University of California Agriculture and Natural Resources. California’s Working Landscape https://www.ucop.edu/innovation-transfer-operations/_files/Econ%20Impact%20Rpts/anr-ca-working-landscape-2019.pdf (2019).
Peterson, C., Pittelkow, C. & Lundy, M. Exploring the Potential for Water—Limited Agriculture in the San Joaquin Valley (PPIC, 2022).
California Agricultural Exports. California Agricultural Exports 2022–2023 https://www.cdfa.ca.gov/Statistics/PDFs/2022-2023_california_agricultural_exports.pdf (2022).
California Natural Resources Agency. California’s Water Supply Strategy: Adapting to a Hotter, Drier Future. https://resources.ca.gov/-/media/CNRA-Website/Files/Initiatives/Water-Resilience/CA-Water-Supply-Strategy.pdf (2022).
Hanak, E. et al. Water and the California Economy (PPIC, 2012).
Sunding, D., Browne, O. & Zhu, Z. J. The Economy of the State Water Project: Clean, Reliable, and Affordable Water for California https://water.ca.gov/-/media/DWR-Website/Web-Pages/News/Files/SWP-Economics-Brochure_FINAL.pdf (2023).
Liu, P.-W. et al. Groundwater depletion in California’s central valley accelerates during megadrought. Nat. Commun. 13, 7825 (2022).
Williams, A. P. et al. Large contribution from anthropogenic warming to an emerging North American megadrought. Science 368, 314–318 (2020).
Swain, D. L., Horton, D. E., Singh, D. & Diffenbaugh, N. S. Trends in atmospheric patterns conducive to seasonal precipitation and temperature extremes in California. Sci. Adv. 2, e1501344 (2016).
Swain, D. L. et al. Hydroclimate volatility on a warming Earth. Nat. Rev. Earth Environ. 6, 35–50 (2025).
Healey, R. W. et al. Water Budgets: Foundations for Effective Water-Resources and Environmental Management (2007).
California Department of Water Resources. California Water Plan Update 2023 Water Balances Supporting Document https://water.ca.gov/-/media/DWR-Website/Web-Pages/Programs/California-Water-Plan/Docs/Update2023/Supporting-Documents/Water-Portfolios-and-Balances.pdf (2023).
Ghiat, I., Mackey, H. R. & Al-Ansari, T. A review of evapotranspiration measurement models, techniques and methods for open and closed agricultural field applications. Water 13, 2523 (2021).
Miralles, D. G., Brutsaert, W., Dolman, A. J. & Gash, J. H. On the use of the term “Evapotranspiration”. Water Resour. Res. 56, e2020WR028055 (2020).
Novák, V. Evapotranspiration. In Encyclopedia of Agrophysics (eds Gliński, J., Horabik, J. & Lipiec, J.) 280–283 (Springer Netherlands, Dordrecht, 2011)
Wanniarachchi, S. & Sarukkalige, R. A review on evapotranspiration estimation in agricultural water management: past, present, and future. Hydrology 9, 123 (2022).
Ward, R. C. Measuring evapotranspiration; a review. J. Hydrol. 13, 1–21 (1971).
Pascolini-Campbell, M., Lee, C., Stavros, N. & Fisher, J. B. ECOSTRESS reveals pre-fire vegetation controls on burn severity for Southern California wildfires of 2020. Glob. Ecol. Biogeogr. 31, 1976–1989 (2022).
Zhu, Y., Murugesan, S. B., Masara, I. K., Myint, S. W. & Fisher, J. B. Examining wildfire dynamics using ECOSTRESS data with machine learning approaches: the case of South-Eastern Australia’s black summer. Remote Sens. Ecol. Conserv. 11, 266–281 (2024).
Bento, V. A., Gouveia, C. M., DaCamara, C. C. & Trigo, I. F. A climatological assessment of drought impact on vegetation health index. Agric. Forest Meteorol. 259, 286–295 (2018).
Fisher, J. B., Tu, K. P. & Baldocchi, D. D. Global estimates of the land–atmosphere water flux based on monthly AVHRR and ISLSCP-II data, validated at 16 FLUXNET sites. Remote Sens. Environ. 112, 901–919 (2008).
