Dendrou CA, Fugger L, Friese MA. Immunopathology of multiple sclerosis. Nat Rev Immunol. 2015;15(9):545–58.

CAS 
PubMed 

Google Scholar
 

Dobson R, Giovannoni G. Multiple sclerosis – a review. Eur J Neurol. 2019;26(1):27–40.

CAS 
PubMed 

Google Scholar
 

Lassmann H. Multiple sclerosis pathology. Cold Spring Harb Perspect Med. 2018. https://doi.org/10.1101/cshperspect.a028936.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Kutzelnigg A, Lucchinetti CF, Stadelmann C, Brück W, Rauschka H, Bergmann M, et al. Cortical demyelination and diffuse white matter injury in multiple sclerosis. Brain. 2005;128(Pt 11):2705–12.

PubMed 

Google Scholar
 

Soldan SS, Lieberman PM. Epstein-Barr virus and multiple sclerosis. Nat Rev Microbiol. 2023;21(1):51–64.

CAS 
PubMed 

Google Scholar
 

Bjornevik K, Cortese M, Healy BC, Kuhle J, Mina MJ, Leng Y, et al. Longitudinal analysis reveals high prevalence of Epstein-Barr virus associated with multiple sclerosis. Science. 2022;375(6578):296–301.

CAS 
PubMed 

Google Scholar
 

Tyler KL. The enigmatic links between Epstein-Barr virus infection and multiple sclerosis. J Clin Invest. 2022. https://doi.org/10.1172/JCI160468.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Vietzen H, Berger SM, Kühner LM, Furlano PL, Bsteh G, Berger T, et al. Ineffective control of Epstein-Barr-virus-induced autoimmunity increases the risk for multiple sclerosis. Cell. 2023;186(26):5705–5718.e13.

Lanz TV, Brewer RC, Ho PP, Moon JS, Jude KM, Fernandez D, et al. Clonally expanded B cells in multiple sclerosis bind EBV EBNA1 and glialcam. Nature. 2022;603(7900):321–7.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Thomas OG, Bronge M, Tengvall K, Akpinar B, Nilsson OB, Holmgren E, et al. Cross-reactive EBNA1 immunity targets alpha-crystallin B and is associated with multiple sclerosis. Sci Adv. 2023;9(20):eadg3032.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Tengvall K, Huang J, Hellström C, Kammer P, Biström M, Ayoglu B, et al. Molecular mimicry between Anoctamin 2 and Epstein-Barr virus nuclear antigen 1 associates with multiple sclerosis risk. Proc Natl Acad Sci U S A. 2019;116(34):16955–60.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Sundström P, Nyström M, Ruuth K, Lundgren E. Antibodies to specific EBNA-1 domains and HLA DRB1*1501 interact as risk factors for multiple sclerosis. J Neuroimmunol. 2009;215(1–2):102–7.

PubMed 

Google Scholar
 

Lindsey JW. Antibodies to the Epstein-Barr virus proteins BFRF3 and BRRF2 cross-react with human proteins. J Neuroimmunol. 2017;310:131–4.

CAS 
PubMed 

Google Scholar
 

Vietzen H, Kühner LM, Berger SM, Furlano PL, Bsteh G, Berger T, et al. Accumulation of Epstein-Barr virus-induced cross-reactive immune responses is associated with multiple sclerosis. J Clin Invest. 2024. https://doi.org/10.1172/JCI184481.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Leung CS, Maurer MA, Meixlsperger S, Lippmann A, Cheong C, Zuo J, et al. Robust t-cell stimulation by Epstein-Barr virus-transformed B cells after antigen targeting to DEC-205. Blood. 2013;121(9):1584–94.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Hong S, Zhang Z, Liu H, Tian M, Zhu X, Wang W, et al. B cells are the dominant Antigen-Presenting cells that activate Naive CD4. Immunity. 2018;49(4):695–e7084.

