University of California Agriculture and Natural Resources. California’s Working Landscape https://www.ucop.edu/innovation-transfer-operations/_files/Econ%20Impact%20Rpts/anr-ca-working-landscape-2019.pdf (2019).

Peterson, C., Pittelkow, C. & Lundy, M. Exploring the Potential for Water—Limited Agriculture in the San Joaquin Valley (PPIC, 2022).

California Agricultural Exports. California Agricultural Exports 2022–2023 https://www.cdfa.ca.gov/Statistics/PDFs/2022-2023_california_agricultural_exports.pdf (2022).

California Natural Resources Agency. California’s Water Supply Strategy: Adapting to a Hotter, Drier Future. https://resources.ca.gov/-/media/CNRA-Website/Files/Initiatives/Water-Resilience/CA-Water-Supply-Strategy.pdf (2022).

Hanak, E. et al. Water and the California Economy (PPIC, 2012).

Sunding, D., Browne, O. & Zhu, Z. J. The Economy of the State Water Project: Clean, Reliable, and Affordable Water for California https://water.ca.gov/-/media/DWR-Website/Web-Pages/News/Files/SWP-Economics-Brochure_FINAL.pdf (2023).

Liu, P.-W. et al. Groundwater depletion in California’s central valley accelerates during megadrought. Nat. Commun. 13, 7825 (2022).

Article 

Google Scholar
 

Williams, A. P. et al. Large contribution from anthropogenic warming to an emerging North American megadrought. Science 368, 314–318 (2020).

Article 

Google Scholar
 

Swain, D. L., Horton, D. E., Singh, D. & Diffenbaugh, N. S. Trends in atmospheric patterns conducive to seasonal precipitation and temperature extremes in California. Sci. Adv. 2, e1501344 (2016).

Article 

Google Scholar
 

Swain, D. L. et al. Hydroclimate volatility on a warming Earth. Nat. Rev. Earth Environ. 6, 35–50 (2025).

Article 

Google Scholar
 

Healey, R. W. et al. Water Budgets: Foundations for Effective Water-Resources and Environmental Management (2007).

California Department of Water Resources. California Water Plan Update 2023 Water Balances Supporting Document https://water.ca.gov/-/media/DWR-Website/Web-Pages/Programs/California-Water-Plan/Docs/Update2023/Supporting-Documents/Water-Portfolios-and-Balances.pdf (2023).

Ghiat, I., Mackey, H. R. & Al-Ansari, T. A review of evapotranspiration measurement models, techniques and methods for open and closed agricultural field applications. Water 13, 2523 (2021).

Article 

Google Scholar
 

Miralles, D. G., Brutsaert, W., Dolman, A. J. & Gash, J. H. On the use of the term “Evapotranspiration”. Water Resour. Res. 56, e2020WR028055 (2020).

Article 

Google Scholar
 

Novák, V. Evapotranspiration. In Encyclopedia of Agrophysics (eds Gliński, J., Horabik, J. & Lipiec, J.) 280–283 (Springer Netherlands, Dordrecht, 2011)

Wanniarachchi, S. & Sarukkalige, R. A review on evapotranspiration estimation in agricultural water management: past, present, and future. Hydrology 9, 123 (2022).

Article 

Google Scholar
 

Ward, R. C. Measuring evapotranspiration; a review. J. Hydrol. 13, 1–21 (1971).

Article 

Google Scholar
 

Pascolini-Campbell, M., Lee, C., Stavros, N. & Fisher, J. B. ECOSTRESS reveals pre-fire vegetation controls on burn severity for Southern California wildfires of 2020. Glob. Ecol. Biogeogr. 31, 1976–1989 (2022).

Article 

Google Scholar
 

Zhu, Y., Murugesan, S. B., Masara, I. K., Myint, S. W. & Fisher, J. B. Examining wildfire dynamics using ECOSTRESS data with machine learning approaches: the case of South-Eastern Australia’s black summer. Remote Sens. Ecol. Conserv. 11, 266–281 (2024).

