Manhar AK, Bashir Y, Saikia D, Nath D, Gupta K, Konwar BK, et al. Cellulolytic potential of probiotic Bacillus Subtilis AMS6 isolated from traditional fermented soybean (Churpi): an in-vitro study with regards to application as an animal feed additive. Microbiol Res. 2016;186–187:62–70.

PubMed 

Google Scholar
 

Li GQ, Wang XZ, Liu Y, Yang YZ, Wang C, Gong SM, He DQ, Wang HY. The effect of Bacillus subtilis and fructooligosaccharide as antibiotic substituent on Goose performance parameters, serum biochemical indicators and intestinal morphology. Kafkas Univ Vet Fak Derg. 2023;29(3):247–54.


Google Scholar
 

Srivastava S, Bombaywala S, Jakhesara SJ, Patil NV, Joshi CG, Purohit HJ, et al. Potential of camel rumen derived Bacillus subtilis and Bacillus velezensis strains for application in plant biomass hydrolysis. Mol Genet Genomics. 2023;298:361–74.

CAS 
PubMed 

Google Scholar
 

Ciptaan G, Mirnawati, Martaguri I, Fajrona K, Srifani A. Enhancing the quality and nutrient content of soybean milk waste as poultry feed through fermentation with Bacillus subtilis. Int J Veterinary Sci. 2024;13(2):154–9.


Google Scholar
 

Devi PC, Mirnawati, Marlida Y. The combination of Bacillus subtilis with Lactobacillus fermentum in improving the quality and nutrient contents of fermented palm kernel meal (FPKM). Int J Veterinary Sci. 2023;12(4):566–71.


Google Scholar
 

Li Y, Kuramae EE, Nasir F, Wang E, Zhang Z, Li J, et al. Addition of cellulose degrading bacterial agents promoting keystone fungal-mediated cellulose degradation during aerobic composting: construction the complex co-degradation system. Bioresour Technol. 2023;381:129132.

CAS 
PubMed 

Google Scholar
 

Schallmey M, Singh A, Ward OP. Developments in the use of Bacillus species for industrial production. Can J Microbiol. 2004;50:1–17.

CAS 
PubMed 

Google Scholar
 

Yu H, Rahman A, Sadique MA, Batool T, Imtiaz B, Zaman MA, Riaz T, Anwar MZ, Waqas M. Impact of Bacillus subtilis probiotic on growth performance, bone health, intestinal morphology, and cecal microbiota in Cobb broiler chicks. Pak Vet J. 2024;44(4):1243–8.

CAS 

Google Scholar
 

Ben Ghalib K, Chadli M, Daştan SD, Elmtili N. Isolation and molecular identification of cellulose-degrading bacteria from rumen sheep ‘’ovis aries’’ and evaluation of their cellulase production. Sci Afr. 2024;26:e02439.

CAS 

Google Scholar
 

Deng B, Chen Y, Gong X, Dai Y, Zhan K, Lin M, et al. Effects of Bacillus megatherium 1259 on growth performance, nutrient digestibility, rumen fermentation, and blood biochemical parameters in Holstein bull calves. Anim (Basel). 2021;11(8):2379.

Lewin GR, Davis NM, McDonald BR, Book AJ, Chevrette MG, Suh S, et al. Long-Term cellulose enrichment selects for highly cellulolytic consortia and competition for public goods. mSystems. 2022;7:e0151921.

PubMed 

Google Scholar
 

Li H, Yu Q, Li T, Shao L, Su M, Zhou H, et al. Rumen microbiome and metabolome of Tibetan sheep (Ovis aries) reflect animal age and nutritional requirement. Front Vet Sci. 2020;7:609.

Gharechahi J, Vahidi MF, Sharifi G, Ariaeenejad S, Ding X-Z, Han J-L, et al. Lignocellulose degradation by rumen bacterial communities: new insights from metagenome analyses. Environ Res. 2023;229:115925.