CAS 
PubMed 

Google Scholar
 

Choi IK, Wang Z, Ke Q, Hong M, Qian Y, Zhao X, et al. Signaling by the Epstein-Barr virus LMP1 protein induces potent cytotoxic CD4. Proc Natl Acad Sci U S A. 2018;115(4):E686–95.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Torkildsen Ø, Nyland H, Myrmel H, Myhr KM. Epstein–Barr virus reactivation and multiple sclerosis. Eur J Neurol. 2008;15(1):106–8.

CAS 
PubMed 

Google Scholar
 

Serafini B, Scorsi E, Rosicarelli B, Rigau V, Thouvenot E, Aloisi F. Massive intracerebral Epstein-Barr virus reactivation in lethal multiple sclerosis relapse after natalizumab withdrawal. J Neuroimmunol. 2017;307:14–7.

CAS 
PubMed 

Google Scholar
 

Shimakage M, Sakamoto H. Macrophage involvement in Epstein-Barr virus-related tumors. Exp Ther Med. 2010;1(2):285–91.

PubMed 
PubMed Central 

Google Scholar
 

Wang J, Su M, Wei N, Yan H, Zhang J, Gong Y, et al. Chronic active Epstein-Barr virus disease originates from infected hematopoietic stem cells. Blood. 2024;143(1):32–41.

CAS 
PubMed 

Google Scholar
 

Yu H, Robertson ES. Epstein-Barr virus history and pathogenesis. Viruses. 2023. https://doi.org/10.3390/v15030714.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Kempkes B, Robertson ES. Epstein-barr virus latency: current and future perspectives. Curr Opin Virol. 2015;14:138–44.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Mrozek-Gorska P, Buschle A, Pich D, Schwarzmayr T, Fechtner R, Scialdone A, et al. Epstein-Barr virus reprograms human B lymphocytes immediately in the prelatent phase of infection. Proc Natl Acad Sci U S A. 2019;116(32):16046–55.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Münz C. Latency and lytic replication in Epstein-barr virus-associated oncogenesis. Nat Rev Microbiol. 2019;17(11):691–700.

PubMed 

Google Scholar
 

Kenney SC, Mertz JE. Regulation of the latent-lytic switch in Epstein-Barr virus. Semin Cancer Biol. 2014;26:60–8.

CAS 
PubMed 

Google Scholar
 

Moreno MA, Or-Geva N, Aftab BT, Khanna R, Croze E, Steinman L, et al. Molecular signature of Epstein-Barr virus infection in MS brain lesions. Neurol Neuroimmunol Neuroinflamm. 2018;5(4):e466.

PubMed 
PubMed Central 

Google Scholar
 

Serafini B, Rosicarelli B, Franciotta D, Magliozzi R, Reynolds R, Cinque P, et al. Dysregulated Epstein-Barr virus infection in the multiple sclerosis brain. J Exp Med. 2007;204(12):2899–912.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Hassani A, Corboy JR, Al-Salam S, Khan G. Epstein-Barr virus is present in the brain of most cases of multiple sclerosis and may engage more than just B cells. PLoS One. 2018;13(2):e0192109.

PubMed 
PubMed Central 

Google Scholar
 

Orr N, Steinman L. Epstein-Barr virus and the immune microenvironment in multiple sclerosis: insights from high-dimensional brain tissue imaging. Proc Natl Acad Sci U S A. 2025;122(11):e2425670122.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Pike SC, Welsh N, Linzey M, Gilli F. Theiler’s virus-induced demyelinating disease as an infectious model of progressive multiple sclerosis. Front Mol Neurosci. 2022;15:1019799.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Matthews AE, Weiss SR, Paterson Y. Murine hepatitis virus–a model for virus-induced CNS demyelination. J Neurovirol. 2002;8(2):76–85.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Mokhtarian F, Huan CM, Roman C, Raine CS. Semliki forest virus-induced demyelination and remyelination–involvement of B cells and anti-myelin antibodies. J Neuroimmunol. 2003;137(1–2):19–31.

