Liao, W.-W. et al. A draft human pangenome reference. Nature 617, 312–324 (2023).

ADS 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Porubsky, D. et al. Gaps and complex structurally variant loci in phased genome assemblies. Genome Res. 33, 496–510 (2023).

PubMed 
PubMed Central 
CAS 

Google Scholar
 

Ebler, J. et al. Pangenome-based genome inference allows efficient and accurate genotyping across a wide spectrum of variant classes. Nat. Genet. 54, 518–525 (2022).

PubMed 
PubMed Central 
CAS 

Google Scholar
 

Nurk, S. et al. The complete sequence of a human genome. Science 376, 44–53 (2022).

ADS 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Garg, S. et al. Chromosome-scale, haplotype-resolved assembly of human genomes. Nat. Biotechnol. https://doi.org/10.1038/s41587-020-0711-0 (2020).

Porubsky, D. et al. Fully phased human genome assembly without parental data using single-cell strand sequencing and long reads. Nat. Biotechnol. https://doi.org/10.1038/s41587-020-0719-5 (2020).

Koren, S. et al. De novo assembly of haplotype-resolved genomes with trio binning. Nat. Biotechnol. 36, 1174–1182 (2018).

CAS 

Google Scholar
 

Ebert, P. et al. Haplotype-resolved diverse human genomes and integrated analysis of structural variation. Science 372, eabf7117 (2021).

PubMed 
PubMed Central 
CAS 

Google Scholar
 

Rautiainen, M. et al. Telomere-to-telomere assembly of diploid chromosomes with Verkko. Nat. Biotechnol. 41, 1474–1482 (2023).

PubMed 
PubMed Central 
CAS 

Google Scholar
 

Cheng, H., Asri, M., Lucas, J., Koren, S. & Li, H. Scalable telomere-to-telomere assembly for diploid and polyploid genomes with double graph. Nat. Methods 21, 967–970 (2024).

PubMed 
PubMed Central 
CAS 

Google Scholar
 

1000 Genomes Project Consortiumet al. A global reference for human genetic variation. Nature 526, 68–74 (2015).


Google Scholar
 

Henglin, M. et al. Graphasing: phasing diploid genome assembly graphs with single-cell strand sequencing. Genome Biol. 25, 265 (2024).

PubMed 
PubMed Central 

Google Scholar
 

Chaisson, M. J. P. et al. Multi-platform discovery of haplotype-resolved structural variation in human genomes. Nat. Commun. 10, 1784 (2019).

ADS 
PubMed 
PubMed Central 

Google Scholar
 

Aganezov, S. et al. A complete reference genome improves analysis of human genetic variation. Science 376, eabl3533 (2022).

PubMed 
PubMed Central 
CAS 

Google Scholar
 

Kazazian, H. H. Jr et al. Haemophilia A resulting from de novo insertion of L1 sequences represents a novel mechanism for mutation in man. Nature 332, 164–166 (1988).

ADS 
PubMed 
CAS 

Google Scholar
 

Porubsky, D. et al. Recurrent inversion polymorphisms in humans associate with genetic instability and genomic disorders. Cell 185, 1986–2005.e26 (2022).

PubMed 
PubMed Central 
CAS 

Google Scholar
 

Cooper, G. M. et al. A copy number variation morbidity map of developmental delay. Nat. Genet. 43, 838–846 (2011).

PubMed 
PubMed Central 
CAS 

Google Scholar
 

Sudmant, P. H. et al. Diversity of human copy number variation and multicopy genes. Science 330, 641–646 (2010).

ADS 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Sudmant, P. H. et al. Global diversity, population stratification, and selection of human copy-number variation. Science 349, aab3761 (2015).

PubMed 
PubMed Central 

Google Scholar
 

Vollger, M. R. et al. Segmental duplications and their variation in a complete human genome. Science 376, eabj6965 (2022).

