Jeffreys, A. J., Wilson, V. & Thein, S. L. Individual-specific ‘fingerprints’ of human DNA. Nature 316, 76–79 (1985).
Jeffreys, A. J., Brookfield, J. F. & Semeonoff, R. Positive identification of an immigration test-case using human DNA fingerprints. Nature 317, 818–819 (1985).
Edwards, A., Civitello, A., Hammond, H. A. & Caskey, C. T. DNA typing and genetic mapping with trimeric and tetrameric tandem repeats. Am. J. Hum. Genet. 49, 746–756 (1991).
Budowle, B. & Sajantila, A. Short tandem repeats — how microsatellites became the currency of forensic genetics. Nat. Rev. Genet. 25, 450–451 (2024).
Higuchi, R., von Beroldingen, C. H., Sensabaugh, G. F. & Erlich, H. A. DNA typing from single hairs. Nature 332, 543–546 (1988).
Stoneking, M., Hedgecock, D., Higuchi, R. G., Vigilant, L. & Erlich, H. A. Population variation of human mtDNA control region sequences detected by enzymatic amplification and sequence-specific oligonucleotide probes. Am. J. Hum. Genet. 48, 370–382 (1991).
Cavalcanti, P., Nogueira, T. L. S., Carvalho, E. F. & Silva, D. A. D. Forensic use of human mitochondrial DNA: a review. An. Acad. Bras. Cienc. 96, e20231179 (2024).
Roewer, L. & Epplen, J. T. Rapid and sensitive typing of forensic stains by PCR amplification of polymorphic simple repeat sequences in case work. Forensic Sci. Int. 53, 163–171 (1992).
Kayser, M. Forensic use of Y-chromosome DNA: a general overview. Hum. Genet. 136, 621–635 (2017).
Gill, P. An assessment of the utility of single nucleotide polymorphisms (SNPs) for forensic purposes. Int. J. Leg. Med. 114, 204–210 (2001).
Sobrino, B., Brión, M. & Carracedo, A. SNPs in forensic genetics: a review on SNP typing methodologies. Forensic Sci. Int. 154, 181–194 (2005).
Grimes, E. A., Noake, P. J., Dixon, L. & Urquhart, A. Sequence polymorphism in the human melanocortin 1 receptor gene as an indicator of the red hair phenotype. Forensic Sci. Int. 122, 124–129 (2001).
Kayser, M. Forensic DNA phenotyping: predicting human appearance from crime scene material for investigative purposes. Forensic Sci. Int. Genet. 18, 33–48 (2015).
Phillips, C. et al. Inferring ancestral origin using a single multiplex assay of ancestry-informative marker SNPs. Forensic Sci. Int. Genet. 1, 273–280 (2007).
Phillips, C. Forensic genetic analysis of bio-geographical ancestry. Forensic Sci. Int. Genet. 18, 49–65 (2015).
Zbiec-Piekarska, R. et al. Development of a forensically useful age prediction method based on DNA methylation analysis. Forensic Sci. Int. Genet. 17, 173–179 (2015).
Naue, J. Getting the chronological age out of DNA: using insights of age-dependent DNA methylation for forensic DNA applications. Genes Genom. 45, 1239–1261 (2023).
Bauer, M. & Patzelt, D. Evaluation of mRNA markers for the identification of menstrual blood. J. Forensic Sci. 47, 1278–1282 (2002).
Sijen, T. & Harbison, S. On the identification of body fluids and tissues: a crucial link in the investigation and solution of crime. Genes 12, 1728 (2021).
Bauer, M., Polzin, S. & Patzelt, D. Quantification of RNA degradation by semi-quantitative duplex and competitive RT-PCR: a possible indicator of the age of bloodstains? Forensic Sci. Int. 138, 94–103 (2003).
Lech, K. et al. Evaluation of mRNA markers for estimating blood deposition time: towards alibi testing from human forensic stains with rhythmic biomarkers. Forensic Sci. Int. Genet. 21, 119–125 (2016).
Jobling, M. A. & Gill, P. Encoded evidence: DNA in forensic analysis. Nat. Rev. Genet. 5, 739–751 (2004).
Kayser, M. & de Knijff, P. Improving human forensics through advances in genetics, genomics and molecular biology. Nat. Rev. Genet. 12, 179–192 (2011).
Butler, J. M. & Willis, S. Interpol review of forensic biology and forensic DNA typing 2016-2019. Forensic Sci. Int. Synergy 2, 352–367 (2020).
Sullivan, K. M., Mannucci, A., Kimpton, C. P. & Gill, P. A rapid and quantitative DNA sex test: fluorescence-based PCR analysis of X-Y homologous gene amelogenin. BioTechniques 15, 636–638, 640–641 (1993).
Guideline for DNA database management review and recommendation. European Network of Forensic Science Institutes https://enfsi.eu/wp-content/uploads/2024/07/DNA-GDL-004-GUIDELINE-FOR-DNA-DATABASE-MANAGEMENT-REVIEW-AND-RECOMMENDATIONS.pdf (2023).
Wickenheiser, R. A. Expanding DNA database effectiveness. Forensic Sci. Int. Synergy 4, 100226 (2022).