Joiner, J. et al. Global relationships among traditional reflectance vegetation indices (NDVI and NDII), evapotranspiration (ET), and soil moisture variability on weekly timescales. Remote Sens. Environ. 219, 339–352 (2018).
Bhattarai, N. & Wagle, P. Recent advances in remote sensing of evapotranspiration. Remote Sens. 13, 4260 (2021).
Brown, S. M., Petrone, R. M., Mendoza, C. & Devito, K. J. Surface vegetation controls on evapotranspiration from a sub-humid Western Boreal Plain wetland. Hydrol. Process. 24, 1072–1085 (2010).
Detto, M., Montaldo, N., Albertson, J. D., Mancini, M. & Katul, G. Soil moisture and vegetation controls on evapotranspiration in a heterogeneous Mediterranean ecosystem on Sardinia, Italy. Water Resour. Res. https://doi.org/10.1029/2005WR004693 (2006).
Boser, A. et al. Field-scale crop water consumption estimates reveal potential water savings in California agriculture. Nat. Commun. 15, 2366 (2024).
Pascolini-Campbell, M., Fisher, J. B. & Reager, J. T. GRACE-FO and ECOSTRESS synergies constrain fine-scale impacts on the water balance. Geophys. Res. Lett. 48, e2021GL093984 (2021).
Falkenmark, M. & Rockström, J. The new blue and green water paradigm: breaking new ground for water resources planning and management. J. Water Resour. Plan. Manag. 132, 129–132 (2006).
Mao, G. et al. Assessing the interlinkage of green and blue water in an arid catchment in Northwest China. Environ. Geochem Health 42, 933–953 (2020).
Allan, R. P. Amplified seasonal range in precipitation minus evaporation. Environ. Res. Lett. 18, 094004 (2023).
Rodell, M. & Li, B. Changing intensity of hydroclimatic extreme events revealed by GRACE and GRACE-FO. Nat. Water 1, 241–248 (2023).
Nie, W. et al. Irrigation water demand sensitivity to climate variability across the contiguous united states. Water Resour. Res. 57, 2020WR027738 (2021).
Zhao, M., Geruo, A., Liu, Y. & Konings, A. G. Evapotranspiration frequently increases during droughts. Nat. Clim. Chang. 12, 1024–1030 (2022).
Velpuri, N. M. & Senay, G. B. Partitioning evapotranspiration into green and blue water sources in the conterminous United States. Sci. Rep. 7, 6191 (2017).
Wang, T., Mallick, K., Verfaille, J., Szutu, D. & Baldocchi, D. Water scarcity in semi-arid California compromises perennial alfalfa’s high yield and carbon sinking potentials. Agric. Water Manag. 308, 109284 (2025).
He, Q.-L., Xiao, J.-L. & Shi, W.-Y. Responses of terrestrial evapotranspiration to extreme drought: a review. Water 14, 3847 (2022).
Seneviratne, S. I. et al. Investigating soil moisture–climate interactions in a changing climate: a review. Earth-Sci. Rev. 99, 125–161 (2010).
Sankey, T. & Tatum, J. Thinning increases forest resiliency during unprecedented drought. Sci. Rep. 12, 9041 (2022).
del Campo, A. D. et al. A global synthesis on the effects of thinning on hydrological processes: implications for forest management. For. Ecol. Manag. 519, 120324 (2022).
Roche, J. W., Goulden, M. L. & Bales, R. C. Estimating evapotranspiration change due to forest treatment and fire at the basin scale in the Sierra Nevada, California. Ecohydrology 11, e1978–e1978 (2018).
del Campo, A. D., González-Sanchis, M., García-Prats, A., Ceacero, C. J. & Lull, C. The impact of adaptive forest management on water fluxes and growth dynamics in a water-limited low-biomass oak coppice. Agric. Forest Meteorol. 264, 266–282 (2019).
Liu, X. et al. Drought and thinning have limited impacts on evapotranspiration in a managed pine plantation on the southeastern United States coastal plain. Agric. Forest Meteorol. 262, 14–23 (2018).