PubMed 
PubMed Central 
CAS 

Google Scholar
 

Jeong, H. et al. Structural polymorphism and diversity of human segmental duplications. Nat. Genet. 57, 390–401 (2025).

PubMed 
PubMed Central 
CAS 

Google Scholar
 

Hallast, P., Agdzhoyan, A., Balanovsky, O., Xue, Y. & Tyler-Smith, C. A Southeast Asian origin for present-day non-African human Y chromosomes. Hum. Genet.140, 299–307 (2021).

PubMed 
CAS 

Google Scholar
 

Hallast, P. et al. Assembly of 43 human Y chromosomes reveals extensive complexity and variation. Nature 621, 355–364 (2023).

ADS 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Rhie, A. et al. The complete sequence of a human Y chromosome. Nature 621, 344–354 (2023).

ADS 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Porubsky, D. et al. Human de novo mutation rates from a four-generation pedigree reference. Nature 643, 427–436 (2025).

Ruderfer, D. M. et al. Patterns of genic intolerance of rare copy number variation in 59,898 human exomes. Nat. Genet. 48, 1107–1111 (2016).

PubMed 
PubMed Central 
CAS 

Google Scholar
 

Karczewski, K. J. et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 581, 434–443 (2020).

ADS 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Sudmant, P. H. et al. An integrated map of structural variation in 2,504 human genomes. Nature 526, 75–81 (2015).

PubMed 
PubMed Central 
CAS 

Google Scholar
 

Byrska-Bishop, M. et al. High-coverage whole-genome sequencing of the expanded 1000 Genomes Project cohort including 602 trios. Cell 185, 3426–3440.e19 (2022).

PubMed 
PubMed Central 
CAS 

Google Scholar
 

Prodanov, T. et al. Locityper: targeted genotyping of complex polymorphic genes. Preprint at bioRxiv https://doi.org/10.1101/2024.05.03.592358 (2024).

Wagner, J. et al. Curated variation benchmarks for challenging medically relevant autosomal genes. Nat. Biotechnol. 40, 672–680 (2022).

PubMed 
PubMed Central 
CAS 

Google Scholar
 

Horton, R. et al. Gene map of the extended human MHC. Nat. Rev. Genet. 5, 889–899 (2004).

PubMed 
CAS 

Google Scholar
 

Norman, P. J. et al. Sequences of 95 human MHC haplotypes reveal extreme coding variation in genes other than highly polymorphic HLA class I and II. Genome Res. 27, 813–823 (2017).

PubMed 
PubMed Central 
CAS 

Google Scholar
 

Trowsdale, J. & Knight, J. C. Major histocompatibility complex genomics and human disease. Annu. Rev. Genomics Hum. Genet. 14, 301–323 (2013).

PubMed 
PubMed Central 
CAS 

Google Scholar
 

Abi-Rached, L. et al. Immune diversity sheds light on missing variation in worldwide genetic diversity panels. PLoS ONE 13, e0206512 (2018).

PubMed 
PubMed Central 

Google Scholar
 

Barker, D. J. et al. The IPD-IMGT/HLA Database. Nucleic Acids Res. 51, D1053–D1060 (2023).

PubMed 
CAS 

Google Scholar
 

Mentzer, A. J. et al. High-resolution African HLA resource uncovers HLA-DRB1 expression effects underlying vaccine response. Nat. Med. 30, 1384–1394 (2024).

PubMed 
PubMed Central 
CAS 

Google Scholar
 

Liu, B., Shao, Y. & Fu, R. Current research status of HLA in immune-related diseases. Immun. Inflamm. Dis. 9, 340–350 (2021).

PubMed 
PubMed Central 
CAS 

Google Scholar
 

Horton, R. et al. Variation analysis and gene annotation of eight MHC haplotypes: the MHC Haplotype Project. Immunogenetics 60, 1–18 (2008).

PubMed 
PubMed Central 
CAS 

Google Scholar
 

Houwaart, T. et al. Complete sequences of six major histocompatibility complex haplotypes, including all the major MHC class II structures. Hladnikia 102, 28–43 (2023).