Burrill, J., Daniel, B. & Frascione, N. A review of trace “Touch DNA” deposits: variability factors and an exploration of cellular composition. Forensic Sci. Int. Genet. 39, 8–18 (2019).
van Oorschot, R. A. H. & Jones, M. K. DNA fingerprints from fingerprints. Nature 387, 767 (1997).
van Oorschot, R. A. H., Szkuta, B., Meakin, G. E., Kokshoorn, B. & Goray, M. DNA transfer in forensic science: a review. Forensic Sci. Int. Genet. 38, 140–166 (2019).
van Oorschot, R. A. H., Meakin, G. E., Kokshoorn, B., Goray, M. & Szkuta, B. DNA transfer in forensic science: recent progress towards meeting challenges. Genes 12, 1766 (2021).
Taylor, D., Kokshoorn, B. & Biedermann, A. Evaluation of forensic genetics findings given activity level propositions: a review. Forensic Sci. Int. Genet. 36, 34–49 (2018).
Gill, P. et al. DNA commission of the international society for forensic genetics: assessing the value of forensic biological evidence – guidelines highlighting the importance of propositions. Part II: evaluation of biological traces considering activity level propositions. Forensic Sci. Int. Genet. 44, 102186 (2020).
Gill, P. Application of low copy number DNA profiling. Croat. Med. J. 42, 229–232 (2001).
Buckleton, J. Validation issues around DNA typing of low level DNA. Forensic Sci. Int. Genet. 3, 255–260 (2009).
Taylor, D., Bright, J. A. & Buckleton, J. The interpretation of single source and mixed DNA profiles. Forensic Sci. Int. Genet. 7, 516–528 (2013).
Bille, T. W., Weitz, S. M., Coble, M. D., Buckleton, J. & Bright, J. A. Comparison of the performance of different models for the interpretation of low level mixed DNA profiles. Electrophoresis 35, 3125–3133 (2014).
Bleka, O., Storvik, G. & Gill, P. EuroForMix: an open source software based on a continuous model to evaluate STR DNA profiles from a mixture of contributors with artefacts. Forensic Sci. Int. Genet. 21, 35–44 (2016).
Coble, M. D. & Bright, J. A. Probabilistic genotyping software: an overview. Forensic Sci. Int. Genet. 38, 219–224 (2019).
Gill, P., Benschop, C., Buckleton, J., Bleka, O. & Taylor, D. A review of probabilistic genotyping systems: EuroForMix, DNAStatistX and STRmix. Genes 12, 1559 (2021).
Oldoni, F. & Podini, D. Forensic molecular biomarkers for mixture analysis. Forensic Sci. Int. Genet. 41, 107–119 (2019).
Bennett, L. et al. Mixture deconvolution by massively parallel sequencing of microhaplotypes. Int. J. Leg. Med. 133, 719–729 (2019).
Castella, V., Gervaix, J. & Hall, D. DIP–STR: highly sensitive markers for the analysis of unbalanced genomic mixtures. Hum. Mutat. 34, 644–654 (2013).
Elliott, K., Hill, D. S., Lambert, C., Burroughes, T. R. & Gill, P. Use of laser microdissection greatly improves the recovery of DNA from sperm on microscope slides. Forensic Sci. Int. 137, 28–36 (2003).
Anslinger, K. & Bayer, B. Whose blood is it? Application of DEParrayTM technology for the identification of individual/s who contributed blood to a mixed stain. Int. J. Leg. Med. 133, 419–426 (2019).
Huffman, K. & Ballantyne, J. Single cell genomics applications in forensic science: current state and future directions. iScience 26, 107961 (2023).
Kulhankova, L. et al. Single-cell transcriptome sequencing allows genetic separation, characterization and identification of individuals in multi-person biological mixtures. Commun. Biol. 6, 201 (2023).
Kulhankova, L., Bindels, E., Kayser, M. & Mulugeta, E. Deconvoluting multi-person biological mixtures and accurate characterization and identification of separated contributors using non-targeted single-cell DNA sequencing. Forensic Sci. Int. Genet. 71, 103030 (2024).
van der Gaag, K. J. et al. Massively parallel sequencing of short tandem repeats-population data and mixture analysis results for the PowerSeq system. Forensic Sci. Int. Genet. 24, 86–96 (2016).
Carratto, T. M. T., Moraes, V. M. S., Recalde, T. S. F., Oliveira, M. L. G. & Teixeira Mendes-Junior, C. Applications of massively parallel sequencing in forensic genetics. Genet. Mol. Biol. 45, e20220077 (2022).
Ge, J., King, J., Mandape, S. & Budowle, B. Enhanced mixture interpretation with macrohaplotypes based on long-read DNA sequencing. Int. J. Leg. Med. 135, 2189–2198 (2021).
de Bruin, D. et al. Exploring nanopore direct sequencing performance of forensic STRs, SNPs, InDels, and DNA methylation markers in a single assay. Forensic Sci. Int. Genet. 74, 103154 (2025).
Sobral, A. F., Dinis-Oliveira, R. J. & Barbosa, D. J. CRISPR-Cas technology in forensic investigations: principles, applications, and ethical considerations. Forensic Sci. Int. Genet. 74, 103163 (2025).
