Luan, S. & Wang, C. Calcium signaling mechanisms across kingdoms. Annu. Rev. Cell Dev. Biol. 37, 311–340 (2021).

CAS 
PubMed 

Google Scholar
 

Stock, C. et al. Fast-forward on P-type ATPases: recent advances on structure and function. Biochem. Soc. Trans. 51, 1347–1360 (2023).

CAS 
PubMed 

Google Scholar
 

Vulpe, C., Levinson, B., Whitney, S., Packman, S. & Gitschier, J. Isolation of a candidate gene for Menkes disease and evidence that it encodes a copper-transporting ATPase. Nat. Genet. 3, 7–13 (1993).

CAS 
PubMed 

Google Scholar
 

Jacobsen, N. J. et al. ATP2A2 mutations in Darier’s disease and their relationship to neuropsychiatric phenotypes. Hum. Mol. Genet. 8, 1631–1636 (1999).

CAS 
PubMed 

Google Scholar
 

Odermatt, A. et al. The mutation of Pro789 to Leu reduces the activity of the fast-twitch skeletal muscle sarco(endo)plasmic reticulum Ca2+ ATPase (SERCA1) and is associated with Brody disease. Hum. Genet. 106, 482–491 (2000).

CAS 
PubMed 

Google Scholar
 

Sudbrak, R. et al. Hailey-Hailey disease is caused by mutations in ATP2C1 encoding a novel Ca2+ pump. Hum. Mol. Genet. 9, 1131–1140 (2000).

CAS 
PubMed 

Google Scholar
 

De Fusco, M. et al. Haploinsufficiency of ATP1A2 encoding the Na+/K+ pump α2 subunit associated with familial hemiplegic migraine type 2. Nat. Genet. 33, 192–196 (2003).

PubMed 

Google Scholar
 

de Carvalho Aguiar, P. et al. Mutations in the Na+/K+-ATPase α3 gene ATP1A3 are associated with rapid-onset dystonia parkinsonism. Neuron 43, 169–175 (2004).

PubMed 

Google Scholar
 

Brini, M. et al. Plasma-membrane calcium pumps and hereditary deafness. Biochem. Soc. Trans. 35, 913–918 (2007).

CAS 
PubMed 

Google Scholar
 

Schwinger, R. H., Bundgaard, H., Muller-Ehmsen, J. & Kjeldsen, K. The Na, K-ATPase in the failing human heart. Cardiovasc. Res. 57, 913–920 (2003).

CAS 
PubMed 

Google Scholar
 

Schubert, M. L. & Peura, D. A. Control of gastric acid secretion in health and disease. Gastroenterology 134, 1842–1860 (2008).

CAS 
PubMed 

Google Scholar
 

Dyla, M., Basse Hansen, S., Nissen, P. & Kjaergaard, M. Structural dynamics of P-type ATPase ion pumps. Biochem. Soc. Trans. 47, 1247–1257 (2019).

CAS 
PubMed 

Google Scholar
 

Albers, R. W. Biochemical aspects of active transport. Annu. Rev. Biochem. 36, 727–756 (1967).

CAS 
PubMed 

Google Scholar
 

Moller, J. V., Olesen, C., Winther, A. M. & Nissen, P. The sarcoplasmic Ca2+-ATPase: design of a perfect chemi-osmotic pump. Q. Rev. Biophys. 43, 501–566 (2010).

PubMed 

Google Scholar
 

Wu, M. et al. Structure and transport mechanism of the human calcium pump SPCA1. Cell Res. 33, 533–545 (2023).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Gong, D. et al. Structure of the human plasma membrane Ca2+-ATPase 1 in complex with its obligatory subunit neuroplastin. Nat. Commun. 9, 3623 (2018).

ADS 
PubMed 
PubMed Central 

Google Scholar
 

Berridge, M. J., Lipp, P. & Bootman, M. D. The versatility and universality of calcium signalling. Nat. Rev. Mol. Cell Biol. 1, 11–21 (2000).

CAS 
PubMed 

Google Scholar
 

Constantin, C. E. et al. Ca2+-pumping by PMCA-Neuroplastin complexes operates in the kiloHertz-range. Nat. Commun. https://doi.org/10.1038/s41467-025-62735-5 (2025).

Schmidt, N. et al. Neuroplastin and basigin are essential auxiliary subunits of plasma membrane Ca2+-ATPases and key regulators of Ca2+ clearance. Neuron 96, 827–838.e9 (2017).

