucleic Acids. 2019;7(16):326–34.
Becker S, Boch J. TALE and TALEN genome editing technologies. Gene Genome Editing. 2021;1(2):100007.
Humbert JM, Halary F. Viral and non-viral methods to genetically modify dendritic cells. Curr Gene Ther. 2012;12(2):127–36.
Asmamaw MM. Viral vectors for the in vivo delivery of CRISPR components: advances and challenges. Front Bioeng Biotechnol. 2022;12(10):895713.
Wei C, Liu J, Yu Z, Zhang B, Gao G, Jiao R. TALEN or Cas9–rapid, efficient and specific choices for genome modifications. J Genet Genomics. 2013;40(6):281–9.
Boettcher M, McManus MT. Choosing the right tool for the job: RNAi, TALEN, or CRISPR. Mol Cell. 2015;58(4):575–85.
Kranz LM, Diken M, Haas H, Kreiter S, Loquai C, Reuter KC, et al. Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy. Nature. 2016;534:7607.
Zelkoski AE, Lu Z, Sukumar G, Dalgard C, Said H, Alameh MG, et al. Ionizable lipid nanoparticles of mRNA vaccines elicit NF-κB and IRF responses through toll-like receptor 4. NPJ Vaccines. 2025;10(1):1–13.
Kwon YJ, James E, Shastri N, Fréchet JMJ. In vivo targeting of dendritic cells for activation of cellular immunity using vaccine carriers based on pH-responsive microparticles. Proc Natl Acad Sci USA. 2005;102(51):18264–8.
Heidegger S, Gößl D, Schmidt A, Niedermayer S, Argyo C, Endres S, et al. Immune response to functionalized mesoporous silica nanoparticles for targeted drug delivery. Nanoscale. 2015;8(2):938–48.
Cha BG, Jeong JH, Kim J. Extra-large pore mesoporous silica nanoparticles enabling co-delivery of high amounts of protein antigen and toll-like receptor 9 agonist for enhanced cancer vaccine efficacy. ACS Cent Sci. 2018;4(4):484–92.
Hong X, Zhong X, Du G, Hou Y, Zhang Y, Zhang Z, et al. The pore size of mesoporous silica nanoparticles regulates their antigen delivery efficiency. Sci Adv. 2020;6(25):4462–81.
Wang X, Li X, Ito A, Sogo Y, Ohno T. Synergistic antitumor efficacy of a hollow mesoporous silica-based cancer vaccine and an immune checkpoint inhibitor at the local site. Acta Biomater. 2022;145:235–45.
Huang Y, Nahar S, Alam MM, Hu S, McVicar DW, Yang D. Reactive oxygen species-sensitive biodegradable mesoporous silica nanoparticles harboring theravac elicit tumor-specific immunity for colon tumor treatment. ACS Nano. 2023;17(20):19740–52.
Godakhindi V, Yazdimamaghani M, Dam SK, Ferdous F, Wang AZ, Tarannum M, et al. Optimized fabrication of dendritic mesoporous silica nanoparticles as efficient delivery system for cancer immunotherapy. Small. 2024;20(50):2402802.
Le Guével X, Palomares F, Torres MJ, Blanca M, Fernandez TD, Mayorga C. Nanoparticle size influences the proliferative responses of lymphocyte subpopulations. RSC Adv. 2015;5(104):85305–9.
Cho NH, Cheong TC, Min JH, Wu JH, Lee SJ, Kim D, et al. A multifunctional core-shell nanoparticle for dendritic cell-based cancer immunotherapy. Nat Nanotechnol. 2011;6(10):675–82.
Grippin AJ, Wummer B, Wildes T, Dyson K, Trivedi V, Yang C, et al. Dendritic cell-activating magnetic nanoparticles enable early prediction of antitumor response with magnetic resonance imaging. ACS Nano. 2019;13(12):13884–98.
