Sun H, Saeedi P, Karuranga S, Pinkepank M, Ogurtsova K, Duncan B B, et al. IDF diabetes atlas: global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract. 2022;183:109119. https://doi.org/10.1016/j.diabres.2021.109119.
Rooney MR, Fang M, Ogurtsova K, Ozkan B, Echouffo-Tcheugui J B, Boyko E J, et al. Global prevalence of prediabetes. Diabetes Care. 2023;46:1388–94. https://doi.org/10.2337/dc22-2376.
Alicic RZ, Rooney MT, Tuttle K R. Diabetic kidney disease: challenges, progress, and possibilities. Clin J Am Soc Nephrol. 2017;12:2032–45. https://doi.org/10.2215/cjn.11491116.
Plantinga LC, Crews DC, Coresh J, Miller E R SR 3rd, Yee J, et al. Prevalence of chronic kidney disease in US adults with undiagnosed diabetes or prediabetes. Clin J Am Soc Nephrol. 2010;5:673–82. https://doi.org/10.2215/cjn.07891109.
Kheirandish M, Eftekhar E, Azarbad A, Salarpour E, Shahmoradi M, Ghazizadeh S, et al. Prevalence of chronic kidney disease and associated factors among the diabetic and prediabetic population in the Bandare-Kong cohort Study; a population-based study. Arch Iran Med. 2024;27:470–78. https://doi.org/10.34172/aim.31194.
Honigberg MC, Zekavat SM, Pirruccello JP, Natarajan P, Vaduganathan M. Cardiovascular and kidney outcomes across the glycemic spectrum: insights from the UK Biobank. J Am Coll Cardiol. 2021;78:453–64. https://doi.org/10.1016/j.jacc.2021.05.004.
Gardiner FW, Nwose EU, Bwititi PT, Crockett J, Wang L. Blood glucose and pressure controls in diabetic kidney disease: narrative review of adherence, barriers and evidence of achievement. J Diabetes Complications. 2018;32:104–12. https://doi.org/10.1016/j.jdiacomp.2017.09.008.
Færch K, Johansen N B, Witte D R, Lauritzen T, Jørgensen M, Vistisen D. Relationship between insulin resistance and β-cell dysfunction in subphenotypes of prediabetes and type 2 diabetes. J Clin Endocrinol Metab. 2015;100:707–16. https://doi.org/10.1210/jc.2014-2853.
Artunc F, Schleicher E, Weigert C, Fritsche A, Stefan N, Häring H. The impact of insulin resistance on the kidney and vasculature. Nat Rev Nephrol. 2016;12:721–37. https://doi.org/10.1038/nrneph.2016.145.
Rogacka D. Insulin resistance in glomerular podocytes: potential mechanisms of induction. Arch Biochem Biophys. 2021;710:109005. https://doi.org/10.1016/j.abb.2021.109005.
A DR, Tobin J D, Andres R. Glucose clamp technique: a method for quantifying insulin secretion and resistance. Am J Physiol. 1979;237:E214–223. https://doi.org/10.1152/ajpendo.1979.237.3.E214.
Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner R C. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28:412–19. https://doi.org/10.1007/bf00280883.
Guerrero-Romero F, Simental-Mendía L, González-Ortiz M, Martínez-Abundis E, Ramos-Zavala M G, O H-GS, et al. The product of triglycerides and glucose, a simple measure of insulin sensitivity. Comparison with the euglycemic-hyperinsulinemic clamp. J Clin Endocrinol Metab. 2010;95:3347–51. https://doi.org/10.1210/jc.2010-0288.
Zhu Q, Chen Y, Cai X, Cai L, Hong J, Luo Q, et al. The non-linear relationship between triglyceride-glucose index and risk of chronic kidney disease in hypertensive patients with abnormal glucose metabolism: a cohort study. Front Med (Lausanne). 2022;9:1018083. https://doi.org/10.3389/fmed.2022.1018083.
Williams KV, Erbey JR, Becker D, Arslanian S, Orchard T J. Can clinical factors estimate insulin resistance in type 1 diabetes? Diabetes. 2000;49:626–32. https://doi.org/10.2337/diabetes.49.4.626.
Liao J, Wang L, Duan L, Gong F, Zhu H, Pan H, et al. Association between estimated glucose disposal rate and cardiovascular diseases in patients with diabetes or prediabetes: a cross-sectional study. Cardiovasc Diabetol. 2025;24(13). https://doi.org/10.1186/s12933-024-02570-y.
Yau K, Kuah R, Cherney D Z I, Lam T K T. Obesity and the kidney: mechanistic links and therapeutic advances. Nat Rev Endocrinol. 2024;20:321–35. https://doi.org/10.1038/s41574-024-00951-7.