Shin, G. et al. CRISPR–Cas9-targeted fragmentation and selective sequencing enable massively parallel microsatellite analysis. Nat. Commun. 8, 14291 (2017).
Butler, J. M. Recent advances in forensic biology and forensic DNA typing: INTERPOL review 2019-2022. Forensic Sci. Int. Synergy 6, 100311 (2023).
Goedbloed, M. et al. Comprehensive mutation analysis of 17 Y-chromosomal short tandem repeat polymorphisms included in the AmpFlSTR Yfiler PCR amplification kit. Int. J. Leg. Med. 123, 471–482 (2009).
Roewer, L. et al. DNA commission of the international society of forensic genetics (ISFG): recommendations on the interpretation of Y-STR results in forensic analysis. Forensic Sci. Int. Genet. 48, 102308 (2020).
Willuweit, S. & Roewer, L. The new Y chromosome haplotype reference database. Forensic Sci. Int. Genet. 15, 43–48 (2015).
Caliebe, A., Zandstra, D., Ralf, A., Kayser, M. & Krawczak, M. A novel mathematical framework for pedigree-based calculation of Y-STR match probabilities. Sci. Rep. 15, 14651 (2025).
Ballantyne, K. N. et al. Mutability of Y-chromosomal microsatellites: rates, characteristics, molecular bases, and forensic implications. Am. J. Hum. Genet. 87, 341–353 (2010).
Ralf, A. et al. Identification and characterization of novel rapidly mutating Y-chromosomal short tandem repeat markers. Hum. Mutat. 41, 1680–1696 (2020).
Ballantyne, K. N. et al. Toward male individualization with rapidly mutating Y-chromosomal short tandem repeats. Hum. Mutat. 35, 1021–1032 (2014).
Neuhuber, F. et al. Improving the differentiation of closely related males by RMplex analysis of 30 Y-STRs with high mutation rates. Forensic Sci. Int. Genet. 58, 102682 (2022).
Ralf, A. et al. RMplex: an efficient method for analyzing 30 Y-STRs with high mutation rates. Forensic Sci. Int. Genet. 55, 102595 (2021).
Ralf, A. et al. Large-scale pedigree analysis highlights rapidly mutating Y-chromosomal short tandem repeats for differentiating patrilineal relatives and predicting their degrees of consanguinity. Hum. Genet. 142, 145–160 (2023).
Kayser, M. et al. A comprehensive survey of human Y-chromosomal microsatellites. Am. J. Hum. Genet. 74, 1183–1197 (2004).
Zandstra, D. et al. Unprecedented male relative differentiation with Y-SNVs from whole genome sequencing. Forensic Sci. Int. Genet. 78, 103265 (2025).
Gershaw, C. J., Schweighardt, A. J., Rourke, L. C. & Wallace, M. M. Forensic utilization of familial searches in DNA databases. Forensic Sci. Int. Genet. 5, 16–20 (2011).
Ralf, A., Zieger, M. & Kayser, M. Considerations on expanding criminal offender DNA databases with Y-STR profiles. J. Law Biosci. 11, lsae017 (2024).
Tillmar, A., Sturk-Andreaggi, K., Daniels-Higginbotham, J., Thomas, J. T. & Marshall, C. The FORCE panel: an all-in-one SNP marker set for confirming investigative genetic genealogy leads and for general forensic applications. Genes 12, 1968 (2021).
Watson, J. L., Grisedale, K., McNevin, D. & Ward, J. Evaluation of the ForenSeq® Kintelligence Kit and the FORensic Capture Enrichment panel for unidentified and missing persons casework. Int. J. Leg. Med. 139, 2047–2062 (2025).
Kling, D. & Tillmar, A. Forensic genealogy-a comparison of methods to infer distant relationships based on dense SNP data. Forensic Sci. Int. Genet. 42, 113–124 (2019).
Budowle, B., Ge, J., Baker, L., Mittelman, K. & Mittelman, D. Analytical validation of the IBD segment-based tool KinSNP® for human identification applications. BioTechniques 77, 9–22 (2025).
Kling, D., Phillips, C., Kennett, D. & Tillmar, A. Investigative genetic genealogy: current methods, knowledge and practice. Forensic Sci. Int. Genet. 52, 102474 (2021).
Kennett, D. Using genetic genealogy databases in missing persons cases and to develop suspect leads in violent crimes. Forensic Sci. Int. 301, 107–117 (2019).
Phillips, C. The Golden State Killer investigation and the nascent field of forensic genealogy. Forensic Sci. Int. Genet. 36, 186–188 (2018).
Dowdeswell, T. L. Forensic genetic genealogy: a profile of cases solved. Forensic Sci. Int. Genet. 58, 102679 (2022).
Tillmar, A., Fagerholm, S. A., Staaf, J., Sjolund, P. & Ansell, R. Getting the conclusive lead with investigative genetic genealogy – a successful case study of a 16 year old double murder in Sweden. Forensic Sci. Int. Genet. 53, 102525 (2021).