CAS 

Google Scholar
 

Gorski, J. The HLA-DRw8 lineage was generated by a deletion in the DR B region followed by first domain diversification. J. Immunol. 142, 4041–4045 (1989).

PubMed 
CAS 

Google Scholar
 

Gongora, R. Presence of solitary exon 1 sequences in the HLA-DR region. Hereditas 127, 47–49 (1997).

PubMed 
CAS 

Google Scholar
 

Chung, E. K. et al. Genetic sophistication of human complement components C4A and C4B and RP-C4-CYP21-TNX (RCCX) modules in the major histocompatibility complex. Am. J. Hum. Genet. 71, 823–837 (2002).

PubMed 
PubMed Central 

Google Scholar
 

Bánlaki, Z. et al. Intraspecific evolution of human RCCX copy number variation traced by haplotypes of the CYP21A2 gene. Genome Biol. Evol. 5, 98–112 (2013).

PubMed 

Google Scholar
 

Chin, C.-S. et al. Multiscale analysis of pangenomes enables improved representation of genomic diversity for repetitive and clinically relevant genes. Nat. Methods 20, 1213–1221 (2023).

PubMed 
PubMed Central 
CAS 

Google Scholar
 

Gu, S. et al. Alu-mediated diverse and complex pathogenic copy-number variants within human chromosome 17 at p13.3. Hum. Mol. Genet. 24, 4061–4077 (2015).

PubMed 
PubMed Central 
CAS 

Google Scholar
 

Balachandran, P. et al. Transposable element-mediated rearrangements are prevalent in human genomes. Nat. Commun. 13, 7115 (2022).

ADS 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Beck, C. R. et al. Megabase length hypermutation accompanies human structural variation at 17p11.2. Cell 176, 1310–1324.e10 (2019).

PubMed 
PubMed Central 
CAS 

Google Scholar
 

Collins, R. L. et al. A structural variation reference for medical and population genetics. Nature 581, 444–451 (2020).

ADS 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Audano, P. A., Paisie, C., The Human Genome Structural Variation Consortium & Beck, C. R. Large complex structural rearrangements in human genomes harbor cryptic structures. Preprint at bioRxiv https://doi.org/10.1101/2024.12.19.629504 (2024).

Collins, R. L. et al. Defining the diverse spectrum of inversions, complex structural variation, and chromothripsis in the morbid human genome. Genome Biol. 18, 36 (2017).

ADS 
PubMed 
PubMed Central 

Google Scholar
 

Marques-Bonet, T. & Eichler, E. E. The evolution of human segmental duplications and the core duplicon hypothesis. Cold Spring Harb. Symp. Quant. Biol. 74, 355–362 (2009).

PubMed 
PubMed Central 
CAS 

Google Scholar
 

Winkelsas, A. M. et al. Targeting the 5′ untranslated region of SMN2 as a therapeutic strategy for spinal muscular atrophy. Mol. Ther. Nucleic Acids 23, 731–742 (2021).

PubMed 
PubMed Central 
CAS 

Google Scholar
 

Sivanesan, S., Howell, M. D., Didonato, C. J. & Singh, R. N. Antisense oligonucleotide mediated therapy of spinal muscular atrophy. Transl. Neurosci. https://doi.org/10.2478/s13380-013-0109-2 (2013).

Bolognini, D. et al. Recurrent evolution and selection shape structural diversity at the amylase locus. Nature https://doi.org/10.1038/s41586-024-07911-1 (2024).

Yilmaz, F. et al. Reconstruction of the human amylase locus reveals ancient duplications seeding modern-day variation. Science 386, eadn0609 (2024).

PubMed 
CAS 

Google Scholar
 

Usher, C. L. et al. Structural forms of the human amylase locus and their relationships to SNPs, haplotypes and obesity. Nat. Genet. 47, 921–925 (2015).