Zhao N, Francis NL, Song S, Kholodovych V, Calvelli HR, Hoop CL, et al. CD36-Binding Amphiphilic Nanoparticles for Attenuation of α-Synuclein-Induced Microglial Activation. Adv Nanobiomed Res [Internet]. 2022 Jun 1 [cited 2025 Aug 25];2(6):2100120. Available from: https://doi.org/10.1002/anbr.202100120
Akita H, Kogure K, Moriguchi R, Nakamura Y, Higashi T, Nakamura T, et al. Nanoparticles for ex vivo siRNA delivery to dendritic cells for cancer vaccines: Programmed endosomal escape and dissociation. Journal of Controlled Release [Internet]. 2010 May 10 [cited 2025 Aug 25];143(3):311–7. Available from: https://www.sciencedirect.com/science/article/pii/S0168365910000210
Doedens AL, Stockmann C, Rubinstein MP, Liao D, Zhang N, DeNardo DG, et al. Macrophage expression of hypoxia-inducible factor-1α suppresses T-cell function and promotes tumor progression. Can Res. 2010;70(19):7465–75.
Chen WH, Lecaros RLG, Tseng YC, Huang L, Hsu YC. Nanoparticle delivery of HIF1α siRNA combined with photodynamic therapy as a potential treatment strategy for head-and-neck cancer. Cancer Lett [Internet]. 2015 Apr 1 [cited 2025 Aug 25];359(1):65–74. Available from: https://www.sciencedirect.com/science/article/pii/S0304383515000336?via%3Dihub
Wang M, Wang K, Liao X, Hu H, Chen L, Meng L, et al. Carnitine palmitoyltransferase system: a new target for anti-inflammatory and anticancer therapy? Front Pharmacol. 2021;26(12):760581.
Clark AT, Russo-Savage L, Ashton LA, Haghshenas N, Amselle NA, Schulman IG. A mutation in LXRα uncovers a role for cholesterol sensing in limiting metabolic dysfunction-associated steatohepatitis. Nature Communications 2025 16:1 [Internet]. 2025 Jan 28 [cited 2025 Aug 25];16(1):1–19. Available from: https://www.nature.com/articles/s41467-025-56565-8
Liu C, Wang J, Zhang Y, Zha W, Zhang H, Dong S, et al. Efficient delivery of PKN3 shRNA for the treatment of breast cancer via lipid nanoparticles. Bioorg Med Chem [Internet]. 2022 Sep 1 [cited 2025 Aug 25];69:116884. Available from: https://www.sciencedirect.com/science/article/pii/S0968089622002760
Sun C, Seranova E, Cohen MA, Chipara M, Roberts J, Astuti D, et al. NAD depletion mediates cytotoxicity in human neurons with autophagy deficiency. Cell Rep [Internet]. 2023 May 30 [cited 2025 Aug 25];42(5):112372. Available from: https://www.sciencedirect.com/science/article/pii/S2211124723003832
Grzywa TM, Sosnowska A, Matryba P, Rydzynska Z, Jasinski M, Nowis D, et al. Myeloid cell-derived arginase in cancer immune response. Front Immunol. 2020;15(11):938.
Truong B, Allegri G, Liu XB, Burke KE, Zhu X, Cederbaum SD, et al. Lipid nanoparticle-targeted mRNA therapy as a treatment for the inherited metabolic liver disorder arginase deficiency. Proc Natl Acad Sci U S A [Internet]. 2019 Oct 15 [cited 2025 Aug 25];116(42):21150–9. Available from: https://doi.org/10.1073/pnas.1906182116?download=true
Arjunan P, Kathirvelu D, Mahalingam G, Goel AK, Zacharaiah UG, Srivastava A, et al. Lipid-nanoparticle-enabled nucleic acid therapeutics for liver disorders. Acta Pharm Sin B [Internet]. 2024 Jul 1 [cited 2025 Aug 25];14(7):2885–900. Available from: https://www.sciencedirect.com/science/article/pii/S2211383524001448
El Moukhtari SH, Garbayo E, Amundarain A, Pascual-Gil S, Carrasco-León A, Prosper F, et al. Lipid nanoparticles for siRNA delivery in cancer treatment. Journal of Controlled Release [Internet]. 2023 Sep 1 [cited 2025 Aug 25];361:130–46. Available from: https://www.sciencedirect.com/science/article/pii/S0168365923004789
Novitskiy S, Ryzhov S, Zaynagetdinov R, Goldstein A, Tikhomirov O, Biaggioni I, Carbone D, Feoktistov I, Dikov M. Adenosine and A2B adenosine receptor in regulation of dendritic cell differentiation and properties. Cancer Res. 2008;68(9_Supplement):2472.