CAS 
PubMed 

Google Scholar
 

Olson JK, Croxford JL, Calenoff MA, Dal Canto MC, Miller SD. A virus-induced molecular mimicry model of multiple sclerosis. J Clin Invest. 2001;108(2):311–8.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Axthelm MK, Bourdette DN, Marracci GH, Su W, Mullaney ET, Manoharan M, et al. Japanese macaque encephalomyelitis: a spontaneous multiple sclerosis-like disease in a nonhuman primate. Ann Neurol. 2011;70(3):362–73.

PubMed 
PubMed Central 

Google Scholar
 

Yong VW. Microglia in multiple sclerosis: protectors turn destroyers. Neuron. 2022;110(21):3534–48.

CAS 
PubMed 

Google Scholar
 

Distéfano-Gagné F, Bitarafan S, Lacroix S, Gosselin D. Roles and regulation of microglia activity in multiple sclerosis: insights from animal models. Nat Rev Neurosci. 2023;24(7):397–415.

PubMed 

Google Scholar
 

Montilla A, Zabala A, Er-Lukowiak M, Rissiek B, Magnus T, Rodriguez-Iglesias N, et al. Microglia and meningeal macrophages depletion delays the onset of experimental autoimmune encephalomyelitis. Cell Death Dis. 2023;14(1):16.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

van den Bosch AMR, van der Poel M, Fransen NL, Vincenten MCJ, Bobeldijk AM, Jongejan A, et al. Profiling of microglia nodules in multiple sclerosis reveals propensity for lesion formation. Nat Commun. 2024;15(1):1667.

PubMed 
PubMed Central 

Google Scholar
 

van der Valk P, Amor S. Preactive lesions in multiple sclerosis. Curr Opin Neurol. 2009;22(3):207–13.

PubMed 

Google Scholar
 

Gay FW, Drye TJ, Dick GW, Esiri MM. The application of multifactorial cluster analysis in the staging of plaques in early multiple sclerosis. Identification and characterization of the primary demyelinating lesion. Brain. 1997;120(Pt 8):1461–83.

PubMed 

Google Scholar
 

Dong S, Forrest JC, Liang X. Murine gammaherpesvirus 68: a small animal model for gammaherpesvirus-associated diseases. Adv Exp Med Biol. 2017;1018:225–36.

CAS 
PubMed 

Google Scholar
 

Caminero F, Cascella M. Neuroanatomy, mesencephalon midbrain. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025.

Wilkins A. Cerebellar dysfunction in multiple sclerosis. Front Neurol. 2017;8:312.

PubMed 
PubMed Central 

Google Scholar
 

Ashizawa T, Xia G. Ataxia. Continuum. 2016;22(4 Movement Disorders):1208–26.

PubMed 
PubMed Central 

Google Scholar
 

Terry LA, Stewart JP, Nash AA, Fazakerley JK. Murine gammaherpesvirus-68 infection of and persistence in the central nervous system. J Gen Virol. 2000;81(Pt 11):2635–43.

CAS 
PubMed 

Google Scholar
 

Kang HR, Cho HJ, Kim S, Song IH, Lee TS, Hwang S, et al. Persistent infection of a gammaherpesvirus in the central nervous system. Virology. 2012;423(1):23–9.

CAS 
PubMed 

Google Scholar
 

Collins CM, Speck SH. Tracking murine gammaherpesvirus 68 infection of germinal center B cells in vivo. PLoS One. 2012;7(3):e33230.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Casiraghi C, Shanina I, Cho S, Freeman ML, Blackman MA, Horwitz MS. Gammaherpesvirus latency accentuates EAE pathogenesis: relevance to Epstein-Barr virus and multiple sclerosis. PLoS Pathog. 2012;8(5):e1002715.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Casiraghi C, Márquez AC, Shanina I, Horwitz MS. Latent virus infection upregulates CD40 expression facilitating enhanced autoimmunity in a model of multiple sclerosis. Sci Rep. 2015;5:13995.

PubMed 
PubMed Central 

Google Scholar
 

Perry VH, Holmes C. Microglial priming in neurodegenerative disease. Nat Rev Neurol. 2014;10(4):217–24.