PubMed 
PubMed Central 
CAS 

Google Scholar
 

Altemose, N. et al. Complete genomic and epigenetic maps of human centromeres. Science 376, eabl4178 (2022).

PubMed 
PubMed Central 
CAS 

Google Scholar
 

Logsdon, G. A. et al. The variation and evolution of complete human centromeres. Nature 629, 136–145 (2024).

ADS 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Gershman, A. et al. Epigenetic patterns in a complete human genome. Science 376, eabj5089 (2022).

PubMed 
PubMed Central 
CAS 

Google Scholar
 

Shepelev, V. A., Alexandrov, A. A., Yurov, Y. B. & Alexandrov, I. A. The evolutionary origin of man can be traced in the layers of defunct ancestral alpha satellites flanking the active centromeres of human chromosomes. PLOS Genet. 5, e1000641 (2009).

PubMed 
PubMed Central 

Google Scholar
 

O’Neill, R. J., O’Neill, M. J. & Graves, J. A. Undermethylation associated with retroelement activation and chromosome remodelling in an interspecific mammalian hybrid. Nature 393, 68–72 (1998).

ADS 
PubMed 

Google Scholar
 

Chaisson, M. J. P. et al. Resolving the complexity of the human genome using single-molecule sequencing. Nature 517, 608–611 (2015).

ADS 
PubMed 
CAS 

Google Scholar
 

Gao, Y. et al. A pangenome reference of 36 Chinese populations. Nature 619, 112–121 (2023).

ADS 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Wang, T. et al. The Human Pangenome Project: a global resource to map genomic diversity. Nature 604, 437–446 (2022).

ADS 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Schloissnig, S. et al. Structural variation in 1,019 diverse humans based on long-read sequencing Nature https://doi.org/10.1038/s41586-025-09290-7 (2024).

International HapMap Consortium. The International HapMap Project. Nature 426, 789–796 (2003).


Google Scholar
 

Zook, J. M. et al. Extensive sequencing of seven human genomes to characterize benchmark reference materials. Sci. Data 3, 160025 (2016).

PubMed 
PubMed Central 
CAS 

Google Scholar
 

Sanders, A. D., Falconer, E., Hills, M., Spierings, D. C. J. & Lansdorp, P. M. Single-cell template strand sequencing by Strand-seq enables the characterization of individual homologs. Nat. Protoc. 12, 1151–1176 (2017).

PubMed 
CAS 

Google Scholar
 

Falconer, E. et al. DNA template strand sequencing of single-cells maps genomic rearrangements at high resolution. Nat. Methods 9, 1107–1112 (2012).

PubMed 
PubMed Central 
CAS 

Google Scholar
 

Astashyn, A. et al. Rapid and sensitive detection of genome contamination at scale with FCS-GX. Genome Biol. 25, 60 (2024).

PubMed 
PubMed Central 
CAS 

Google Scholar
 

Rhie, A., Walenz, B. P., Koren, S. & Phillippy, A. M. Merqury: reference-free quality, completeness, and phasing assessment for genome assemblies. Genome Biol. 21, 245 (2020).

PubMed 
PubMed Central 
CAS 

Google Scholar
 

Vollger, M. R. et al. Long-read sequence and assembly of segmental duplications. Nat. Methods 16, 88–94 (2019).

PubMed 
CAS 

Google Scholar
 

Chen, Y., Zhang, Y., Wang, A. Y., Gao, M. & Chong, Z. Accurate long-read de novo assembly evaluation with Inspector. Genome Biol. 22, 312 (2021).

PubMed 
PubMed Central 

Google Scholar
 

Poplin, R. et al. A universal SNP and small-indel variant caller using deep neural networks. Nat. Biotechnol. 36, 983–987 (2018).

PubMed 
CAS 

Google Scholar
 

Huang, N. & Li, H. compleasm: A faster and more accurate reimplementation of BUSCO. Bioinformatics 39, btad595 (2023).