Ku E, Lee B J, Wei J, Weir M R. Hypertension in CKD: core curriculum 2019. Am J Kidney Dis. 2019;74:120–31. https://doi.org/10.1053/j.ajkd.2018.12.044.
Galindo RJ, Beck RW, Scioscia MF, Umpierrez GE, Tuttle K R. Glycemic monitoring and management in advanced chronic kidney disease. Endocr Rev. 2020;41:756–74. https://doi.org/10.1210/endrev/bnaa017.
Maiuolo J, Oppedisano F, Gratteri S, Muscoli C, Mollace V. Regulation of uric acid metabolism and excretion. Int J Cardiol. 2016;213:8–14. https://doi.org/10.1016/j.ijcard.2015.08.109.
Song S, Cai X, Hu J, Zhu Q, Shen D, Ma H, et al. Serum uric acid and bone health in middle-aged and elderly hypertensive patients: a potential U-Shaped association and implications for future fracture risk. Metabolites. 2025;15. https://doi.org/10.3390/metabo15010015.
Yanai H, Adachi H, Hakoshima M, Katsuyama H. Molecular biological and clinical understanding of the pathophysiology and treatments of hyperuricemia and its association with metabolic syndrome, cardiovascular diseases and chronic kidney disease. Int J Mol Sci. 2021;22. https://doi.org/10.3390/ijms22179221.
Kang DH, Nakagawa T, Feng L, Watanabe S, Han L, Mazzali M, et al. A role for uric acid in the progression of renal disease. J Am Soc Nephrol. 2002;13:2888–97. https://doi.org/10.1097/01.asn.0000034910.58454.fd.
Zhuang Y, Feng Q, Ding G, Zhao M, Che R, Bai M, et al. Activation of ERK1/2 by NADPH oxidase-originated reactive oxygen species mediates uric acid-induced mesangial cell proliferation. Am J Physiol Renal Physiol. 2014;307:F396–406. https://doi.org/10.1152/ajprenal.00565.2013.
Kim SM, Choi YW, Seok HY, Jeong KH, Lee SH, Lee TW, et al. Reducing serum uric acid attenuates TGF-β1-induced profibrogenic progression in type 2 diabetic nephropathy. Nephron Exp Nephrol. 2012;121:e109–121. https://doi.org/10.1159/000343567.
Li L, Yang C, Zhao Y, Zeng X, Liu F, Fu P. Is hyperuricemia an independent risk factor for new-onset chronic kidney disease?: a systematic review and meta-analysis based on observational cohort studies. BMC Nephrol. 2014;15:122. https://doi.org/10.1186/1471-2369-15-122.
2.Diagnosis and classification of diabetes:standards of care in diabetes-2024. Diabetes Care. 2024;47:S20–s42. https://doi.org/10.2337/dc24-S002.
Zhu H, Fu Q, Chen R, Luo L, Yu M, Zhou Y. Association of dietary decanoic acid intake with diabetes or prediabetes: an analysis from NHANES 2005-2016. Front Nutr. 2024;11:1483045. https://doi.org/10.3389/fnut.2024.1483045.
KDIGO. Clinical practice guideline for diabetes management in chronic kidney disease. Kidney Int. 2020 2020;98:S1–s115. https://doi.org/10.1016/j.kint.2020.06.019.
Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF 3rd, Feldman H I, et al. A new equation to estimate glomerular filtration rate. Ann Intern Med. 2009;150:604–12. https://doi.org/10.7326/0003-4819-150-9-200905050-00006.
Rossing P, Groop P H, Singh R, Lawatscheck R, Tuttle K R. Prevalence of chronic kidney disease in type 1 diabetes among adults in the U.S. Diabetes Care. 2024;47:1395–99. https://doi.org/10.2337/dc24-0335.
Murphy D, E MC, Lin F, Banerjee T, Bragg-Gresham J L, Eberhardt M S, et al. Trends in prevalence of chronic kidney disease in the United States. Ann Intern Med. 2016;165:473–81. https://doi.org/10.7326/m16-0273.
Moazzeni SS, Arani RH, Hasheminia M, Tohidi M, Azizi F, Hadaegh F. High incidence of chronic kidney disease among Iranian diabetic adults: using CKD-EPI and MDRD equations for estimated glomerular filtration rate. Diabetes Metab J. 2021;45:684–97. https://doi.org/10.4093/dmj.2020.0109.
Bello-Chavolla O Y, Almeda-Valdes P, Gomez-Velasco D, Viveros-Ruiz T, Cruz-Bautista I, Romo-Romo A, et al. METS-IR, a novel score to evaluate insulin sensitivity, is predictive of visceral adiposity and incident type 2 diabetes. Eur J Endocrinol. 2018;178:533–44. https://doi.org/10.1530/eje-17-0883.