CAS 
PubMed 

Google Scholar
 

Neher JJ, Cunningham C. Priming microglia for innate immune memory in the brain. Trends Immunol. 2019;40(4):358–74.

CAS 
PubMed 

Google Scholar
 

Lima MN, Barbosa-Silva MC, Maron-Gutierrez T. Microglial priming in infections and its risk to neurodegenerative diseases. Front Cell Neurosci. 2022;16:878987.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Hoeijmakers L, Heinen Y, van Dam AM, Lucassen PJ, Korosi A. Microglial priming and Alzheimer’s disease: a possible role for (early) immune challenges and epigenetics?? Front Hum Neurosci. 2016;10:398.

PubMed 
PubMed Central 

Google Scholar
 

Kitazawa M, Oddo S, Yamasaki TR, Green KN, LaFerla FM. Lipopolysaccharide-induced inflammation exacerbates Tau pathology by a cyclin-dependent kinase 5-mediated pathway in a transgenic model of alzheimer’s disease. J Neurosci. 2005;25(39):8843–53.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Sly LM, Krzesicki RF, Brashler JR, Buhl AE, McKinley DD, Carter DB, et al. Endogenous brain cytokine mRNA and inflammatory responses to lipopolysaccharide are elevated in the Tg2576 transgenic mouse model of Alzheimer’s disease. Brain Res Bull. 2001;56(6):581–8.

CAS 
PubMed 

Google Scholar
 

Ramaglia V, Hughes TR, Donev RM, Ruseva MM, Wu X, Huitinga I, et al. C3-dependent mechanism of microglial priming relevant to multiple sclerosis. Proc Natl Acad Sci U S A. 2012;109(3):965–70.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Bilbo SD, Levkoff LH, Mahoney JH, Watkins LR, Rudy JW, Maier SF. Neonatal infection induces memory impairments following an immune challenge in adulthood. Behav Neurosci. 2005;119(1):293–301.

CAS 
PubMed 

Google Scholar
 

Ratnayake U, Quinn T, Walker DW, Dickinson H. Cytokines and the neurodevelopmental basis of mental illness. Front Neurosci. 2013;7:180.

PubMed 
PubMed Central 

Google Scholar
 

Li WY, Chang YC, Lee LJ. Prenatal infection affects the neuronal architecture and cognitive function in adult mice. Dev Neurosci. 2014;36(5):359–70.

PubMed 

Google Scholar
 

Granja MG, Alves LP, Leardini-Tristão M, Saul ME, Bortoni LC, de Moraes FM, et al. Inflammatory, synaptic, motor, and behavioral alterations induced by gestational sepsis on the offspring at different stages of life. J Neuroinflammation. 2021;18(1):60.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Kuhlmann T, Ludwin S, Prat A, Antel J, Brück W, Lassmann H. An updated histological classification system for multiple sclerosis lesions. Acta Neuropathol. 2017;133(1):13–24.

CAS 
PubMed 

Google Scholar
 

Lucchinetti C, Brück W, Parisi J, Scheithauer B, Rodriguez M, Lassmann H. Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann Neurol. 2000;47(6):707–17.

CAS 
PubMed 

Google Scholar
 

Schetters STT, Gomez-Nicola D, Garcia-Vallejo JJ, Van Kooyk Y. Neuroinflammation: microglia and T cells get ready to Tango. Front Immunol. 2017;8:1905.

PubMed 

Google Scholar
 

van Nierop GP, van Luijn MM, Michels SS, Melief MJ, Janssen M, Langerak AW, et al. Phenotypic and functional characterization of T cells in white matter lesions of multiple sclerosis patients. Acta Neuropathol. 2017;134(3):383–401.

PubMed 
PubMed Central 

Google Scholar
 

Pierson E, Simmons SB, Castelli L, Goverman JM. Mechanisms regulating regional localization of inflammation during CNS autoimmunity. Immunol Rev. 2012;248(1):205–15.