PubMed 
PubMed Central 
CAS 

Google Scholar
 

Kriventseva, E. V. et al. OrthoDB v10: sampling the diversity of animal, plant, fungal, protist, bacterial and viral genomes for evolutionary and functional annotations of orthologs. Nucleic Acids Res. 47, D807–D811 (2019).

PubMed 
CAS 

Google Scholar
 

Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100 (2018).

PubMed 
PubMed Central 
CAS 

Google Scholar
 

Li, H. New strategies to improve minimap2 alignment accuracy. Bioinformatics 37, 4572–4574 (2021).

PubMed 
PubMed Central 
CAS 

Google Scholar
 

Jain, C., Koren, S., Dilthey, A., Phillippy, A. M. & Aluru, S. A fast adaptive algorithm for computing whole-genome homology maps. Bioinformatics 34, i748–i756 (2018).

PubMed 
PubMed Central 
CAS 

Google Scholar
 

Ren, J. & Chaisson, M. J. P. lra: a long read aligner for sequences and contigs. PLoS Comput Biol. 17, e1009078 (2021).

ADS 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Li, H. et al. A synthetic-diploid benchmark for accurate variant-calling evaluation. Nat. Methods 15, 595–597 (2018).

PubMed 
PubMed Central 

Google Scholar
 

Heller, D. & Vingron, M. SVIM-asm: structural variant detection from haploid and diploid genome assemblies. Bioinformatics 36, 5519–5521 (2021).

PubMed 

Google Scholar
 

Smolka, M. et al. Detection of mosaic and population-level structural variants with Sniffles2. Nat. Biotechnol. 42, 1571–1580 (2024).

PubMed 
PubMed Central 
CAS 

Google Scholar
 

Rausch, T. et al. DELLY: structural variant discovery by integrated paired-end and split-read analysis. Bioinformatics 28, i333–i339 (2012).

PubMed 
PubMed Central 
CAS 

Google Scholar
 

Jiang, T. et al. Long-read-based human genomic structural variation detection with cuteSV. Genome Biol. 21, 189 (2020).

PubMed 
PubMed Central 
CAS 

Google Scholar
 

Chen, Y. et al. Deciphering the exact breakpoints of structural variations using long sequencing reads with DeBreak. Nat. Commun. 14, 283 (2023).

ADS 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Heller, D. & Vingron, M. SVIM: structural variant identification using mapped long reads. Bioinformatics 35, 2907–2915 (2019).

PubMed 
PubMed Central 
CAS 

Google Scholar
 

Zheng, Z. et al. Symphonizing pileup and full-alignment for deep learning-based long-read variant calling. Nat. Comput. Sci. 2, 797–803 (2022).

PubMed 

Google Scholar
 

Shafin, K. et al. Haplotype-aware variant calling with PEPPER-Margin-DeepVariant enables high accuracy in nanopore long-reads. Nat. Methods 18, 1322–1332 (2021).

PubMed 
PubMed Central 
CAS 

Google Scholar
 

Smit, A. F. A., Hubley, R. & Green, P. RepeatMasker Open-4.0 (Institute for Systems Biology, 2013).

Storer, J., Hubley, R., Rosen, J., Wheeler, T. J. & Smit, A. F. The Dfam community resource of transposable element families, sequence models, and genome annotations. Mob. DNA 12, 2 (2021).

PubMed 
PubMed Central 
CAS 

Google Scholar
 

Danecek, P. et al. Twelve years of SAMtools and BCFtools. Gigascience 10, giab008 (2021).

PubMed 
PubMed Central 

Google Scholar
 

Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

PubMed 
PubMed Central 

Google Scholar
 

Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).

PubMed 
PubMed Central 
CAS 

Google Scholar
 

Gros, C., Sanders, A. D., Korbel, J. O., Marschall, T. & Ebert, P. ASHLEYS: automated quality control for single-cell Strand-seq data. Bioinformatics 37, 3356–3357 (2021).