Aanes, H. et al. Heating up three cold cases in Norway using investigative genetic genealogy. Forensic Sci. Int. Genet. 76, 103217 (2025).
de Vries, J. H. et al. Impact of SNP microarray analysis of compromised DNA on kinship classification success in the context of investigative genetic genealogy. Forensic Sci. Int. Genet. 56, 102625 (2022).
Liu, M. H. et al. Current progress and future perspectives in personal identification of monozygotic twins in forensic medicine. Forensic Sci. Int. Genet. 76, 103231 (2025).
Weber-Lehmann, J. et al. Finding the needle in the haystack: differentiating “identical” twins in paternity testing and forensics by ultra-deep next generation sequencing. Forensic Sci. Int. Genet. 9, 42–46 (2014).
Rolf, B. & Krawczak, M. The germlines of male monozygotic (MZ) twins: very similar, but not identical. Forensic Sci. Int. Genet. 50, 102408 (2021).
Jonsson, H. et al. Differences between germline genomes of monozygotic twins. Nat. Genet. 53, 27–34 (2021).
Krawczak, M., Budowle, B., Weber-Lehmann, J. & Rolf, B. Distinguishing genetically between the germlines of male monozygotic twins. PLoS Genet. 14, e1007756 (2018).
van der Gaag, K. J. et al. Identifying a monozygotic twin brother as a donor of DNA in minimal, mixed forensic stains – a case example. Forensic Sci. Int. Genet. 78, 103292 (2025).
Kaminsky, Z. A. et al. DNA methylation profiles in monozygotic and dizygotic twins. Nat. Genet. 41, 240–245 (2009).
Kim, J. Y. et al. DNA methylome profiling of blood to identify individuals in a pair of monozygotic twins. Genes Genom. 45, 1273–1279 (2023).
Vidaki, A. et al. Epigenetic discrimination of identical twins from blood under the forensic scenario. Forensic Sci. Int. Genet. 31, 67–80 (2017).
Vidaki, A. et al. Investigating the epigenetic discrimination of identical twins using buccal swabs, saliva, and cigarette butts in the forensic setting. Genes 9, 252 (2018).
Planterose Jiménez, B. et al. Equivalent DNA methylation variation between monozygotic co-twins and unrelated individuals reveals universal epigenetic inter-individual dissimilarity. Genome Biol. 22, 18 (2021).
Kayser, M., Branicki, W., Parson, W. & Phillips, C. Recent advances in forensic DNA phenotyping of appearance, ancestry and age. Forensic Sci. Int. Genet. 65, 102870 (2023).
DNA match in Milica van Doorn cold case. Netherlands Forensic Institute https://www.forensicinstitute.nl/news/news/2018/01/29/dna-match-in-milica-van-doorn-cold-case (2017).
Liu, F. et al. Eye color and the prediction of complex phenotypes from genotypes. Curr. Biol. 19, R192–R193 (2009).
Walsh, S. et al. IrisPlex: a sensitive DNA tool for accurate prediction of blue and brown eye colour in the absence of ancestry information. Forensic Sci. Int. Genet. 5, 170–180 (2011).
Branicki, W. et al. Model-based prediction of human hair color using DNA variants. Hum. Genet. 129, 443–454 (2011).
Walsh, S. et al. The HIrisPlex system for simultaneous prediction of hair and eye colour from DNA. Forensic Sci. Int. Genet. 7, 98–115 (2013).
Walsh, S. et al. Global skin colour prediction from DNA. Hum. Genet. 136, 847–863 (2017).
Chaitanya, L. et al. The HIrisPlex-S system for eye, hair and skin colour prediction from DNA: introduction and forensic developmental validation. Forensic Sci. Int. Genet. 35, 123–135 (2018).
Ruiz, Y. et al. Further development of forensic eye color predictive tests. Forensic Sci. Int. Genet. 7, 28–40 (2013).
Pośpiech, E. et al. The common occurrence of epistasis in the determination of human pigmentation and its impact on DNA-based pigmentation phenotype prediction. Forensic Sci. Int. Genet. 11, 64–72 (2014).
Sochtig, J. et al. Exploration of SNP variants affecting hair colour prediction in Europeans. Int. J. Leg. Med. 129, 963–975 (2015).
Breslin, K. et al. HIrisPlex-S system for eye, hair, and skin color prediction from DNA: massively parallel sequencing solutions for two common forensically used platforms. Forensic Sci. Int. Genet. 43, 102152 (2019).
Hysi, P. G. et al. Genome-wide association meta-analysis of individuals of European ancestry identifies new loci explaining a substantial fraction of hair color variation and heritability. Nat. Genet. 50, 652–656 (2018).
Kukla-Bartoszek, M. et al. Searching for improvements in predicting human eye colour from DNA. Int. J. Leg. Med. 135, 2175–2187 (2021).
Kukla-Bartoszek, M. et al. DNA-based predictive models for the presence of freckles. Forensic Sci. Int. Genet. 42, 252–259 (2019).
Peng, F. et al. Genome-wide association studies identify multiple genetic loci influencing eyebrow color variation in Europeans. J. Investig. Dermatol. 139, 1601–1605 (2019).