PubMed 
PubMed Central 

Google Scholar
 

Goverman J. Autoimmune T cell responses in the central nervous system. Nat Rev Immunol. 2009;9(6):393–407.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Snyder-Keller A, Bolivar VJ, Zink S, Kramer LD. Brain iron accumulation and the formation of calcifications after developmental Zika virus infection. J Neuropathol Exp Neurol. 2020;79(7):767–76.

CAS 
PubMed 

Google Scholar
 

Wang MP, Joshua B, Jin NY, Du SW, Li C. Ferroptosis in viral infection: the unexplored possibility. Acta Pharmacol Sin. 2022;43(8):1905–15.

CAS 
PubMed 

Google Scholar
 

Calvi A, Haider L, Prados F, Tur C, Chard D, Barkhof F. In vivo imaging of chronic active lesions in multiple sclerosis. Mult Scler. 2022;28(5):683–90.

CAS 
PubMed 

Google Scholar
 

Dal-Bianco A, Grabner G, Kronnerwetter C, Weber M, Höftberger R, Berger T, et al. Slow expansion of multiple sclerosis iron rim lesions: pathology and 7 T magnetic resonance imaging. Acta Neuropathol. 2017;133(1):25–42.

CAS 
PubMed 

Google Scholar
 

Gillen KM, Mubarak M, Nguyen TD, Pitt D. Significance and in vivo detection of iron-laden microglia in white matter multiple sclerosis lesions. Front Immunol. 2018;9:255.

PubMed 
PubMed Central 

Google Scholar
 

Scarl RT, Lawrence CM, Gordon HM, Nunemaker CS. STEAP4: its emerging role in metabolism and homeostasis of cellular iron and copper. J Endocrinol. 2017;234(3):R123-34.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Miedema A, Gerrits E, Brouwer N, Jiang Q, Kracht L, Meijer M, et al. Brain macrophages acquire distinct transcriptomes in multiple sclerosis lesions and normal appearing white matter. Acta Neuropathol Commun. 2022;10(1):8.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Fillebeen C, Lam NH, Chow S, Botta A, Sweeney G, Pantopoulos K. Regulatory connections between iron and glucose metabolism. Int J Mol Sci. 2020. https://doi.org/10.3390/ijms21207773.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Bernier LP, York EM, Kamyabi A, Choi HB, Weilinger NL, MacVicar BA. Microglial metabolic flexibility supports immune surveillance of the brain parenchyma. Nat Commun. 2020;11(1):1559.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Lauro C, Limatola C. Metabolic reprograming of microglia in the regulation of the innate inflammatory response. Front Immunol. 2020;11:493.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Zhang S, Xin W, Anderson GJ, Li R, Gao L, Chen S, et al. Double-edge sword roles of iron in driving energy production versus instigating ferroptosis. Cell Death Dis. 2022;13(1):40.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Hider RC, Hoffbrand AV. The role of deferiprone in iron chelation. N Engl J Med. 2018;379(22):2140–50.

CAS 
PubMed 

Google Scholar
 

Yiu SPT, Hui KF, Choi CK, Kao RYT, Ma CW, Yang D, et al. Intracellular iron chelation by a novel compound, C7, reactivates epstein⁻barr virus (EBV) lytic cycle via the ERK-autophagy axis in EBV-positive epithelial cancers. Cancers (Basel). 2018. https://doi.org/10.3390/cancers10120505.

Article 
PubMed 

Google Scholar
 

Saikawa H, Nagashima H, Maeda T, Maemondo M. Acute cerebellar ataxia due to Epstein-Barr virus under administration of an immune checkpoint inhibitor. BMJ Case Rep. 2019. https://doi.org/10.1136/bcr-2019-231520.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Keith KA, Hartline CB, Bowlin TL, Prichard MN. A standardized approach to the evaluation of antivirals against DNA viruses: polyomaviruses and lymphotropic herpesviruses. Antivir Res. 2018;159:122–9.