PubMed 
PubMed Central 
CAS 

Google Scholar
 

Höps, W. et al. Impact and characterization of serial structural variations across humans and great apes. Nat. Commun. 15, 8007 (2024).

PubMed 
PubMed Central 

Google Scholar
 

Porubsky, D. et al. Inversion polymorphism in a complete human genome assembly. Genome Biol. 24, 100 (2023).

PubMed 
PubMed Central 
CAS 

Google Scholar
 

Numanagic, I. et al. Fast characterization of segmental duplications in genome assemblies. Bioinformatics 34, i706–i714 (2018).

PubMed 
PubMed Central 
CAS 

Google Scholar
 

Benson, G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res. 27, 573–580 (1999).

PubMed 
PubMed Central 
CAS 

Google Scholar
 

Tarailo-Graovac, M. & Chen, N. Using RepeatMasker to identify repetitive elements in genomic sequences. Curr. Protoc. Bioinformatics https://doi.org/10.1002/0471250953.bi0410s25 (2009).

Morgulis, A., Gertz, E. M., Schäffer, A. A. & Agarwala, R. WindowMasker: window-based masker for sequenced genomes. Bioinformatics 22, 134–141 (2006).

PubMed 
CAS 

Google Scholar
 

Pendleton, A. L. et al. Comparison of village dog and wolf genomes highlights the role of the neural crest in dog domestication. BMC Biol. 16, 64 (2018).

PubMed 
PubMed Central 

Google Scholar
 

Mistry, J., Finn, R. D., Eddy, S. R., Bateman, A. & Punta, M. Challenges in homology search: HMMER3 and convergent evolution of coiled-coil regions. Nucleic Acids Res. 41, e121 (2013).

PubMed 
PubMed Central 
CAS 

Google Scholar
 

Krumsiek, J., Arnold, R. & Rattei, T. Gepard: a rapid and sensitive tool for creating dotplots on genome scale. Bioinformatics 23, 1026–1028 (2007).

PubMed 
CAS 

Google Scholar
 

Frankish, A. et al. GENCODE: reference annotation for the human and mouse genomes in 2023. Nucleic Acids Res. 51, D942–D949 (2023).

PubMed 
CAS 

Google Scholar
 

McLaren, W. et al. The Ensembl Variant Effect Predictor. Genome Biol. 17, 122 (2016).

PubMed 
PubMed Central 

Google Scholar
 

Martin, F. J. et al. Ensembl 2023. Nucleic Acids Res. 51, D933–D941 (2023).

PubMed 
CAS 

Google Scholar
 

Lee, B. T. et al. The UCSC Genome Browser database: 2022 update. Nucleic Acids Res. 50, D1115–D1122 (2022).

PubMed 
CAS 

Google Scholar
 

Lindeboom, R. G. H., Supek, F. & Lehner, B. The rules and impact of nonsense-mediated mRNA decay in human cancers. Nat. Genet. 48, 1112–1118 (2016).

PubMed 
PubMed Central 
CAS 

Google Scholar
 

Pardo-Palacios, F. J. et al. SQANTI3: curation of long-read transcriptomes for accurate identification of known and novel isoforms. Nat. Methods 21, 793–797 (2024).

PubMed 
PubMed Central 
CAS 

Google Scholar
 

Robinson, J. T. et al. Integrative Genomics Viewer. Nat. Biotechnol. 29, 24–26 (2011).

PubMed 
PubMed Central 
CAS 

Google Scholar
 

O’Leary, N. A. et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 44, D733–D745 (2016).

PubMed 

Google Scholar
 

Pertea, M. et al. CHESS: a new human gene catalog curated from thousands of large-scale RNA sequencing experiments reveals extensive transcriptional noise. Genome Biol. 19, 208 (2018).