CAS 
PubMed 

Google Scholar
 

Niggli, V., Adunyah, E. S. & Carafoli, E. Acidic phospholipids, unsaturated fatty acids, and limited proteolysis mimic the effect of calmodulin on the purified erythrocyte Ca2+-ATPase. J. Biol. Chem. 256, 8588–8592 (1981).

CAS 
PubMed 

Google Scholar
 

Missiaen, L., Wuytack, F., Raeymaekers, L., De Smedt, H. & Casteels, R. Polyamines and neomycin inhibit the purified plasma-membrane Ca2+ pump by interacting with associated polyphosphoinositides. Biochem. J. 261, 1055–1058 (1989).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Peinelt, C. & Apell, H. J. Time-resolved charge movements in the sarcoplasmatic reticulum Ca-ATPase. Biophys. J. 86, 815–824 (2004).

ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Dode, L. et al. Dissection of the functional differences between human secretory pathway Ca2+/Mn2+-ATPase (SPCA) 1 and 2 isoenzymes by steady-state and transient kinetic analyses. J. Biol. Chem. 281, 3182–3189 (2006).

CAS 
PubMed 

Google Scholar
 

Liang, M. et al. Identification of a pool of non-pumping Na/K-ATPase. J. Biol. Chem. 282, 10585–10593 (2007).

CAS 
PubMed 

Google Scholar
 

Schultz, J. M. et al. Modification of human hearing loss by plasma-membrane calcium pump PMCA2. N. Engl. J. Med. 352, 1557–1564 (2005).

CAS 
PubMed 

Google Scholar
 

Ficarella, R. et al. A functional study of plasma-membrane calcium-pump isoform 2 mutants causing digenic deafness. Proc. Natl Acad. Sci. USA 104, 1516–1521 (2007).

ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Kabashima, Y., Ogawa, H., Nakajima, R. & Toyoshima, C. What ATP binding does to the Ca2+ pump and how nonproductive phosphoryl transfer is prevented in the absence of Ca2. Proc. Natl Acad. Sci. USA 117, 18448–18458 (2020).

ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Mintz, E., Mata, A. M., Forge, V., Passafiume, M. & Guillain, F. The modulation of Ca2+ binding to sarcoplasmic reticulum ATPase by ATP analogues is pH-dependent. J. Biol. Chem. 270, 27160–27164 (1995).

CAS 
PubMed 

Google Scholar
 

Winther, A. M. et al. The sarcolipin-bound calcium pump stabilizes calcium sites exposed to the cytoplasm. Nature 495, 265–269 (2013).

ADS 
CAS 
PubMed 

Google Scholar
 

Beesley, P. W., Herrera-Molina, R., Smalla, K. H. & Seidenbecher, C. The neuroplastin adhesion molecules: key regulators of neuronal plasticity and synaptic function. J. Neurochem. 131, 268–283 (2014).

CAS 
PubMed 

Google Scholar
 

Rathod, N. et al. Nothing regular about the regulins: distinct functional properties of SERCA transmembrane peptide regulatory subunits. Int. J. Mol. Sci. 22, 8891 (2021).

Boudkkazi, S. et al. A noelin-organized extracellular network of proteins required for constitutive and context-dependent anchoring of AMPA-receptors. Neuron 111, 2544–2556.e9 (2023).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Chen, Z. et al. Cryo-EM structures of human SPCA1a reveal the mechanism of Ca2+/Mn2+ transport into the Golgi apparatus. Sci. Adv. 9, eadd9742 (2023).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Hansen, S. B. et al. The crystal structure of the Ca2+-ATPase 1 from Listeria monocytogenes reveals a pump primed for dephosphorylation. J. Mol. Biol. 433, 167015 (2021).

CAS 
PubMed 

Google Scholar
 

Zhang, Y. et al. Multiple sub-state structures of SERCA2b reveal conformational overlap at transition steps during the catalytic cycle. Cell Rep. 41, 111760 (2022).

CAS 
PubMed 

Google Scholar
 

Roderer, D., Schubert, E., Sitsel, O. & Raunser, S. Towards the application of Tc toxins as a universal protein translocation system. Nat. Commun. 10, 5263 (2019).

ADS 
PubMed 
PubMed Central 

Google Scholar
 

Toyoshima, C., Nakasako, M., Nomura, H. & Ogawa, H. Crystal structure of the calcium pump of sarcoplasmic reticulum at 2.6 Å resolution. Nature 405, 647–655 (2000).

ADS 
CAS 
PubMed 

Google Scholar
 

Inesi, G., Kurzmack, M., Coan, C. & Lewis, D. E. Cooperative calcium binding and ATPase activation in sarcoplasmic reticulum vesicles. J. Biol. Chem. 255, 3025–3031 (1980).