CAS 
PubMed 

Google Scholar
 

Coen N, Duraffour S, Naesens L, Krecmerová M, Van den Oord J, Snoeck R, et al. Evaluation of novel acyclic nucleoside phosphonates against human and animal gammaherpesviruses revealed an altered metabolism of Cyclic prodrugs upon Epstein-Barr virus reactivation in P3HR-1 cells. J Virol. 2013;87(22):12422–32.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Coen N, Duraffour S, Topalis D, Snoeck R, Andrei G. Spectrum of activity and mechanisms of resistance of various nucleoside derivatives against gammaherpesviruses. Antimicrob Agents Chemother. 2014;58(12):7312–23.

PubMed 
PubMed Central 

Google Scholar
 

Neyts J, De Clercq E. In vitro and in vivo inhibition of murine gamma herpesvirus 68 replication by selected antiviral agents. Antimicrob Agents Chemother. 1998;42(1):170–2.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Rouse BT, Sehrawat S. Immunity and immunopathology to viruses: what decides the outcome? Nat Rev Immunol. 2010;10(7):514–26.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Deffenbaugh LJ, Jung K-J, Murphy PS, Liu Y, Rau NC, Petersen-Cherubini LC, et al. Novel model of multiple sclerosis induced by EBV-like virus generates a unique B cell population. J Neuroimmunol. 2024;394:578408.

CAS 
PubMed 

Google Scholar
 

Márquez AC, Horwitz MS. The role of latently infected B cells in CNS autoimmunity. Front Immunol. 2015;6:544.

PubMed 
PubMed Central 

Google Scholar
 

Taylor WR, Rasley A, Bost KL, Marriott I. Murine gammaherpesvirus-68 infects microglia and induces high levels of pro-inflammatory cytokine production. J Neuroimmunol. 2003;136(1–2):75–83.

CAS 
PubMed 

Google Scholar
 

Cho HJ, Kim S, Kwak SE, Kang TC, Kim HS, Kwon HJ, et al. Age-dependent pathogenesis of murine gammaherpesvirus 68 infection of the central nervous system. Mol Cells. 2009;27(1):105–11.

CAS 
PubMed 

Google Scholar
 

Tang Y, Chaillon A, Gianella S, Wong LM, Li D, Simermeyer TL, et al. Brain microglia serve as a persistent HIV reservoir despite durable antiretroviral therapy. J Clin Invest. 2023. https://doi.org/10.1172/JCI167417.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Chivero ET, Guo ML, Periyasamy P, Liao K, Callen SE, Buch S. HIV-1 Tat primes and activates microglial NLRP3 inflammasome-mediated neuroinflammation. J Neurosci. 2017;37(13):3599–609.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Hamdy E, Galeel AA, Ramadan I, Gaber D, Mustafa H, Mekky J. Iron deposition in multiple sclerosis: overall load or distribution alteration? Eur Radiol Exp. 2022;6(1):49.

PubMed 
PubMed Central 

Google Scholar
 

Ropele S, Enzinger C, Fazekas F. Iron mapping in multiple sclerosis. Neuroimaging Clin N Am. 2017;27(2):335–42.

PubMed 

Google Scholar
 

Tang C, Yang J, Zhu C, Ding Y, Yang S, Xu B, et al. Iron metabolism disorder and multiple sclerosis: a comprehensive analysis. Front Immunol. 2024;15:1376838.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Zhao J, Liao Y, Miller-Little W, Xiao J, Liu C, Li X, et al. STEAP4 expression in CNS resident cells promotes Th17 cell-induced autoimmune encephalomyelitis. J Neuroinflammation. 2021;18(1):98.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Wang Z, Guo R, Trudeau SJ, Wolinsky E, Ast T, Liang JH, et al. CYB561A3 is the key lysosomal iron reductase required for Burkitt B-cell growth and survival. Blood. 2021;138(22):2216–30.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Absinta M, Sati P, Masuzzo F, Nair G, Sethi V, Kolb H, et al. Association of chronic active multiple sclerosis lesions with disability in vivo. JAMA Neurol. 2019;76(12):1474–83.