Bento, V. A., Gouveia, C. M., DaCamara, C. C. & Trigo, I. F. A climatological assessment of drought impact on vegetation health index. Agric. Forest Meteorol. 259, 286–295 (2018).

Article 

Google Scholar
 

Fisher, J. B., Tu, K. P. & Baldocchi, D. D. Global estimates of the land–atmosphere water flux based on monthly AVHRR and ISLSCP-II data, validated at 16 FLUXNET sites. Remote Sens. Environ. 112, 901–919 (2008).

Article 

Google Scholar
 

Joiner, J. et al. Global relationships among traditional reflectance vegetation indices (NDVI and NDII), evapotranspiration (ET), and soil moisture variability on weekly timescales. Remote Sens. Environ. 219, 339–352 (2018).

Article 

Google Scholar
 

Bhattarai, N. & Wagle, P. Recent advances in remote sensing of evapotranspiration. Remote Sens. 13, 4260 (2021).

Article 

Google Scholar
 

Brown, S. M., Petrone, R. M., Mendoza, C. & Devito, K. J. Surface vegetation controls on evapotranspiration from a sub-humid Western Boreal Plain wetland. Hydrol. Process. 24, 1072–1085 (2010).

Article 

Google Scholar
 

Detto, M., Montaldo, N., Albertson, J. D., Mancini, M. & Katul, G. Soil moisture and vegetation controls on evapotranspiration in a heterogeneous Mediterranean ecosystem on Sardinia, Italy. Water Resour. Res. https://doi.org/10.1029/2005WR004693 (2006).

Boser, A. et al. Field-scale crop water consumption estimates reveal potential water savings in California agriculture. Nat. Commun. 15, 2366 (2024).

Article 

Google Scholar
 

Pascolini-Campbell, M., Fisher, J. B. & Reager, J. T. GRACE-FO and ECOSTRESS synergies constrain fine-scale impacts on the water balance. Geophys. Res. Lett. 48, e2021GL093984 (2021).

Article 

Google Scholar
 

Falkenmark, M. & Rockström, J. The new blue and green water paradigm: breaking new ground for water resources planning and management. J. Water Resour. Plan. Manag. 132, 129–132 (2006).

Article 

Google Scholar
 

Mao, G. et al. Assessing the interlinkage of green and blue water in an arid catchment in Northwest China. Environ. Geochem Health 42, 933–953 (2020).

Article 

Google Scholar
 

Allan, R. P. Amplified seasonal range in precipitation minus evaporation. Environ. Res. Lett. 18, 094004 (2023).

Article 

Google Scholar
 

Rodell, M. & Li, B. Changing intensity of hydroclimatic extreme events revealed by GRACE and GRACE-FO. Nat. Water 1, 241–248 (2023).

Article 

Google Scholar
 

Nie, W. et al. Irrigation water demand sensitivity to climate variability across the contiguous united states. Water Resour. Res. 57, 2020WR027738 (2021).

Article 

Google Scholar
 

Zhao, M., Geruo, A., Liu, Y. & Konings, A. G. Evapotranspiration frequently increases during droughts. Nat. Clim. Chang. 12, 1024–1030 (2022).

Article 

Google Scholar
 

Velpuri, N. M. & Senay, G. B. Partitioning evapotranspiration into green and blue water sources in the conterminous United States. Sci. Rep. 7, 6191 (2017).

Wang, T., Mallick, K., Verfaille, J., Szutu, D. & Baldocchi, D. Water scarcity in semi-arid California compromises perennial alfalfa’s high yield and carbon sinking potentials. Agric. Water Manag. 308, 109284 (2025).

Article 

Google Scholar
 

He, Q.-L., Xiao, J.-L. & Shi, W.-Y. Responses of terrestrial evapotranspiration to extreme drought: a review. Water 14, 3847 (2022).