CAS 
PubMed 

Google Scholar
 

Takahashi, K. & Kitamura, K. A point mutation in a plasma membrane Ca2+-ATPase gene causes deafness in Wriggle mouse Sagami. Biochem. Biophys. Res. Commun. 261, 773–778 (1999).

CAS 
PubMed 

Google Scholar
 

Toyoshima, C. et al. Crystal structures of the calcium pump and sarcolipin in the Mg2+-bound E1 state. Nature 495, 260–264 (2013).

ADS 
CAS 
PubMed 

Google Scholar
 

Espinoza-Fonseca, L. M. The Ca2+-ATPase pump facilitates bidirectional proton transport across the sarco/endoplasmic reticulum. Mol. Biosyst. 13, 633–637 (2017).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Bublitz, M. et al. Ion pathways in the sarcoplasmic reticulum Ca2+-ATPase. J. Biol. Chem. 288, 10759–10765 (2013).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Ahmad, S. et al. Structural basis for effector transmembrane domain recognition by type VI secretion system chaperones. eLife 9, e62816 (2020).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Spiden, S. L. et al. The novel mouse mutation Oblivion inactivates the PMCA2 pump and causes progressive hearing loss. PLoS Genet. 4, e1000238 (2008).

PubMed 
PubMed Central 

Google Scholar
 

Rahimi, M. J. et al. De novo variants in ATP2B1 lead to neurodevelopmental delay. Am. J. Hum. Genet. 109, 944–952 (2022).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Choquette, D. et al. Regulation of plasma membrane Ca2+ ATPases by lipids of the phosphatidylinositol cycle. Biochem. Biophys. Res. Commun. 125, 908–915 (1984).

CAS 
PubMed 

Google Scholar
 

Iwasaki, H. et al. A voltage-sensing phosphatase, Ci-VSP, which shares sequence identity with PTEN, dephosphorylates phosphatidylinositol 4,5-bisphosphate. Proc. Natl Acad. Sci. USA 105, 7970–7975 (2008).

ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Sehgal, P. et al. Inhibition of the sarco/endoplasmic reticulum (ER) Ca2+-ATPase by thapsigargin analogs induces cell death via ER Ca2+ depletion and the unfolded protein response. J. Biol. Chem. 292, 19656–19673 (2017).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Espinoza-Fonseca, L. M., Autry, J. M., Ramirez-Salinas, G. L. & Thomas, D. D. Atomic-level mechanisms for phospholamban regulation of the calcium pump. Biophys. J. 108, 1697–1708 (2015).

ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Driggers, C. M., Kuo, Y. Y., Zhu, P., ElSheikh, A. & Shyng, S. L. Structure of an open KATP channel reveals tandem PIP2 binding sites mediating the Kir6.2 and SUR1 regulatory interface. Nat. Commun. 15, 2502 (2024).

ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Gao, S., Yao, X. & Yan, N. Structure of human Cav2.2 channel blocked by the painkiller ziconotide. Nature 596, 143–147 (2021).

ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Hansen, S. B., Tao, X. & MacKinnon, R. Structural basis of PIP2 activation of the classical inward rectifier K+ channel Kir2.2. Nature 477, 495–498 (2011).

ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Lu, Y. et al. Structural insights into the conformational changes of BTR1/SLC4A11 in complex with PIP2. Nat. Commun. 14, 6157 (2023).

ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Sun, J. & MacKinnon, R. Structural basis of human KCNQ1 modulation and gating. Cell 180, 340–347.e9 (2020).

CAS 
PubMed 

Google Scholar
 

Yin, Y. et al. Activation mechanism of the mouse cold-sensing TRPM8 channel by cooling agonist and PIP2. Science 378, eadd1268 (2022).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Zhang, W. et al. Structural and functional insights into the lipid regulation of human anion exchanger 2. Nat. Commun. 15, 759 (2024).

ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Lindner, P., Christensen, S. B., Nissen, P., Moller, J. V. & Engedal, N. Cell death induced by the ER stressor thapsigargin involves death receptor 5, a non-autophagic function of MAP1LC3B, and distinct contributions from unfolded protein response components. Cell Commun. Signal. 18, 12 (2020).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Denmeade, S. R. et al. Prostate-specific antigen-activated thapsigargin prodrug as targeted therapy for prostate cancer. J. Natl Cancer Inst. 95, 990–1000 (2003).

CAS 
PubMed 

Google Scholar
 

Denmeade, S. R. et al. Engineering a prostate-specific membrane antigen-activated tumor endothelial cell prodrug for cancer therapy. Sci. Transl. Med. 4, 140ra186 (2012).