Simonin, K., Kolb, T. E., Montes-Helu, M. & Koch, G. W. The influence of thinning on components of stand water balance in a ponderosa pine forest stand during and after extreme drought. Agric. Forest Meteorol. 143, 266–276 (2007).
Au, J. et al. Forest productivity recovery or collapse? Model-data integration insights on drought-induced tipping points. Glob. Change Biol. 29, 5652–5665 (2023).
Barnard, D. M. et al. Wildfire and climate change amplify knowledge gaps linking mountain source-water systems and agricultural water supply in the western United States. Agric. Water Manag. 286, 108377 (2023).
Ma, Q. et al. Wildfire controls on evapotranspiration in California’s Sierra Nevada. J. Hydrol. 590, 125364 (2020).
Swain, D. L. A shorter, sharper rainy season amplifies California wildfire risk. Geophys. Res. Lett. 48, e2021GL092843 (2021).
DeFlorio, M. J. et al. From California’s extreme drought to major flooding: evaluating and synthesizing experimental seasonal and subseasonal forecasts of landfalling atmospheric rivers and extreme precipitation during winter 2022/23. Am. Meteorol. Soc. https://doi.org/10.1175/BAMS-D-22-0208.1 (2024)
Melton, F. S. et al. OpenET: filling a critical data gap in water management for the western United States. JAWRA J. Am. Water Resour. Assoc. 58, 971–994 (2022).
Xia, Y. et al. Continental-scale water and energy flux analysis and validation for North American Land Data Assimilation System project phase 2 (NLDAS-2): 2. Validation of model-simulated streamflow. J. Geophys. Res. Atmos. https://doi.org/10.1029/2011JD016048 (2012).
Xia, Y., Hobbins, M. T., Mu, Q. & Ek, M. B. Evaluation of NLDAS-2 evapotranspiration against tower flux site observations. Hydrol. Process. 29, 1757–1771 (2015).
Volk, J. M. et al. Assessing the accuracy of OpenET satellite-based evapotranspiration data to support water resource and land management applications. Nat. Water 2, 193–205 (2024).
Zhang, B. et al. Evaluation and comparison of multiple evapotranspiration data models over the contiguous United States: implications for the next phase of NLDAS (NLDAS-Testbed) development. Agric. Forest Meteorol. 280, 107810 (2020).
Hanasaki, N., Inuzuka, T., Kanae, S. & Oki, T. An estimation of global virtual water flow and sources of water withdrawal for major crops and livestock products using a global hydrological model. J. Hydrol. 384, 232–244 (2010).
Liu, J. & Yang, H. Spatially explicit assessment of global consumptive water uses in cropland: green and blue water. J. Hydrol. 384, 187–197 (2010).
Mekonnen, M. M. & Hoekstra, A. Y. The green, blue and grey water footprint of crops and derived crop products. Hydrol. Earth Syst. Sci. 15, 1577–1600 (2011).
Siebert, S. & Döll, P. Quantifying blue and green virtual water contents in global crop production as well as potential production losses without irrigation. J. Hydrol. 384, 198–217 (2010).
Governor Gavin Newsom. California is now the 4th Largest Economy in the World (Governor of California, 2025)
US National Park Service. Water Year 2023: Review of a Historic Year in California and Nevada (U.S. National Park Service, 2023)
Goulden, M. L. & Bales, R. C. Mountain runoff vulnerability to increased evapotranspiration with vegetation expansion. Proc. Natl. Acad. Sci. USA 111, 14071–14075 (2014).
Szilagyi, J. & Jozsa, J. Evapotranspiration trends (1979–2015) in the Central Valley of California, USA: Contrasting Tendencies During 1981–2007. Water Resour. Res. 54, 5620–5635 (2018).
Goulden, M. L. & Bales, R. C. California forest die-off linked to multi-year deep soil drying in 2012–2015 drought. Nat. Geosci. 12, 632–637 (2019).
Zhang, K. et al. A global dataset of terrestrial evapotranspiration and soil moisture dynamics from 1982 to 2020. Sci. Data 11, 445 (2024).
Zhang, T., Lin, X., Rogers, D. H. & Lamm, F. R. Adaptation of irrigation infrastructure on irrigation demands under future drought in the United States. Am. Meteorol. Soc. https://doi.org/10.1175/EI-D-14-0035.1 (2015).