Article 

Google Scholar
 

Seneviratne, S. I. et al. Investigating soil moisture–climate interactions in a changing climate: a review. Earth-Sci. Rev. 99, 125–161 (2010).

Article 

Google Scholar
 

Sankey, T. & Tatum, J. Thinning increases forest resiliency during unprecedented drought. Sci. Rep. 12, 9041 (2022).

Article 

Google Scholar
 

del Campo, A. D. et al. A global synthesis on the effects of thinning on hydrological processes: implications for forest management. For. Ecol. Manag. 519, 120324 (2022).

Article 

Google Scholar
 

Roche, J. W., Goulden, M. L. & Bales, R. C. Estimating evapotranspiration change due to forest treatment and fire at the basin scale in the Sierra Nevada, California. Ecohydrology 11, e1978–e1978 (2018).

Article 

Google Scholar
 

del Campo, A. D., González-Sanchis, M., García-Prats, A., Ceacero, C. J. & Lull, C. The impact of adaptive forest management on water fluxes and growth dynamics in a water-limited low-biomass oak coppice. Agric. Forest Meteorol. 264, 266–282 (2019).

Article 

Google Scholar
 

Liu, X. et al. Drought and thinning have limited impacts on evapotranspiration in a managed pine plantation on the southeastern United States coastal plain. Agric. Forest Meteorol. 262, 14–23 (2018).

Article 

Google Scholar
 

Simonin, K., Kolb, T. E., Montes-Helu, M. & Koch, G. W. The influence of thinning on components of stand water balance in a ponderosa pine forest stand during and after extreme drought. Agric. Forest Meteorol. 143, 266–276 (2007).

Article 

Google Scholar
 

Au, J. et al. Forest productivity recovery or collapse? Model-data integration insights on drought-induced tipping points. Glob. Change Biol. 29, 5652–5665 (2023).

Article 

Google Scholar
 

Barnard, D. M. et al. Wildfire and climate change amplify knowledge gaps linking mountain source-water systems and agricultural water supply in the western United States. Agric. Water Manag. 286, 108377 (2023).

Article 

Google Scholar
 

Ma, Q. et al. Wildfire controls on evapotranspiration in California’s Sierra Nevada. J. Hydrol. 590, 125364 (2020).

Article 

Google Scholar
 

Swain, D. L. A shorter, sharper rainy season amplifies California wildfire risk. Geophys. Res. Lett. 48, e2021GL092843 (2021).

Article 

Google Scholar
 

DeFlorio, M. J. et al. From California’s extreme drought to major flooding: evaluating and synthesizing experimental seasonal and subseasonal forecasts of landfalling atmospheric rivers and extreme precipitation during winter 2022/23. Am. Meteorol. Soc. https://doi.org/10.1175/BAMS-D-22-0208.1 (2024)

Melton, F. S. et al. OpenET: filling a critical data gap in water management for the western United States. JAWRA J. Am. Water Resour. Assoc. 58, 971–994 (2022).

Article 

Google Scholar
 

Xia, Y. et al. Continental-scale water and energy flux analysis and validation for North American Land Data Assimilation System project phase 2 (NLDAS-2): 2. Validation of model-simulated streamflow. J. Geophys. Res. Atmos. https://doi.org/10.1029/2011JD016048 (2012).

Xia, Y., Hobbins, M. T., Mu, Q. & Ek, M. B. Evaluation of NLDAS-2 evapotranspiration against tower flux site observations. Hydrol. Process. 29, 1757–1771 (2015).

Article 

Google Scholar
 

Volk, J. M. et al. Assessing the accuracy of OpenET satellite-based evapotranspiration data to support water resource and land management applications. Nat. Water 2, 193–205 (2024).