Schiemann K, Belousova N, Matevossian A, Nallaparaju KC, Kradjian G, Pandya M, et al. Dual A2A/A2B Adenosine Receptor Antagonist M1069 Counteracts Immunosuppressive Mechanisms of Adenosine and Reduces Tumor Growth In Vivo. Mol Cancer Ther [Internet]. 2024 Nov 1 [cited 2025 Aug 25];23(11):1517–29. Available from: /mct/article/23/11/1517/749314/Dual-A2A-A2B-Adenosine-Receptor-Antagonist-M1069
Chen S, Li G, Jiang Z, Xu Y, Aipire A, Li J. Regulation of dendritic cell biology by amino acids and their transporters. Front Immunol. 2025;16:1626973.
Kim M, Tomek P. Tryptophan: a rheostat of cancer immune escape mediated by immunosuppressive enzymes IDO1 and TDO. Front Immunol. 2021;23(12):636081.
Endo R, Nakamura T, Kawakami K, Sato Y, Harashima H. The silencing of indoleamine 2,3-dioxygenase 1 (IDO1) in dendritic cells by siRNA-loaded lipid nanoparticles enhances cell-based cancer immunotherapy. Scientific Reports 2019 9:1 [Internet]. 2019 Aug 5 [cited 2025 Aug 25];9(1):1–11. Available from: https://www.nature.com/articles/s41598-019-47799-w
Singh M, Kapoor A, Bhatnagar A. Oxidative and reductive metabolism of lipid-peroxidation derived carbonyls. Chem Biol Interact. 2015;5(234):261–73.
Shan X, Zhao Z, Lai P, Liu Y, Li B, Ke Y, et al. RNA nanotherapeutics with fibrosis overexpression and retention for MASH treatment. Nature Communications 2024 15:1 [Internet]. 2024 Aug 27 [cited 2025 Aug 25];15(1):1–20. Available from: https://www.nature.com/articles/s41467-024-51571-8
Payen VL, Mina E, Van Hée VF, Porporato PE, Sonveaux P. Monocarboxylate transporters in cancer. Molecular Metabolism. 2020;1(33):48–66.
Elangovan S, Pathania R, Ramachandran S, Ananth S, Padia RN, Srinivas SR, et al. Molecular Mechanism of SLC5A8 Inactivation in Breast Cancer. Mol Cell Biol [Internet]. 2013 Oct 1 [cited 2025 Aug 25];33(19):3920. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC3811868/
Pandey AR, Kumar A, Shrivastava NK, Singh J, Yadav S, Sonkar AB, et al. Advancing siRNA Therapeutics targeting MCT-4: A Multifaceted approach integrating Arithmetical Designing, Screening, and molecular dynamics validation. Int Immunopharmacol [Internet]. 2025 Feb 6 [cited 2025 Aug 25];147:113980. Available from: https://www.sciencedirect.com/science/article/pii/S1567576924025025
Setargew YF, Wyllie K, Grant RD, Chitty JL, Cox TR. Targeting lysyl oxidase family meditated matrix cross-linking as an anti-stromal therapy in solid tumors. Cancers. 2021;13(3):491.