Jabeen WM, Jahangir B, Khilji S, Aslam A. Association of triglyceride glucose index and triglyceride HDL ratio with glucose levels, microvascular and macrovascular complications in diabetes mellitus type-2. Pak J Med Sci. 2023;39:1255–59. https://doi.org/10.12669/pjms.39.5.7389.
McLaughlin T, Reaven G, Abbasi F, Lamendola C, Saad M, Waters D, et al. Is there a simple way to identify insulin-resistant individuals at increased risk of cardiovascular disease? The Am J Cardiol. 2005;96:399–404. https://doi.org/10.1016/j.amjcard.2005.03.085.
Kim J H. Multicollinearity and misleading statistical results. Korean J Anesthesiol. 2019;72:558–69. https://doi.org/10.4097/kja.19087.
Wang R, Lagakos S W, Ware J H, Hunter D J, Drazen J M. Statistics in medicine-reporting of subgroup analyses in clinical trials. N Engl J Med. 2007;357:2189–94. https://doi.org/10.1056/NEJMsr077003.
Bland JM, Altman D G. Multiple significance tests: the Bonferroni method. BMJ. 1995;310:170. https://doi.org/10.1136/bmj.310.6973.170.
Zhu H, Tao R, Yu Q, Yu M, Zhou Y, Fu Q. The mediating roles of obesity indicators and serum albumin in the association of DEET exposure with depression and sleep disorders in adults: evidence from NHANES 2007-2016. BMC Public Health. 2025;25:1658. https://doi.org/10.1186/s12889-025-22880-4.
Smith LH, VanderWeele T J. Mediational E-values: approximate sensitivity analysis for unmeasured mediator-outcome confounding. Epidemiology. 2019;30:835–37. https://doi.org/10.1097/ede.0000000000001064.
VanderWeele T J, Ding P. Sensitivity analysis in observational research: introducing the E-Value. Ann Intern Med. 2017;167:268–74. https://doi.org/10.7326/m16-2607.
Meeusen JW, Kasozi RN, Larson TS, Lieske J C. Clinical impact of the refit CKD-EPI, 2021 creatinine-based eGFR equation. Clin Chem. 2022;68:534–39. https://doi.org/10.1093/clinchem/hvab282.
Levey AS, Coresh J, Greene T, Stevens L A, Zhang Y L, Hendriksen S, et al. Using standardized serum creatinine values in the modification of diet in renal disease study equation for estimating glomerular filtration rate. Ann Intern Med. 2006;145:247–54. https://doi.org/10.7326/0003-4819-145-4-200608150-00004.
Li Y, Zhu S, Li B, Shao X, Liu X, Liu A, et al. Association between non-alcoholic fatty liver disease and chronic kidney disease in population with prediabetes or diabetes. Int Urol Nephrol. 2014;46:1785–91. https://doi.org/10.1007/s11255-014-0796-9.
Abbate M, Parvanova A, A L-GÁ, Yañez A, Bennasar-Veny M, Ramírez-Manent J, et al. MAFLD and glomerular hyperfiltration in subjects with normoglycemia, prediabetes and type 2 diabetes: a cross-sectional population study. Diabetes Metab Res Rev. 2024;40:e3810. https://doi.org/10.1002/dmrr.3810.
Zhu W, Liu Q, Liu F, Jiao C, Zhang L, Xie H. High remnant cholesterol as a risk factor for developing chronic kidney disease in patients with prediabetes and type 2 diabetes: a cross-sectional study of a US population. Acta Diabetol. 2024;61:735–43. https://doi.org/10.1007/s00592-024-02249-6.
Wang X, Zheng L, Lu F. Association between estimated glucose disposal rate and heart failure in patients with diabetes or prediabetes: a cross-sectional study. BMC Public Health. 2025;25:2711. https://doi.org/10.1186/s12889-025-24154-5.
Zabala A, Darsalia V, Lind M, Svensson A M, Franzén S, Eliasson B, et al. Estimated glucose disposal rate and risk of stroke and mortality in type 2 diabetes: a nationwide cohort study. Cardiovasc Diabetol. 2021;20:202. https://doi.org/10.1186/s12933-021-01394-4.
Zhou H, Ru X, Chen S, Ye Q. Estimated glucose processing rates and the association of chronic kidney disease and proteinuria in non-diabetic adults. Int Urol Nephrol. 2025. https://doi.org/10.1007/s11255-025-04448-8.
Linn W, Persson M, Rathsman B, Ludvigsson J, Lind M, Andersson Franko M, et al. Estimated glucose disposal rate is associated with retinopathy and kidney disease in young people with type 1 diabetes: a nationwide observational study. Cardiovasc Diabetol. 2023;22(61). https://doi.org/10.1186/s12933-023-01791-x.
Lee BT, Ahmed FA, Hamm LL, Teran FJ, Chen CS, Liu Y, et al. Association of C-reactive protein, tumor necrosis factor-alpha, and interleukin-6 with chronic kidney disease. BMC Nephrol. 2015;16(77). https://doi.org/10.1186/s12882-015-0068-7.