Pośpiech, E. et al. Exploring the possibility of predicting human head hair greying from DNA using whole-exome and targeted NGS data. BMC Genom. 21, 538 (2020).
Pośpiech, E. et al. Towards broadening Forensic DNA Phenotyping beyond pigmentation: Improving the prediction of head hair shape from DNA. Forensic Sci. Int. Genet. 37, 241–251 (2018).
Chen, Y. et al. Genetic prediction of male pattern baldness based on large independent datasets. Eur. J. Hum. Genet. 31, 321–328 (2023).
Pośpiech, E. et al. Overlapping association signals in the genetics of hair-related phenotypes in humans and their relevance to predictive DNA analysis. Forensic Sci. Int. Genet. 59, 102693 (2022).
Liu, F. et al. Common DNA variants predict tall stature in Europeans. Hum. Genet. 133, 587–597 (2014).
Xavier, C. et al. Development and inter-laboratory evaluation of the VISAGE enhanced tool for appearance and ancestry inference from DNA. Forensic Sci. Int. Genet. 61, 102779 (2022).
Katsara, M. A. et al. Evaluation of supervised machine-learning methods for predicting appearance traits from DNA. Forensic Sci. Int. Genet. 53, 102507 (2021).
Li, Y. et al. Combined genome-wide association study of 136 quantitative ear morphology traits in multiple populations reveal 8 novel loci. PLoS Genet. 19, e1010786 (2023).
White, J. D. et al. Insights into the genetic architecture of the human face. Nat. Genet. 53, 45–53 (2021).
Xiong, Z., et al. Combined genome-wide association study of facial traits in Europeans increases explained variance and improves prediction. Nat. Commun. 16, 6562 (2025).
Lello, L. et al. Accurate genomic prediction of human height. Genetics 210, 477–497 (2018).
Ndong Sima, C. A. A. et al. Methodologies underpinning polygenic risk scores estimation: a comprehensive overview. Hum. Genet. 143, 1265–1280 (2024).
Cabrejas-Olalla, A. et al. Genetic predictions of eye and hair colour in the Danish population. Forensic Sci. Int. Genet. 78, 103267 (2025).
Watanabe, K. et al. A global overview of pleiotropy and genetic architecture in complex traits. Nat. Genet. 51, 1339–1348 (2019).
Ralf, A., et al. Forensic Y-SNP analysis beyond SNaPshot: high-resolution Y-chromosomal haplogrouping from low quality and quantity DNA using Ion AmpliSeq and targeted massively parallel sequencing. Forensic Sci. Int. Genet. 41, 93–106 (2019).
Claerhout, S. et al. CSYseq: the first Y-chromosome sequencing tool typing a large number of Y-SNPs and Y-STRs to unravel worldwide human population genetics. PLoS Genet. 17, e1009758 (2021).
McElhoe, J. A. et al. Development and assessment of an optimized next-generation DNA sequencing approach for the mtgenome using the Illumina MiSeq. Forensic Sci. Int. Genet. 13, 20–29 (2014).
Chaitanya, L. et al. Simultaneous whole mitochondrial genome sequencing with short overlapping amplicons suitable for degraded DNA using the ion torrent personal genome machine. Hum. Mutat. 36, 1236–1247 (2015).
Ralf, A., Montiel González, D., Zhong, K. & Kayser, M. Yleaf: software for human Y-chromosomal haplogroup inference from next-generation sequencing data. Mol. Biol. Evol. 35, 1291–1294 (2018).
Ralf, A. et al. UYSD: a novel data repository accessible via public website for worldwide population frequencies of Y-SNP haplogroups. Eur. J. Hum. Genet. 33, 904–912 (2025).
Phillips, C. et al. MAPlex – a massively parallel sequencing ancestry analysis multiplex for Asia-Pacific populations. Forensic Sci. Int. Genet. 42, 213–226 (2019).
Moorjani, P. & Hellenthal, G. Methods for assessing population relationships and history using genomic data. Annu. Rev. Genom. Hum. Genet. 24, 305–332 (2023).
Santos, C. et al. Inference of ancestry in forensic analysis II: analysis of genetic data. Methods Mol. Biol. 1420, 255–285 (2016).
Mandape, S. N. et al. Dense SNP-based analyses complement forensic anthropology biogeographical ancestry assessments. Forensic Sci. Int. Genet. 74, 103147 (2025).
Fraser, H. B., Lam, L. L., Neumann, S. M. & Kobor, M. S. Population-specificity of human DNA methylation. Genome Biol. 13, R8 (2012).
Carja, O. et al. Worldwide patterns of human epigenetic variation. Nat. Ecol. Evol. 1, 1577–1583 (2017).
Fagny, M. et al. The epigenomic landscape of African rainforest hunter-gatherers and farmers. Nat. Commun. 6, 10047 (2015).
Franceschetti, L., Lodetti, G., Blandino, A., Amadasi, A. & Bugelli, V. Exploring the role of the human microbiome in forensic identification: opportunities and challenges. Int. J. Leg. Med. 138, 1891–1905 (2024).
Abdill, R. J. et al. Integration of 168,000 samples reveals global patterns of the human gut microbiome. Cell 188, 1100–1118.e17 (2025).