Saatci O, Kaymak A, Raza U, Ersan PG, Akbulut O, Banister CE, et al. Targeting lysyl oxidase (LOX) overcomes chemotherapy resistance in triple negative breast cancer. Nature Communications 2020 11:1 [Internet]. 2020 May 15 [cited 2025 Aug 25];11(1):1–17. Available from: https://www.nature.com/articles/s41467-020-16199-4
Pappano WN, Zhang Q, Tucker LA, Tse C, Wang J. Genetic inhibition of the atypical kinase Wee1 selectively drives apoptosis of p53 inactive tumor cells. BMC Cancer [Internet]. 2014 Jun 13 [cited 2025 Aug 25];14(1):430. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC4229861/
1Ray M, Lee YW, Hardie J, Mout R, Yeşilbag Tonga G, Farkas ME, et al. CRISPRed Macrophages for Cell-Based Cancer Immunotherapy. Bioconjug Chem [Internet]. 2018 Feb 21 [cited 2025 Aug 25];29(2):445–50. Available from: https://doi.org/10.1021/acs.bioconjchem.7b00768?ref=article_openPDF
Hamouda AEI, Filtjens J, Brabants E, Kancheva D, Debraekeleer A, Brughmans J, et al. Intratumoral delivery of lipid nanoparticle-formulated mRNA encoding IL-21, IL-7, and 4-1BBL induces systemic antitumor immunity. Nature Communications 2024 15:1 [Internet]. 2024 Dec 6 [cited 2025 Aug 25];15(1):1–20. Available from: https://www.nature.com/articles/s41467-024-54877-9
Richards DM, Sefrin JP, Gieffers C, Hill O, Merz C. Concepts for agonistic targeting of CD40 in immuno-oncology. Hum Vaccin Immunother. 2020;16(2):377–87.
Zhu Y, Yao ZC, Li S, Ma J, Wei C, Yu D, et al. An mRNA lipid nanoparticle-incorporated nanofiber-hydrogel composite for cancer immunotherapy. Nature Communications 2025 16:1 [Internet]. 2025 Jul 1 [cited 2025 Aug 25];16(1):1–16. Available from: https://www.nature.com/articles/s41467-025-61299-8
Correa S, Meany EL, Gale EC, Klich JH, Saouaf OM, Mayer AT, et al. Injectable Nanoparticle‐Based Hydrogels Enable the Safe and Effective Deployment of Immunostimulatory CD40 Agonist Antibodies. Advanced Science [Internet]. 2022 Oct 1 [cited 2025 Aug 25];9(28):2103677. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC9534946/
Xu Y, Xu X, Zhang Q, Lu P, Xiang C, Zhang L, et al. Gp130-dependent STAT3 activation in M-CSF–derived macrophages exaggerates tumor progression. Genes Diseases. 2024;11(3):100985.
Zewdu A, Braggio D, Lopez G, Batte K, Khurshid S, Costas de Faria F, Bid HK, Koller D, Casadei L, Ladner KJ, Wang D. Blockade of interleukin-6 (IL-6) signaling in dedifferentiated liposarcoma (DDLPS) decreases mouse double minute 2 (MDM2) oncogenicity via alternative splicing. bioRxiv. 2024 Feb 22:2024–02.
Yang L, Yamagata N, Yadav R, Brandon S, Courtney RL, Morrow JD, et al. Cancer-associated immunodeficiency and dendritic cell abnormalities mediated by the prostaglandin EP2 receptor. J Clin Investig. 2003;111(5):727–35.