California Department of Water Resources, California Natural Resources Agency & State of California. Water Year 2023: Weather Whiplash, From Drought to Deluge. https://water.ca.gov/-/media/DWR-Website/Web-Pages/Water-Basics/Drought/Files/Publications-And-Reports/Water-Year-2023-wrap-up-brochure_01.pdf (2023).
McDonald, R. I. & Girvetz, E. H. Two challenges for U.S. irrigation due to climate change: increasing irrigated area in wet states and increasing irrigation rates in dry states. PLoS One 8, e65589 (2013).
Rajagopalan, K. et al. Impacts of near-term climate change on irrigation demands and crop yields in the Columbia River basin. Water Resour. Res. 54, 2152–2182 (2018).
Cook, B. I. et al. Divergent regional climate consequences of maintaining current irrigation rates in the 21st century. J. Geophys. Res. Atmos. 125, e2019JD031814 (2020).
Döll, P. & Siebert, S. Global modeling of irrigation water requirements. Water Resour. Res. 38, 8-1–8-10 (2002).
Janes, M. California’s Groundwater Conditions: Semi-Annual Update May 2024 (2024).
Luković, J., Chiang, J. C. H., Blagojević, D. & Sekulić, A. A later onset of the rainy season in California. Geophys. Res. Lett. 48, e2020GL090350 (2021).
Hill, J. E., Williams, J. F., Mutters, R. G. & Greer, C. A. The California rice cropping system: agronomic and natural resource issues for long-term sustainability. Paddy Water Environ. 4, 13–19 (2006).
Pathak, T. B. & Stoddard, C. S. Climate change effects on the processing tomato growing season in California using growing degree day model. Model. Earth Syst. Environ. 4, 765–775 (2018).
Zhang, Z., Jin, Y., Chen, B. & Brown, P. California almond yield prediction at the orchard level with a machine learning approach. Front. Plant Sci. https://doi.org/10.3389/fpls.2019.00809 (2019).
Fader, M., Shi, S., von Bloh, W., Bondeau, A. & Cramer, W. Mediterranean irrigation under climate change: more efficient irrigation needed to compensate for increases in irrigation water requirements. Hydrol. Earth Syst. Sci. 20, 953–973 (2016).
United States Department of Agriculture Natural Resources Conservation Service. CA Water Supply Outlook Report—May 2023 https://www.nrcs.usda.gov/sites/default/files/2023-02/CA-Water%20Supply%20Outlook%20Report-Feb%202023.pdf (2023).
Gebremichael, M., Krishnamurthy, P. K., Ghebremichael, L. T. & Alam, S. What drives crop land use change during multi-year droughts in California’s central valley? Prices or concern for water? Remote Sens. 13, 650 (2021).
Nelson, K. S. & Burchfield, E. K. Effects of the structure of water rights on agricultural production during drought: a spatiotemporal analysis of California’s central valley. Water Resour. Res. 53, 8293–8309 (2017).
Ruess, P. J., Konar, M., Wanders, N. & Bierkens, M. F. P. Total irrigation by crop in the Continental United States from 2008 to 2020. Sci. Data 11, 395 (2024).
Agrawal, T., Hirons, M. & Gathorne-Hardy, A. Understanding farmers’ cropping decisions and implications for crop diversity conservation: Insights from Central India. Curr. Res. Environ. Sustainability 3, 100068 (2021).
Escriva-Bou, A., Medellín-Azuara, J., Hanak, E., Abatzoglou, J. & Viers, J. Drought and California’s Agriculture (Escriva-Bou Research Group, 2022).
Guido, Z. et al. Farmer forecasts: Impacts of seasonal rainfall expectations on agricultural decision-making in Sub-Saharan Africa. Clim. Risk Manag. 30, 100247 (2020).
Peterson, C., Escriva-Bou, A., Medellín-Azuara, J. & Cole, S. Water Use in California’s Agriculture (PPIC, 2023).
Cheng, R., Novak, L. & Schneider, T. Predicting the interannual variability of California’s total annual precipitation. Geophys. Res. Lett. 48, e2020GL091465 (2021).