Skonieczna, K. et al. Salivary microbiome signatures of Poles and Serbians and its potential for prediction of biogeographic ancestry. Forensic Sci. Int. Genet. 74, 103173 (2025).
Lei, Y. et al. Comparative analysis of the human microbiome from four different regions of China and machine learning-based geographical inference. mSphere 10, e00672-24 (2025).
Toppinen, M. et al. Bones hold the key to DNA virus history and epidemiology. Sci. Rep. 5, 17226 (2015).
Teschendorff, A. E. & Horvath, S. Epigenetic ageing clocks: statistical methods and emerging computational challenges. Nat. Rev. Genet. 26, 350–368 (2025).
Horvath, S. DNA methylation age of human tissues and cell types. Genome Biol. 14, R115 (2013).
Horvath, S. et al. Epigenetic clock for skin and blood cells applied to Hutchinson Gilford progeria syndrome and ex vivo studies. Aging 10, 1758–1775 (2018).
Hannum, G. et al. Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol. Cell 49, 359–367 (2013).
Min, M., Egli, C., Dulai, A. S. & Sivamani, R. K. Critical review of aging clocks and factors that may influence the pace of aging. Front. Aging 5, 1487260 (2024).
Lee, H. Y. et al. Epigenetic age signatures in the forensically relevant body fluid of semen: a preliminary study. Forensic Sci. Int. Genet. 19, 28–34 (2015).
Castagnola, M. J., Medina-Paz, F. & Zapico, S. C. Uncovering forensic evidence: a path to age estimation through DNA methylation. Int. J. Mol. Sci. 25, 4917 (2024).
Wozniak, A. et al. Development of the VISAGE enhanced tool and statistical models for epigenetic age estimation in blood, buccal cells and bones. Aging 13, 6459–6484 (2021).
Naue, J., Hoefsloot, H. C. J., Kloosterman, A. D. & Verschure, P. J. Forensic DNA methylation profiling from minimal traces: how low can we go? Forensic Sci. Int. Genet. 33, 17–23 (2018).
Pośpiech, E. et al. Introduction of a multiplex amplicon sequencing assay to quantify DNA methylation in target cytosine markers underlying four selected epigenetic clocks. Clin. Epigenetics 15, 128 (2023).
Pisarek, A. et al. Epigenetic age prediction in semen – marker selection and model development. Aging 13, 19145–19164 (2021).
Spolnicka, M. et al. DNA methylation signature in blood does not predict calendar age in patients with chronic lymphocytic leukemia but may alert to the presence of disease. Forensic Sci. Int. Genet. 34, e15–e17 (2018).
Piniewska-Rog, D. et al. Impact of excessive alcohol abuse on age prediction using the VISAGE enhanced tool for epigenetic age estimation in blood. Int. J. Leg. Med. 135, 2209–2219 (2021).
Simons, R. B., Adams, H. H. H., Kayser, M. & Vidaki, A. Investigating single-molecule molecular inversion probes for medium-scale targeted DNA methylation analysis. Epigenomes 9, 8 (2025).
Yuen, Z. W. et al. Profiling age and body fluid DNA methylation markers using nanopore adaptive sampling. Forensic Sci. Int. Genet. 71, 103048 (2024).
Simons, R. B. et al. Comparative performance evaluation of bisulfite- and enzyme-based DNA conversion methods. Clin. Epigenetics 17, 56 (2025).
Zubakov, D. et al. Estimating human age from T-cell DNA rearrangements. Curr. Biol. 20, R970–R971 (2010).
Fleischer, J. G. et al. Predicting age from the transcriptome of human dermal fibroblasts. Genome Biol. 19, 221 (2018).
Peters, M. J. et al. The transcriptional landscape of age in human peripheral blood. Nat. Commun. 6, 8570 (2015).
Hanggi, N. V. et al. Assessing transcriptomic signatures of aging: testing an mRNA marker panel for forensic age estimation of blood samples. Forensic Sci. Int. Genet. 78, 103282 (2025).
Wang, J. et al. Forensic age estimation from human blood using age-related microRNAs and circular RNAs markers. Front. Genet. 13, 1031806 (2022).
Zubakov, D. et al. Human age estimation from blood using mRNA, DNA methylation, DNA rearrangement, and telomere length. Forensic Sci. Int. Genet. 24, 33–43 (2016).
Liu, F. et al. The MC1R gene and youthful looks. Curr. Biol. 26, 1213–1220 (2016).
Vladimir, K., Perisic, M. M., Storga, M., Mostashari, A. & Khanin, R. Epigenetics insights from perceived facial aging. Clin. Epigenetics 15, 176 (2023).
Bienkowska, A. et al. Development of an epigenetic clock to predict visual age progression of human skin. Front. Aging 4, 1258183 (2023).
Belsky, D. W. et al. DunedinPACE, a DNA methylation biomarker of the pace of aging. eLife 11, e73420 (2022).
Vidaki, A. & Kayser, M. From forensic epigenetics to forensic epigenomics: broadening DNA investigative intelligence. Genome Biol. 18, 238 (2017).