PubMed 
PubMed Central 

Google Scholar
 

Absinta M, Sati P, Schindler M, Leibovitch EC, Ohayon J, Wu T, et al. Persistent 7-tesla phase rim predicts poor outcome in new multiple sclerosis patient lesions. J Clin Invest. 2016;126(7):2597–609.

PubMed 
PubMed Central 

Google Scholar
 

Weigel KJ, Lynch SG, LeVine SM. Iron chelation and multiple sclerosis. ASN Neuro. 2014;6(1):e00136.

PubMed 
PubMed Central 

Google Scholar
 

Vragel G, Gomez BD, Kostelecky RE, Noell KS, Tseng A, Cohen S et al. Murine Gammaherpesvirus 68 Efficiently Infects Myeloid Cells Resulting In An Atypical, Restricted Form Of Infection. bioRxiv. 2023.

Israel FB, Kenney CS. Virally targeted therapies for EBV-associated malignancies. Oncogene. 2003;22(33):5122–30.

CAS 
PubMed 

Google Scholar
 

Yiu TPS, Dorothea M, Hui FK, Chiang SKA. Lytic induction therapy against Epstein–Barr virus-associated malignancies: past, present, and future. Cancers. 2020;12(8):2142.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Hui KF, Chiang KSA. Suberoylanilide hydroxamic acid induces viral lytic cycle in Epstein-Barr virus‐positive epithelial malignancies and mediates enhanced cell death. Int J Cancer. 2010;126(10):2479–89.

CAS 
PubMed 

Google Scholar
 

Chakravorty S, Afzali B, Kazemian M. EBV-associated diseases: current therapeutics and emerging technologies. Front Immunol. 2022;13:1059133.

Rühl J, Leung SC, Münz C. Vaccination against the Epstein–Barr virus. Cell Mol Life Sci. 2020;77(21):4315–24.

PubMed 
PubMed Central 

Google Scholar
 

Kanekiyo M, Bu W, Joyce GM, Meng G, Whittle RRJ, Baxa U, et al. Rational design of an Epstein-Barr virus vaccine targeting the receptor-binding site. Cell. 2015;162(5):1090–100.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Dasari V, Mcneil KL, Beckett K, Solomon M, Ambalathingal G, Thuy LT et al. Lymph node targeted multi-epitope subunit vaccine promotes effective immunity to EBV in HLA-expressing mice. Nat Commun. 2023;14(1):4371.

Maple AP, Ascherio A, Cohen IJ, Cutter G, Giovannoni G, Shannon-Lowe C, et al. The potential for EBV vaccines to prevent multiple sclerosis. Front Neurol. 2022;13:887794.

Lee KE, Kim YS, Noh K-W, Joo HE, Zhao B, Kieff E, et al. Small molecule Inhibition of Epstein–Barr virus nuclear antigen-1 DNA binding activity interferes with replication and persistence of the viral genome. Antiviral Res. 2014;104:73–83.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Kim YS, Song K-A, Kieff E, Kang M-S. Small molecule and peptide-mediated Inhibition of Epstein-Barr virus nuclear antigen 1 dimerization. Biochem Biophys Res Commun. 2012;424(2):251–6.

CAS 
PubMed 

Google Scholar
 

Alqarni S, Al-Sheikh Y, Campbell D, Drotar M, Hannigan A, Boyle S, et al. Lymphomas driven by Epstein–Barr virus nuclear antigen-1 (EBNA1) are dependant upon Mdm2. Oncogene. 2018;37(29):3998–4012.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Monaco GCM, Soldan SS, Su C, Clauze A, Cooper FJ, Patel JR, et al. EBNA1 inhibitors block proliferation of spontaneous lymphoblastoid cell lines from patients with multiple sclerosis and healthy controls. Neurol Neuroimmunol Neuroinflammation. 2023;10(5):e200149.


Google Scholar
 

Smith C, Khanna R. Adoptive T-cell therapy targeting Epstein–Barr virus as a treatment for multiple sclerosis. Clin Transl Immunol. 2023. https://doi.org/10.1002/cti2.1444.