Pierrat, Z. A. et al. The biological basis for using optical signals to track evergreen needleleaf photosynthesis. BioScience 74, 130–145 (2024).
Hernández Ayala, J. J., Mann, J. & Grosvenor, E. Antecedent rainfall, excessive vegetation growth and its relation to wildfire burned areas in California. Earth Space Sci. 8, e2020EA001624 (2021).
Farahmand, A., Stavros, E. N., Reager, J. T. & Behrangi, A. Introducing spatially distributed fire danger from earth observations (FDEO) using satellite-based data in the contiguous United States. Remote Sens. 12, 1252 (2020).
Farahmand, A. et al. Satellite hydrology observations as operational indicators of forecasted fire danger across the contiguous United States. Nat. Hazards Earth Syst. Sci. 20, 1097–1106 (2020).
Jensen, D. et al. The sensitivity of US wildfire occurrence to pre-season soil moisture conditions across ecosystems. Environ. Res. Lett. 13, 014021 (2018).
Guirguis, K. et al. Winter wet–dry weather patterns driving atmospheric rivers and Santa Ana winds provide evidence for increasing wildfire hazard in California. Clim. Dyn. 60, 1729–1749 (2023).
Keeley, J. E. & Syphard, A. D. Large California wildfires: 2020 fires in historical context. Fire Ecol. 17, 22 (2021).
Safford, H. D. et al. The 2020 California fire season: A year like no other, a return to the past or a harbinger of the future? Glob. Ecol. Biogeogr. 31, 2005–2025 (2022).
Toohey. California Wildfires have Already Burned 90,000 Acres, and Summer is Just Beginning (Los Angeles Times, 2024).
Mehta, P. et al. Half of twenty-first century global irrigation expansion has been in water-stressed regions. Nat. Water 2, 254–261 (2024).
McDermid, S. et al. Irrigation in the Earth system. Nat. Rev. Earth Environ. 4, 435–453 (2023).
Wada, Y. et al. Global monthly water stress: II. Water demand and severity of water stress. Water Resour. Res. https://doi.org/10.1029/2010WR009792 (2011).
Volk, J. M. et al. Development of a Benchmark Eddy flux evapotranspiration dataset for evaluation of satellite-driven evapotranspiration models over the CONUS. Agric. For. Meteorol. 331, 109307 (2023).
Ek, M. B. et al. Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J. Geophys. Res. Atmos. https://doi.org/10.1029/2002JD003296 (2003).
Koster, R. D. & Suarez, M. J. The components of a ‘SVAT’ scheme and their effects on a GCM’s hydrological cycle. Adv. Water Resour. 17, 61–78 (1994).
Liang, X., Lettenmaier, D. P., Wood, E. F. & Burges, S. J. A simple hydrologically based model of land surface water and energy fluxes for general circulation models. J. Geophys. Res. Atmos. 99, 14415–14428 (1994).
Obata, K., Miura, T., Yoshioka, H. & Huete, A. R. Derivation of a MODIS-compatible enhanced vegetation index from visible infrared imaging radiometer suite spectral reflectances using vegetation isoline equations. JARS. 7, 073467 (2013).
Vermote, E. VIIRS/NPP Vegetation Indices Monthly L3 Global 0.05Deg CMG V002. [Monthly EVI, NDVI, EVI2] (NASA EOSDIS Land Processes Distributed Active Archive Center, accessed 01 Mar 2024); https://doi.org/10.5067/VIIRS/VNP13C2.002. (2023).
NLDAS Project. NLDAS Secondary Forcing Data L4 Hourly 0.125 × 0.125 degree V2.0. NASA Goddard Earth Sciences Data and Information Services Center. https://doi.org/10.5067/96S0R3LFOBTU (2020).
Allen, R. G., Tasumi, M. & Trezza, R. Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC)—model. J. Irrig. Drain. Eng. 133, 380–394 (2007).
Pierrat, Z. A. et al. Evaluation of ECOSTRESS collection 2 evapotranspiration products: strengths and uncertainties for evapotranspiration modeling. Water Resour. Res. 61, e2024WR039404 (2025).