Maas, S. C. E. et al. Validated inference of smoking habits from blood with a finite DNA methylation marker set. Eur. J. Epidemiol. 34, 1055–1074 (2019).
Philibert, R., Dogan, M., Beach, S. R. H., Mills, J. A. & Long, J. D. AHRR methylation predicts smoking status and smoking intensity in both saliva and blood DNA. Am. J. Med. Genet. B Neuropsychiatr. Genet. 183, 51–60 (2020).
Pośpiech, E. et al. DNA methylation at AHRR as a master predictor of smoke exposure and a biomarker for sleep and exercise. Clin. Epigenetics 16, 147 (2024).
Alghanim, H., Wu, W. & McCord, B. DNA methylation assay based on pyrosequencing for determination of smoking status. Electrophoresis 39, 2806–2814 (2018).
Vidaki, A. et al. Targeted DNA methylation analysis and prediction of smoking habits in blood based on massively parallel sequencing. Forensic Sci. Int. Genet. 65, 102878 (2023).
Wu, J. et al. Cigarette smoking and the oral microbiome in a large study of American adults. ISME J. 10, 2435–2446 (2016).
Díez López, C., Montiel González, D., Vidaki, A. & Kayser, M. Prediction of smoking habits from class-imbalanced saliva microbiome data using data augmentation and machine learning. Front. Microbiol. 13, 886201 (2022).
Liu, C. et al. A DNA methylation biomarker of alcohol consumption. Mol. Psychiatry 23, 422–433 (2018).
Maas, S. C. E. et al. Validating biomarkers and models for epigenetic inference of alcohol consumption from blood. Clin. Epigenetics 13, 198 (2021).
Ambroa-Conde, A. et al. Inference of tobacco and alcohol consumption habits from DNA methylation analysis of blood. Forensic Sci. Int. Genet. 70, 103022 (2024).
Mahna, D., Puri, S. & Sharma, S. DNA methylation signatures: biomarkers of drug and alcohol abuse. Mutat. Res. Rev. Mutat. Res. 777, 19–28 (2018).
Fang, F. et al. Trans-ancestry epigenome-wide association meta-analysis of DNA methylation with lifetime cannabis use. Mol. Psychiatry 29, 124–133 (2024).
Garrett, M. E. et al. Genome-wide DNA methylation analysis of cannabis use disorder in a veteran cohort enriched for posttraumatic stress disorder. Psychiatry Res. 333, 115757 (2024).
Shu, C. et al. Epigenome-wide association analyses of active injection drug use. Drug Alcohol Depend. 235, 109431 (2022).
Sharples, A. P. A multi-epigenomic map of endurance exercise training. Trends Genet. 40, 736–738 (2024).
Mirisola, M. G. The nutriepigenome. Genes 14, 1997 (2023).
Virkler, K. & Lednev, I. K. Analysis of body fluids for forensic purposes: from laboratory testing to non-destructive rapid confirmatory identification at a crime scene. Forensic Sci. Int. 188, 1–17 (2009).
Hanson, E. K., Lubenow, H. & Ballantyne, J. Identification of forensically relevant body fluids using a panel of differentially expressed microRNAs. Anal. Biochem. 387, 303–314 (2009).
Zubakov, D. et al. MicroRNA markers for forensic body fluid identification obtained from microarray screening and quantitative RT-PCR confirmation. Int. J. Leg. Med. 124, 217–226 (2010).
Frumkin, D., Wasserstrom, A., Budowle, B. & Davidson, A. DNA methylation-based forensic tissue identification. Forensic Sci. Int. Genet. 5, 517–524 (2010).
An, J. H., Choi, A., Shin, K. J., Yang, W. I. & Lee, H. Y. DNA methylation-specific multiplex assays for body fluid identification. Int. J. Leg. Med. 127, 35–43 (2013).
Zubakov, D. et al. Introducing novel type of human DNA markers for forensic tissue identification: DNA copy number variation allows the detection of blood and semen. Forensic Sci. Int. Genet. 36, 112–118 (2018).
Lindenbergh, A. et al. A multiplex (m)RNA-profiling system for the forensic identification of body fluids and contact traces. Forensic Sci. Int. Genet. 6, 565–577 (2012).
Haas, C., Neubauer, J., Salzmann, A. P., Hanson, E. & Ballantyne, J. Forensic transcriptome analysis using massively parallel sequencing. Forensic Sci. Int. Genet. 52, 102486 (2021).
Zubakov, D., Hanekamp, E., Kokshoorn, M., van Ijcken, W. & Kayser, M. Stable RNA markers for identification of blood and saliva stains revealed from whole genome expression analysis of time-wise degraded samples. Int. J. Leg. Med. 122, 135–142 (2008).
Zubakov, D., Kokshoorn, M., Kloosterman, A. & Kayser, M. New markers for old stains: stable mRNA markers for blood and saliva identification from up to 16-year-old stains. Int. J. Leg. Med. 123, 71–74 (2009).
Díez López, C. et al. Novel taxonomy-independent deep learning microbiome approach allows for accurate classification of different forensically relevant human epithelial materials. Forensic Sci. Int. Genet. 41, 72–82 (2019).