Article 

Google Scholar
 

Pender PM, Csurhes AP, Smith C, Douglas LN, Neller AM, Matthews KK, et al. Epstein-Barr virus–specific T cell therapy for progressive multiple sclerosis. JCI Insight. 2018;3(22):e124714.

Colón Ortiz C, Eroglu C. Astrocyte signaling and interactions in multiple sclerosis. Curr Opin Cell Biol. 2024;86:102307.

PubMed 

Google Scholar
 

Aharoni R, Eilam R, Arnon R. Astrocytes in multiple sclerosis-essential constituents with diverse multifaceted functions. Int J Mol Sci. 2021. https://doi.org/10.3390/ijms22115904.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Dulamea AO. Role of oligodendrocyte dysfunction in demyelination, remyelination and neurodegeneration in multiple sclerosis. Adv Exp Med Biol. 2017;958:91–127.

CAS 
PubMed 

Google Scholar
 

Pan R, Zhang Q, Anthony SM, Zhou Y, Zou X, Cassell M, et al. Oligodendrocytes that survive acute coronavirus infection induce prolonged inflammatory responses in the CNS. Proc Natl Acad Sci U S A. 2020;117(27):15902–10.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Blackhurst BM, Funk KE. Viral pathogens increase risk of neurodegenerative disease. Nat Rev Neurol. 2023;19(5):259–60.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Huang SY, Yang YX, Kuo K, Li HQ, Shen XN, Chen SD, et al. Herpesvirus infections and Alzheimer’s disease: a Mendelian randomization study. Alzheimers Res Ther. 2021;13(1):158.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Tiwari D, Mittal N, Jha HC. Unraveling the links between neurodegeneration and Epstein-Barr virus-mediated cell cycle dysregulation. Curr Res Neurobiol. 2022;3:100046.

PubMed 
PubMed Central 

Google Scholar
 

Manoharan S, Ying LY. Epstein barr virus reactivation during COVID-19 hospitalization significantly increased mortality/death in SARS-CoV-2(+)/EBV(+) than SARS-CoV-2(+)/EBV(-) patients: A comparative Meta-Analysis. Int J Clin Pract. 2023;2023:1068000.

PubMed 
PubMed Central 

Google Scholar
 

Maniscalco GT, Dinoto A, Foglia MC, Di Battista ME, Moreggia O, Di Giulio Cesare D, et al. Epstein-barr virus infection in patients with MOGAD. Mult Scler. 2025;31(1):117–20.

CAS 
PubMed 

Google Scholar
 

Fadda G, Yea C, O’Mahony J, Waters P, Yeh EA, Marrie RA, et al. Epstein-Barr virus strongly associates with pediatric multiple sclerosis, but not Myelin oligodendrocyte Glycoprotein-Antibody-Associated disease. Ann Neurol. 2024;95(4):700–5.

CAS 
PubMed 

Google Scholar
 

Sunil-Chandra NP, Efstathiou S, Arno J, Nash AA. Virological and pathological features of mice infected with murine gamma-herpesvirus 68. J Gen Virol. 1992;73(Pt 9):2347–56.

PubMed 

Google Scholar
 

Baer A, Kehn-Hall K. Viral concentration determination through plaque assays: using traditional and novel overlay systems. J Vis Exp. 2014;93:e52065.


Google Scholar
 

Inoue A, Koh C-S, Yamazaki M, Yahikozawa H, Ichikawa M, Yagita H, et al. Suppressive effect on theiler’s murine encephalomyelitis virus-induced demyelinating disease by the administration of anti-IL-12 antibody. J Immunol. 1998;161(10):5586–93.

CAS 
PubMed 

Google Scholar
 

Guyenet SJ, Furrer SA, Damian VM, Baughan TD, La Spada AR, Garden GA. A simple composite phenotype scoring system for evaluating mouse models of cerebellar ataxia. J Vis Exp. 2010;(39):1787.