Google Scholar
 

Quynh Doan, N. T. & Christensen, S. B. Thapsigargin, origin, chemistry, structure–activity relationships and prodrug development. Curr. Pharm. Des. 21, 5501–5517 (2015).

CAS 
PubMed 

Google Scholar
 

Murata, Y., Iwasaki, H., Sasaki, M., Inaba, K. & Okamura, Y. Phosphoinositide phosphatase activity coupled to an intrinsic voltage sensor. Nature 435, 1239–1243 (2005).

ADS 
CAS 
PubMed 

Google Scholar
 

Tabata, S. et al. Electron microscopic detection of single membrane proteins by a specific chemical labeling. iScience 22, 256–268 (2019).

ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Lee, L. F. R. & Dall, P. M. Concurrent agreement between ActiGraph® and activPAL® in measuring moderate to vigorous intensity physical activity for adults. Med. Eng. Phys. 74, 82–88 (2019).

PubMed 

Google Scholar
 

Drake, J. C., Allegra, C. J., Curt, G. A. & Chabner, B. A. Competitive protein-binding assay for trimetrexate. Cancer Treat. Rep. 69, 641–644 (1985).

CAS 
PubMed 

Google Scholar
 

Schulte, U. et al. Mitochondrial complexome reveals quality-control pathways of protein import. Nature 614, 153–159 (2023).

ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Kabsch, W. Xds. Acta Crystallogr. D Biol. Crystallogr. 66, 125–132 (2010).

ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).

ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).

ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Stabrin, M. et al. TranSPHIRE: automated and feedback-optimized on-the-fly processing for cryo-EM. Nat. Commun. 11, 5716 (2020).

ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Rohou, A. & Grigorieff, N. CTFFIND4: fast and accurate defocus estimation from electron micrographs. J. Struct. Biol. 192, 216–221 (2015).

PubMed 
PubMed Central 

Google Scholar
 

Wagner, T. et al. SPHIRE-crYOLO is a fast and accurate fully automated particle picker for cryo-EM. Commun. Biol. 2, 218 (2019).

PubMed 
PubMed Central 

Google Scholar
 

Yang, Z., Fang, J., Chittuluru, J., Asturias, F. J. & Penczek, P. A. Iterative stable alignment and clustering of 2D transmission electron microscope images. Structure 20, 237–247 (2012).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Moriya, T. et al. High-resolution single particle analysis from electron cryo-microscopy images using SPHIRE. J. Vis. Exp. https://doi.org/10.3791/55448 (2017).

PubMed 
PubMed Central 

Google Scholar
 

Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).

CAS 
PubMed 

Google Scholar
 

Zivanov, J. et al. New tools for automated high-resolution cryo-EM structure determination in RELION-3. eLife 7, e42166 (2018).

Pettersen, E. F. et al. UCSF Chimera — a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

CAS 
PubMed 

Google Scholar
 

Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Kaur, S. et al. Local computational methods to improve the interpretability and analysis of cryo-EM maps. Nat. Commun. 12, 1240 (2021).

ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Williams, C. J. et al. MolProbity: more and better reference data for improved all-atom structure validation. Protein Sci. 27, 293–315 (2018).

CAS 
PubMed 

Google Scholar
 

Meng, E. C. et al. UCSF ChimeraX: tools for structure building and analysis. Protein Sci. 32, e4792 (2023).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Krissinel, E. & Henrick, K. Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 372, 774–797 (2007).

CAS 
PubMed 

Google Scholar
 

Krissinel, E. Crystal contacts as nature’s docking solutions. J. Comput. Chem. 31, 133–143 (2010).

CAS 
PubMed 

Google Scholar
 

de Vries, S. J. et al. HADDOCK versus HADDOCK: new features and performance of HADDOCK2.0 on the CAPRI targets. Proteins 69, 726–733 (2007).

PubMed 

Google Scholar
 

Dominguez, C., Boelens, R. & Bonvin, A. M. HADDOCK: a protein–protein docking approach based on biochemical or biophysical information. J. Am. Chem. Soc. 125, 1731–1737 (2003).

CAS 
PubMed 

Google Scholar
 

Laskowski, R. A. & Swindells, M. B. LigPlot+: multiple ligand–protein interaction diagrams for drug discovery. J. Chem. Inf. Model. 51, 2778–2786 (2011).

CAS 
PubMed 

Google Scholar
 

Sondergaard, C. R., Olsson, M. H., Rostkowski, M. & Jensen, J. H. Improved treatment of ligands and coupling effects in empirical calculation and rationalization of pKa values. J. Chem. Theory Comput. 7, 2284–2295 (2011).

CAS 
PubMed 

Google Scholar