Díez López, C., Montiel González, D., Haas, C., Vidaki, A. & Kayser, M. Microbiome-based body site of origin classification of forensically relevant blood traces. Forensic Sci. Int. Genet. 47, 102280 (2020).
Taylor, D. Probabilistically determining the cellular source of DNA derived from differential extractions in sexual assault scenarios. Forensic Sci. Int. Genet. 24, 124–135 (2016).
Samie, L. et al. Use of Bayesian networks for the investigation of the nature of biological material in casework. Forensic Sci. Int. 331, 111174 (2022).
Ingold, S., Dorum, G., Hanson, E., Ballantyne, J. & Haas, C. Assigning forensic body fluids to donors in mixed body fluids by targeted RNA/DNA deep sequencing of coding region SNPs. Int. J. Leg. Med. 134, 473–485 (2020).
Watanabe, K., Taniguchi, K. & Akutsu, T. Development of a DNA methylation-based semen-specific SNP typing method: a new approach for genotyping from a mixture of body fluids. Forensic Sci. Int. Genet. 37, 227–234 (2018).
Li, Z. et al. Development of a multiplex methylation-sensitive restriction enzyme-based SNP typing system for deconvolution of semen-containing mixtures. Int. J. Leg. Med. 135, 1281–1294 (2021).
Anderson, S., Howard, B., Hobbs, G. R. & Bishop, C. P. A method for determining the age of a bloodstain. Forensic Sci. Int. 148, 37–45 (2005).
Hampson, C., Louhelainen, J. & McColl, S. An RNA expression method for aging forensic hair samples. J. Forensic Sci. 56, 359–365 (2011).
Anderson, S. E., Hobbs, G. R. & Bishop, C. P. Multivariate analysis for estimating the age of a bloodstain. J. Forensic Sci. 56, 186–193 (2011).
Fu, J. & Allen, R. W. A method to estimate the age of bloodstains using quantitative PCR. Forensic Sci. Int. Genet. 39, 103–108 (2019).
Salzmann, A. P., Russo, G., Kreutzer, S. & Haas, C. Degradation of human mRNA transcripts over time as an indicator of the time since deposition (TsD) in biological crime scene traces. Forensic Sci. Int. Genet. 53, 102524 (2021).
Zhang, J. et al. Transcriptomic changes and prediction of time since deposition of blood stains. Forensic Sci. Int. 355, 111930 (2024).
Salzmann, A. P. et al. Assessing time dependent changes in microbial composition of biological crime scene traces using microbial RNA markers. Forensic Sci. Int. Genet. 53, 102537 (2021).
Díez López, C., Kayser, M. & Vidaki, A. Estimating the time since deposition of saliva stains with a targeted bacterial DNA approach: a proof-of-principle study. Front. Microbiol. 12, 647933 (2021).
Wang, J. et al. Estimating the time since deposition (TsD) in saliva stains using temporal changes in microbial markers. Forensic Sci. Int. Genet. 60, 102747 (2022).
Gursoy, N., Karadayi, S., Akmayan, I., Karadayi, B. & Ozbek, T. Time-dependent change in the microbiota structure of seminal stains exposed to indoor environmental. Int. J. Leg. Med. 138, 591–602 (2024).
Ackermann, K., Ballantyne, K. N. & Kayser, M. Estimating trace deposition time with circadian biomarkers: a prospective and versatile tool for crime scene reconstruction. Int. J. Leg. Med. 124, 387–395 (2010).
Lech, K. et al. Investigation of metabolites for estimating blood deposition time. Int. J. Leg. Med. 132, 25–32 (2018).
Cheng, F. et al. Estimation of bloodstain deposition time within a 24-h day-night cycle with rhythmic mRNA based on a machine learning algorithm. Forensic Sci. Int. Genet. 66, 102910 (2023).
Gosch, A., Bhardwaj, A. & Courts, C. TrACES of time: transcriptomic analyses for the contextualization of evidential stains – identification of RNA markers for estimating time-of-day of bloodstain deposition. Forensic Sci. Int. Genet. 67, 102915 (2023).
Gosch, A., Sendel, S., Caliebe, A. & Courts, C. TrACES of time: towards estimating time-of-day of bloodstain deposition by targeted RNA sequencing. Forensic Sci. Int. Genet. 78, 103287 (2025).
Koncevičius, K. et al. Epigenetic age oscillates during the day. Aging Cell 23, e14170 (2024).
Van Steendam, K., De Ceuleneer, M., Dhaenens, M., Van Hoofstat, D. & Deforce, D. Mass spectrometry-based proteomics as a tool to identify biological matrices in forensic science. Int. J. Leg. Med. 127, 287–298 (2013).
Gudelj, I. et al. Estimation of human age using N-glycan profiles from bloodstains. Int. J. Leg. Med. 129, 955–961 (2015).
Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).
Ruiz-Ramírez, J. et al. Development and evaluations of the ancestry informative markers of the VISAGE enhanced tool for appearance and ancestry. Forensic Sci. Int. Genet. 64, 102853 (2023).
Bernabeu, E. et al. Blood-based epigenome-wide association study and prediction of alcohol consumption. Clin. Epigenetics 17, 14 (2025).