Article 

Google Scholar
 

Zhang, B. et al. Evaluation and comparison of multiple evapotranspiration data models over the contiguous United States: implications for the next phase of NLDAS (NLDAS-Testbed) development. Agric. Forest Meteorol. 280, 107810 (2020).

Article 

Google Scholar
 

Hanasaki, N., Inuzuka, T., Kanae, S. & Oki, T. An estimation of global virtual water flow and sources of water withdrawal for major crops and livestock products using a global hydrological model. J. Hydrol. 384, 232–244 (2010).

Article 

Google Scholar
 

Liu, J. & Yang, H. Spatially explicit assessment of global consumptive water uses in cropland: green and blue water. J. Hydrol. 384, 187–197 (2010).

Article 

Google Scholar
 

Mekonnen, M. M. & Hoekstra, A. Y. The green, blue and grey water footprint of crops and derived crop products. Hydrol. Earth Syst. Sci. 15, 1577–1600 (2011).

Article 

Google Scholar
 

Siebert, S. & Döll, P. Quantifying blue and green virtual water contents in global crop production as well as potential production losses without irrigation. J. Hydrol. 384, 198–217 (2010).

Article 

Google Scholar
 

Governor Gavin Newsom. California is now the 4th Largest Economy in the World (Governor of California, 2025)

US National Park Service. Water Year 2023: Review of a Historic Year in California and Nevada (U.S. National Park Service, 2023)

Goulden, M. L. & Bales, R. C. Mountain runoff vulnerability to increased evapotranspiration with vegetation expansion. Proc. Natl. Acad. Sci. USA 111, 14071–14075 (2014).

Article 

Google Scholar
 

Szilagyi, J. & Jozsa, J. Evapotranspiration trends (1979–2015) in the Central Valley of California, USA: Contrasting Tendencies During 1981–2007. Water Resour. Res. 54, 5620–5635 (2018).

Article 

Google Scholar
 

Goulden, M. L. & Bales, R. C. California forest die-off linked to multi-year deep soil drying in 2012–2015 drought. Nat. Geosci. 12, 632–637 (2019).

Article 

Google Scholar
 

Zhang, K. et al. A global dataset of terrestrial evapotranspiration and soil moisture dynamics from 1982 to 2020. Sci. Data 11, 445 (2024).

Article 

Google Scholar
 

Zhang, T., Lin, X., Rogers, D. H. & Lamm, F. R. Adaptation of irrigation infrastructure on irrigation demands under future drought in the United States. Am. Meteorol. Soc. https://doi.org/10.1175/EI-D-14-0035.1 (2015).

California Department of Water Resources, California Natural Resources Agency & State of California. Water Year 2023: Weather Whiplash, From Drought to Deluge. https://water.ca.gov/-/media/DWR-Website/Web-Pages/Water-Basics/Drought/Files/Publications-And-Reports/Water-Year-2023-wrap-up-brochure_01.pdf (2023).

McDonald, R. I. & Girvetz, E. H. Two challenges for U.S. irrigation due to climate change: increasing irrigated area in wet states and increasing irrigation rates in dry states. PLoS One 8, e65589 (2013).

Article 

Google Scholar
 

Rajagopalan, K. et al. Impacts of near-term climate change on irrigation demands and crop yields in the Columbia River basin. Water Resour. Res. 54, 2152–2182 (2018).

Article 

Google Scholar
 

Cook, B. I. et al. Divergent regional climate consequences of maintaining current irrigation rates in the 21st century. J. Geophys. Res. Atmos. 125, e2019JD031814 (2020).

Article 

Google Scholar
 

Döll, P. & Siebert, S. Global modeling of irrigation water requirements. Water Resour. Res. 38, 8-1–8-10 (2002).

Janes, M. California’s Groundwater Conditions: Semi-Annual Update May 2024 (2024).

Luković, J., Chiang, J. C. H., Blagojević, D. & Sekulić, A. A later onset of the rainy season in California. Geophys. Res. Lett. 48, e2020GL090350 (2021).