PubMed 
PubMed Central 
CAS 

Google Scholar
 

Larsson, A. AliView: a fast and lightweight alignment viewer and editor for large datasets. Bioinformatics 30, 3276–3278 (2014).

PubMed 
PubMed Central 
CAS 

Google Scholar
 

Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

PubMed 
PubMed Central 

Google Scholar
 

ENCODE Project Consortiumet al. Expanded encyclopaedias of DNA elements in the human and mouse genomes. Nature 583, 699–710 (2020).

ADS 

Google Scholar
 

Sollis, E. et al. The NHGRI-EBI GWAS Catalog: knowledgebase and deposition resource. Nucleic Acids Res. 51, D977–D985 (2023).

PubMed 
CAS 

Google Scholar
 

Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).

PubMed 
PubMed Central 
CAS 

Google Scholar
 

Hickey, G. et al. Pangenome graph construction from genome alignments with Minigraph-Cactus. Nat. Biotechnol. 42, 663–673 (2024).

PubMed 
CAS 

Google Scholar
 

Hofmeister, R. J., Ribeiro, D. M., Rubinacci, S. & Delaneau, O. Accurate rare variant phasing of whole-genome and whole-exome sequencing data in the UK Biobank. Nat. Genet. 55, 1243–1249 (2023).

PubMed 
PubMed Central 
CAS 

Google Scholar
 

Kurtz, S. et al. Versatile and open software for comparing large genomes. Genome Biol. 5, R12 (2004).

PubMed 
PubMed Central 

Google Scholar
 

Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinformatics 10, 421 (2009).

PubMed 
PubMed Central 

Google Scholar
 

Audano, P., Christine, B. & Human Genome Structural Variation Consortium. A method for calling complex SVs. Zenodo https://doi.org/10.5281/zenodo.13800981 (2024).

Bellman, R. On a routing problem. Quart. Appl. Math. 16, 87–90 (1958).

MathSciNet 

Google Scholar
 

Yoo, D. et al. Complete sequencing of ape genomes. Nature 641, 401–418 (2025).

Prodanov, T. & Bansal, V. Robust and accurate estimation of paralog-specific copy number for duplicated genes using whole-genome sequencing. Nat. Commun. 13, 3221 (2022).

ADS 
PubMed 
PubMed Central 

Google Scholar
 

Chen, X. et al. Spinal muscular atrophy diagnosis and carrier screening from genome sequencing data. Genet. Med. 22, 945–953 (2020).

PubMed 
PubMed Central 
CAS 

Google Scholar
 

Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).

PubMed 
PubMed Central 
CAS 

Google Scholar
 

Li, H. Identifying centromeric satellites with dna-brnn. Bioinformatics 35, 4408–4410 (2019).

PubMed 
PubMed Central 
CAS 

Google Scholar
 

R Core Team. R: A Language and Environment for Statistical Computing. https://www.R-project.org/ (R Foundation for Statistical Computing, 2020).

Wickham, H. Ggplot2: Elegant Graphics for Data Analysis (Springer, 2009).

McNulty, S. M. & Sullivan, B. A. Alpha satellite DNA biology: finding function in the recesses of the genome. Chromosome Res. 26, 115–138 (2018).

PubMed 
PubMed Central 
CAS 

Google Scholar
 

Vollger, M. R., Kerpedjiev, P., Phillippy, A. M. & Eichler, E. E. StainedGlass: interactive visualization of massive tandem repeat structures with identity heatmaps. Bioinformatics 38, 2049–2051 (2022).

PubMed 
PubMed Central 
CAS 

Google Scholar
 

Mastrorosa, F. K. et al. Identification and annotation of centromeric hypomethylated regions with CDR-Finder. Bioinformatics 40, btae733 (2024).

PubMed 
PubMed Central 
CAS 

Google Scholar
 

Ebert, P. hgsvc/phase3-main-pub: v1.1 HGSVC phase 3 revision stage/ZENODO (v1.1). Zenodo https://doi.org/10.5281/zenodo.14546729 (2024).