CAS 
PubMed 

Google Scholar
 

Dar MA, Pawar KD, Pandit RS. Prospecting the gut fluid of giant African land snail, Achatina fulica for cellulose degrading bacteria. Int Biodeterior Biodegrad. 2018;126:103–11.

CAS 

Google Scholar
 

Yun T, Linyou C, Geng Z, Chenggang D, Shuai C, Xiangyang L, et al. Screening, identification and Enzyme-Producing study of A high Cellulase-producing strain. Chem Bioeng. 2016;33:34–9.


Google Scholar
 

Medema MH, Blin K, Cimermancic P, de Jager V, Zakrzewski P, Fischbach MA, et al. AntiSMASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences. Nucleic Acids Res. 2011;39:W339–46.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Syifa DA, Widyastuti Y, Herlina N, Hasbuna A, Al Islahi ASH, Triratna L, Mayasari N. Isolation and amplification of the phy gene coding phytase from Bacillus Sp. Kafkas Univ Vet Fak Derg. 2023;29(6):659–63.


Google Scholar
 

Rashid S, Tahir S, Akhtar T, Ashraf R, Altaf S, Qamar W. Bacillus-based probiotics: an antibiotic alternative for the treatment of salmonellosis in poultry. Pak Vet J. 2023;43(1):167–73.

CAS 

Google Scholar
 

Deng KD, Xiao Y, Ma T, Tu Y, Diao QY, Chen YH, et al. Ruminal fermentation, nutrient metabolism, and methane emissions of sheep in response to dietary supplementation with Bacillus licheniformis. Anim Feed Sci Technol. 2018;241:38–44.

CAS 

Google Scholar
 

Junfeng L, Xianjun Y, Zhihao D, Desta ST, Lei C, Xi B, et al. Isolation and identification of facultatively anaerobic cellulolytic bacterium in the rumen of Tibetan Yaks (Bos grunniens). Acta Prataculturae Sinica. 2017;16:176–84.


Google Scholar
 

Qingfang Z, Zekun W, Nan J, Shuang Y, Naiyu C. Screening, identification and enzymatic characteristics of a cellulose-producing strain from rumen. Chnia Brew. 2019;38:47–52.


Google Scholar
 

Ejaz A, Pawlik TM. Contemporary management of metastatic colorectal cancer: a precision medicine approach. 2022.

Chaillou S, Champomier-Vergès MC, Cornet M, Crutz-Le Coq AM, Dudez AM, Martin V, et al. The complete genome sequence of the meat-borne lactic acid bacterium Lactobacillus sakei 23K. Nat Biotechnol. 2005;23:1527–33.

CAS 
PubMed 

Google Scholar
 

Park D, Ciezki K, van der Hoeven R, Singh S, Reimer D, Bode HB, et al. Genetic analysis of xenocoumacin antibiotic production in the mutualistic bacterium Xenorhabdus nematophila. Mol Microbiol. 2009;73:938–49.

CAS 
PubMed 

Google Scholar
 

Linton SM, Review. The structure and function of cellulase (endo-β-1,4-glucanase) and hemicellulase (β-1,3-glucanase and endo-β-1,4-mannase) enzymes in invertebrates that consume materials ranging from microbes, algae to leaf litter. Comp Biochem Physiol B Biochem Mol Biol. 2020;240:110354.

CAS 
PubMed 

Google Scholar
 

Mendonça M, Barroca M, Collins T. Endo-1,4-β-xylanase-containing glycoside hydrolase families: characteristics, singularities and similarities. Biotechnol Adv. 2023;65:108148.

PubMed 

Google Scholar
 

Sharma P, Tomar SK, Goswami P, Sangwan V, Singh R. Antibiotic resistance among commercially available probiotics. Food Res Int. 2014;57:176–95.

CAS 

Google Scholar
 

Van Soest PJ, Robertson JB, Lewis BA. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J Dairy Sci. 1991;74:3583–97.