Article 

Google Scholar
 

Hill, J. E., Williams, J. F., Mutters, R. G. & Greer, C. A. The California rice cropping system: agronomic and natural resource issues for long-term sustainability. Paddy Water Environ. 4, 13–19 (2006).

Article 

Google Scholar
 

Pathak, T. B. & Stoddard, C. S. Climate change effects on the processing tomato growing season in California using growing degree day model. Model. Earth Syst. Environ. 4, 765–775 (2018).

Article 

Google Scholar
 

Zhang, Z., Jin, Y., Chen, B. & Brown, P. California almond yield prediction at the orchard level with a machine learning approach. Front. Plant Sci. https://doi.org/10.3389/fpls.2019.00809 (2019).

Fader, M., Shi, S., von Bloh, W., Bondeau, A. & Cramer, W. Mediterranean irrigation under climate change: more efficient irrigation needed to compensate for increases in irrigation water requirements. Hydrol. Earth Syst. Sci. 20, 953–973 (2016).

Article 

Google Scholar
 

United States Department of Agriculture Natural Resources Conservation Service. CA Water Supply Outlook Report—May 2023 https://www.nrcs.usda.gov/sites/default/files/2023-02/CA-Water%20Supply%20Outlook%20Report-Feb%202023.pdf (2023).

Gebremichael, M., Krishnamurthy, P. K., Ghebremichael, L. T. & Alam, S. What drives crop land use change during multi-year droughts in California’s central valley? Prices or concern for water? Remote Sens. 13, 650 (2021).

Article 

Google Scholar
 

Nelson, K. S. & Burchfield, E. K. Effects of the structure of water rights on agricultural production during drought: a spatiotemporal analysis of California’s central valley. Water Resour. Res. 53, 8293–8309 (2017).

Article 

Google Scholar
 

Ruess, P. J., Konar, M., Wanders, N. & Bierkens, M. F. P. Total irrigation by crop in the Continental United States from 2008 to 2020. Sci. Data 11, 395 (2024).

Article 

Google Scholar
 

Agrawal, T., Hirons, M. & Gathorne-Hardy, A. Understanding farmers’ cropping decisions and implications for crop diversity conservation: Insights from Central India. Curr. Res. Environ. Sustainability 3, 100068 (2021).

Article 

Google Scholar
 

Escriva-Bou, A., Medellín-Azuara, J., Hanak, E., Abatzoglou, J. & Viers, J. Drought and California’s Agriculture (Escriva-Bou Research Group, 2022).

Guido, Z. et al. Farmer forecasts: Impacts of seasonal rainfall expectations on agricultural decision-making in Sub-Saharan Africa. Clim. Risk Manag. 30, 100247 (2020).

Article 

Google Scholar
 

Peterson, C., Escriva-Bou, A., Medellín-Azuara, J. & Cole, S. Water Use in California’s Agriculture (PPIC, 2023).

Cheng, R., Novak, L. & Schneider, T. Predicting the interannual variability of California’s total annual precipitation. Geophys. Res. Lett. 48, e2020GL091465 (2021).

Article 

Google Scholar
 

Pierrat, Z. A. et al. The biological basis for using optical signals to track evergreen needleleaf photosynthesis. BioScience 74, 130–145 (2024).

Article 

Google Scholar
 

Hernández Ayala, J. J., Mann, J. & Grosvenor, E. Antecedent rainfall, excessive vegetation growth and its relation to wildfire burned areas in California. Earth Space Sci. 8, e2020EA001624 (2021).

Article 

Google Scholar
 

Farahmand, A., Stavros, E. N., Reager, J. T. & Behrangi, A. Introducing spatially distributed fire danger from earth observations (FDEO) using satellite-based data in the contiguous United States. Remote Sens. 12, 1252 (2020).