Daenen K, Andries A, Mekahli D, Van Schepdael A, Jouret F, Bammens B. Oxidative stress in chronic kidney disease. Pediatr Nephrol. 2019;34:975–91. https://doi.org/10.1007/s00467-018-4005-4.
Arabi T, Shafqat A, Sabbah B N, Fawzy N A, Shah H, Abdulkader H, et al. Obesity-related kidney disease: beyond hypertension and insulin-resistance. Front Endocrinol (lausanne). 2022;13:1095211. https://doi.org/10.3389/fendo.2022.1095211.
Wheeler DC, Stefansson BV, Batiushin M, Bilchenko O, Cherney D Z I, Chertow G M, et al. The dapagliflozin and prevention of adverse outcomes in chronic kidney disease (DAPA-CKD) trial: baseline characteristics. Nephrol Dial Transpl. 2020;35:1700–11. https://doi.org/10.1093/ndt/gfaa234.
Gado M, Tsaousidou E, Bornstein S R, Perakakis N. Sex-based differences in insulin resistance. J Endocrinol. 2024;261. https://doi.org/10.1530/joe-23-0245.
VanHook A M. Estrogen-powered kidney protection. Sci Signal. 2025;18:eaeb6175. https://doi.org/10.1126/scisignal.aeb6175.
De Paoli M, Zakharia A, Werstuck G H. The role of estrogen in insulin resistance: a review of clinical and preclinical data. Am J Pathol. 2021;191:1490–98. https://doi.org/10.1016/j.ajpath.2021.05.011.
White UA, Tchoukalova Y D. Sex dimorphism and depot differences in adipose tissue function. Biochim Biophys Acta. 1842 (2014;377–92. https://doi.org/10.1016/j.bbadis.2013.05.006.
Camilleri G, Kiani A K, Herbst K L, Kaftalli J, Bernini A, Dhuli K, et al. Genetics of fat deposition. Eur Rev Med Pharmacol Sci. 2021;25:14–22. https://doi.org/10.26355/eurrev_202112_27329.
Toyoki D, Shibata S, Kuribayashi-Okuma E, Xu N, Ishizawa K, Hosoyamada M, et al. Insulin stimulates uric acid reabsorption via regulating urate transporter 1 and ATP-binding cassette subfamily G member 2. Am J Physiol Renal Physiol. 2017;313:F826–f834. https://doi.org/10.1152/ajprenal.00012.2017.
Han T, Lan L, Qu R, Xu Q, Jiang R, Na L, et al. Temporal relationship between hyperuricemia and insulin resistance and its impact on future risk of hypertension. Hypertension. 2017;70:703–11. https://doi.org/10.1161/hypertensionaha.117.09508.
Zhu Y, Hu Y, Huang T, Zhang Y, Li Z, Luo C, et al. High uric acid directly inhibits insulin signalling and induces insulin resistance. Biochem Biophys Res Commun. 2014;447:707–14. https://doi.org/10.1016/j.bbrc.2014.04.080.
Graham TE, Yang Q, Blüher, Hammarstedt A, Ciaraldi T P, Henry R R, et al. Retinol-binding protein 4 and insulin resistance in lean, obese, and diabetic subjects. N Engl J Med. 2006;354:2552–63. https://doi.org/10.1056/NEJMoa054862.
Yamagishi S. Role of advanced glycation end products (AGEs) and receptor for AGEs (RAGE) in vascular damage in diabetes. Exp Gerontol. 2011;46:217–24. https://doi.org/10.1016/j.exger.2010.11.007.
Hall JE, Carmo J M D, da Silva A A, Wang Z, Hall M E. Obesity, kidney dysfunction and hypertension: mechanistic links. Nat Rev Nephrol. 2019;15:367–85. https://doi.org/10.1038/s41581-019-0145-4.
Son DH, Lee HS, Lee YJ, Lee JH, Han J H. Comparison of triglyceride-glucose index and HOMA-IR for predicting prevalence and incidence of metabolic syndrome. Nutr Metab Cardiovasc Dis. 2022;32:596–604. https://doi.org/10.1016/j.numecd.2021.11.017.
Wei X, Min Y, Song G, Ye X, Liu L. Association between triglyceride-glucose related indices with the all-cause and cause-specific mortality among the population with metabolic syndrome. Cardiovasc Diabetol. 2024;23:134. https://doi.org/10.1186/s12933-024-02215-0.
Song S, Cai X, Shen D, Hu J, Zhu Q, Ma H, et al. Relationship between cumulative exposure and Time course of plasma aldosterone concentrations and chronic kidney disease in hypertensive patients: a real-world cohort study. Am J Nephrol. 2025;1–16. https://doi.org/10.1159/000545451.