Wang Z, Chen Y, Wu H, Wang M, Mao L, Guo X, et al. Intravenous administration of IL-12 encoding self-replicating RNA-lipid nanoparticle complex leads to safe and effective antitumor responses. Sci Rep [Internet]. 2024 Dec 1 [cited 2025 Aug 25];14(1):1–15. Available from: https://www.nature.com/articles/s41598-024-57997-w
Hsu HH, Lin YM, Shen CY, Shibu MA, Li SY, Chang SH, et al. Prostaglandin E2-Induced COX-2 Expressions via EP2 and EP4 Signaling Pathways in Human LoVo Colon Cancer Cells. Int J Mol Sci [Internet]. 2017 Jun 1 [cited 2025 Aug 25];18(6):1132. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC5485956/
Ahn YH, Hong SO, Kim JH, Noh KH, Song KH, Lee YH, et al. The siRNA cocktail targeting interleukin 10 receptor and transforming growth factor-β receptor on dendritic cells potentiates tumor antigen-specific CD8+ T cell immunity. Clin Exp Immunol [Internet]. 2015 Jul 1 [cited 2025 Aug 25];181(1):164. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC4469167/
Li X, Jiang W, Dong S, Li W, Zhu W, Zhou W. STAT3 Inhibitors: A Novel Insight for Anticancer Therapy of Pancreatic Cancer. Biomolecules 2022, Vol 12, Page 1450 [Internet]. 2022 Oct 9 [cited 2025 Aug 25];12(10):1450. Available from: https://www.mdpi.com/2218-273X/12/10/1450/htm
Yokosawa T, Wakasugi K. Tryptophan-starved human cells overexpressing tryptophanyl-tRNA synthetase enhance high-affinity tryptophan uptake via enzymatic production of tryptophanyl-AMP. Int J Mol Sci. 2023;24(20):15453.
Wight TN, Kang I, Evanko SP, Harten IA, Chang MY, Pearce OM, et al. Versican—a critical extracellular matrix regulator of immunity and inflammation. Front Immunol. 2020;24(11):512.
Johnson LA, Banerji S, Lagerholm BC, Jackson DG. Dendritic cell entry to lymphatic capillaries is orchestrated by CD44 and the hyaluronan glycocalyx. Life Sci Alliance. 2021;4(5).
Chen H, Bian A, Zhou W, Miao Y, Ye J, Li J, et al. Discovery of the Highly Selective and Potent STAT3 Inhibitor for Pancreatic Cancer Treatment. ACS Cent Sci [Internet]. 2024 Mar 27 [cited 2025 Aug 25];10(3):579–94. Available from: https://doi.org/10.1021/acscentsci.3c01440
Avilla E, Guarino V, Visciano C, Liotti F, Svelto M, Krishnamoorthy GP, et al. Activation of TYRO3/AXL tyrosine kinase receptors in thyroid cancer. Cancer Res [Internet]. 2011 Mar 1 [cited 2025 Aug 25];71(5):1792–804. Available from: /cancerres/article/71/5/1792/575377/Activation-of-TYRO3-AXL-Tyrosine-Kinase-Receptors
Huelse JM, Bhasin SS, Jacobsen KM, Yim J, Thomas BE, Branella GM, et al. MERTK inhibition selectively activates a DC–T-cell axis to provide anti-leukemia immunity. Leukemia. 2024;38(12):2685–98.
Im K, Choi YJ, Kim DH, Kim DS, Ban K, Ji W, et al. AXL receptor tyrosine kinase inhibition improves the antitumor effects of CD8+ T cells by inducing CD103+ dendritic cell-mediated T cell priming. Biochem Biophys Res Commun. 2023;5(680):7–14.