Article 

Google Scholar
 

Farahmand, A. et al. Satellite hydrology observations as operational indicators of forecasted fire danger across the contiguous United States. Nat. Hazards Earth Syst. Sci. 20, 1097–1106 (2020).

Article 

Google Scholar
 

Jensen, D. et al. The sensitivity of US wildfire occurrence to pre-season soil moisture conditions across ecosystems. Environ. Res. Lett. 13, 014021 (2018).

Article 

Google Scholar
 

Guirguis, K. et al. Winter wet–dry weather patterns driving atmospheric rivers and Santa Ana winds provide evidence for increasing wildfire hazard in California. Clim. Dyn. 60, 1729–1749 (2023).

Article 

Google Scholar
 

Keeley, J. E. & Syphard, A. D. Large California wildfires: 2020 fires in historical context. Fire Ecol. 17, 22 (2021).

Article 

Google Scholar
 

Safford, H. D. et al. The 2020 California fire season: A year like no other, a return to the past or a harbinger of the future? Glob. Ecol. Biogeogr. 31, 2005–2025 (2022).

Article 

Google Scholar
 

Toohey. California Wildfires have Already Burned 90,000 Acres, and Summer is Just Beginning (Los Angeles Times, 2024).

Mehta, P. et al. Half of twenty-first century global irrigation expansion has been in water-stressed regions. Nat. Water 2, 254–261 (2024).

Article 

Google Scholar
 

McDermid, S. et al. Irrigation in the Earth system. Nat. Rev. Earth Environ. 4, 435–453 (2023).

Article 

Google Scholar
 

Wada, Y. et al. Global monthly water stress: II. Water demand and severity of water stress. Water Resour. Res. https://doi.org/10.1029/2010WR009792 (2011).

Volk, J. M. et al. Development of a Benchmark Eddy flux evapotranspiration dataset for evaluation of satellite-driven evapotranspiration models over the CONUS. Agric. For. Meteorol. 331, 109307 (2023).

Article 

Google Scholar
 

Ek, M. B. et al. Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J. Geophys. Res. Atmos. https://doi.org/10.1029/2002JD003296 (2003).

Koster, R. D. & Suarez, M. J. The components of a ‘SVAT’ scheme and their effects on a GCM’s hydrological cycle. Adv. Water Resour. 17, 61–78 (1994).

Article 

Google Scholar
 

Liang, X., Lettenmaier, D. P., Wood, E. F. & Burges, S. J. A simple hydrologically based model of land surface water and energy fluxes for general circulation models. J. Geophys. Res. Atmos. 99, 14415–14428 (1994).

Article 

Google Scholar
 

Obata, K., Miura, T., Yoshioka, H. & Huete, A. R. Derivation of a MODIS-compatible enhanced vegetation index from visible infrared imaging radiometer suite spectral reflectances using vegetation isoline equations. JARS. 7, 073467 (2013).


Google Scholar
 

Vermote, E. VIIRS/NPP Vegetation Indices Monthly L3 Global 0.05Deg CMG V002. [Monthly EVI, NDVI, EVI2] (NASA EOSDIS Land Processes Distributed Active Archive Center, accessed 01 Mar 2024); https://doi.org/10.5067/VIIRS/VNP13C2.002. (2023).

NLDAS Project. NLDAS Secondary Forcing Data L4 Hourly 0.125 × 0.125 degree V2.0. NASA Goddard Earth Sciences Data and Information Services Center. https://doi.org/10.5067/96S0R3LFOBTU (2020).

Allen, R. G., Tasumi, M. & Trezza, R. Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC)—model. J. Irrig. Drain. Eng. 133, 380–394 (2007).

Article 

Google Scholar
 

Pierrat, Z. A. et al. Evaluation of ECOSTRESS collection 2 evapotranspiration products: strengths and uncertainties for evapotranspiration modeling. Water Resour. Res. 61, e2024WR039404 (2025).

Article 

Google Scholar