Sather S, Kenyon KD, Lefkowitz JB, Liang X, Varnum BC, Henson PM, et al. A soluble form of the Mer receptor tyrosine kinase inhibits macrophage clearance of apoptotic cells and platelet aggregation. Blood [Internet]. 2007 Feb 1 [cited 2025 Aug 25];109(3):1026–33. Available from: https://doi.org/10.1182/blood-2006-05-021634
Davis MI, Hunt JP, Herrgard S, Ciceri P, Wodicka LM, Pallares G, et al. Comprehensive analysis of kinase inhibitor selectivity. Nat Biotechnol [Internet]. 2011 Nov 30 [cited 2025 Aug 25];29(11):1046–51. Available from: https://www.nature.com/articles/nbt.1990
Schroeder GM, An Y, Cai ZW, Chen XT, Clark C, Cornelius LAM, et al. Discovery of N-(4-(2-amino-3-chloropyridin-4-yloxy)-3-fluorophenyl)-4- ethoxy-1-(4-fluorophenyl)-2-oxo-1,2-dihydropyridine-3-carboxamide (BMS-777607), a selective and orally efficacious inhibitor of the met kinase superfamily. J Med Chem [Internet]. 2009 Mar 12 [cited 2025 Aug 25];52(5):1251–4. Available from: https://doi.org/10.1021/jm801586s
Remsing Rix LL, Rix U, Colinge J, Hantschel O, Bennett KL, Stranzl T, et al. Global target profile of the kinase inhibitor bosutinib in primary chronic myeloid leukemia cells. Leukemia [Internet]. 2009 Nov 27 [cited 2025 Aug 25];23(3):477–85. Available from: https://www.nature.com/articles/leu2008334
Liu J, Yuan Y, Chen W, Putra J, Suriawinata AA, Schenk AD, et al. Immune-checkpoint proteins VISTA and PD-1 nonredundantly regulate murine T-cell responses. Proc Natl Acad Sci. 2015;112(21):6682–7.
Moon TJ, Ta HM, Bhalotia A, Paulsen KE, Hutchinson DW, Arkema GM, et al. Nanoparticles targeting immune checkpoint protein VISTA induce potent antitumor immunity. J Immunother Cancer [Internet]. 2024 Aug 28 [cited 2025 Aug 25];12(8):8977. Available from: https://jitc.bmj.com/content/12/8/e008977
Zhang Y, Wu L, Li Z, Zhang W, Luo F, Chu Y, et al. Glycocalyx-Mimicking Nanoparticles Improve Anti-PD-L1 Cancer immunotherapy through reversion of tumor-associated macrophages. Biomacromolecules [Internet]. 2018 Jun 11 [cited 2025 Aug 25];19(6):2098–108. Available from: https://doi.org/10.1021/acs.biomac.8b00305
Kartikasari AE, Prakash MD, Cox M, Wilson K, Boer JC, Cauchi JA, et al. Therapeutic cancer vaccines—T cell responses and epigenetic modulation. Front Immunol. 2019;25(9):3109.
Yang W, Zhu G, Wang S, Yu G, Yang Z, Lin L, et al. In situ dendritic cell vaccine for effective cancer immunotherapy. ACS Nano. 2019;13(3):3083–94.
Slovin SF, Higano CS, Hamid O, Tejwani S, Harzstark A, Alumkal JJ, et al. Ipilimumab alone or in combination with radiotherapy in metastatic castration-resistant prostate cancer: results from an open-label, multicenter phase I/II study. Ann Oncol. 2013;24(7):1813–21.
Sharma P, Goswami S, Raychaudhuri D, Siddiqui BA, Singh P, Nagarajan A, et al. Immune checkpoint therapy—current perspectives and future directions. Cell. 2023;186(8):1652–69.
Dai JM, Zhang XQ, Zhang JJ, Yang WJ, Yang XM, Bian H, et al. Blockade of mIL-6R alleviated lipopolysaccharide-induced systemic inflammatory response syndrome by suppressing NF-κB-mediated Ccl2 expression and inflammasome activation. MedComm (Beijing) [Internet]. 2022 Jun 1 [cited 2025 Aug 25];3(2):e132. Available from: https://doi.org/10.1002/mco2.132
Sato K. Suppression of gp130 attenuated insulin-mediated signaling and glucose uptake in skeletal muscle cells. Sci Rep [Internet]. 2024 Dec 1 [cited 2025 Aug 25];14(1):1–9. Available from: https://www.nature.com/articles/s41598-024-68613-2