Suzuki T. Catabolism of N-glycoproteins in mammalian cells: molecular mechanisms and genetic disorders related to the processes. Mol Asp Med. 2016;51:89–103.

CAS 

Google Scholar
 

Lehrbach NJ, Breen PC, Ruvkun G. Protein sequence editing of SKN-1A/Nrf1 by peptide:N-glycanase controls proteasome gene expression. Cell. 2019;177:737–50.e15.

CAS 

Google Scholar
 

Kim HM, Han JW, Chan JY. Nuclear factor erythroid-2 like 1 (NFE2L1): structure, function and regulation. Gene. 2016;584:17–25.

CAS 

Google Scholar
 

Suzuki T, Park H, Hollingsworth NM, Sternglanz R, Lennarz WJ. PNG1, a yeast gene encoding a highly conserved peptide:N-glycanase. J Cell Biol. 2000;149:1039–52.

CAS 

Google Scholar
 

Serafini-Fracassini D, Della Mea M, Parrotta L, Faleri C, Cai G, Del Duca S, et al. AtPng1 knockout mutant of Arabidopsis thaliana shows a juvenile phenotype, morpho-functional changes, altered stress response and cell wall modifications. Plant Physiol Biochem. 2021;167:11–21.

CAS 

Google Scholar
 

Maerz S, Funakoshi Y, Negishi Y, Suzuki T, Seiler S. The Neurospora peptide:N-glycanase ortholog PNG1 is essential for cell polarity despite its lack of enzymatic activity. J Biol Chem. 2010;285:2326–32.

CAS 

Google Scholar
 

Seiler S, Plamann M. The genetic basis of cellular morphogenesis in the filamentous fungus Neurospora crassa. Mol Biol Cell. 2003;14:4352–64.

CAS 

Google Scholar
 

Habibi-Babadi N, Su A, de Carvalho CE, Colavita A. The N-glycanase png-1 acts to limit axon branching during organ formation in Caenorhabditis elegans. J Neurosci. 2010;30:1766–76.

CAS 

Google Scholar
 

Kong J, Peng M, Ostrovsky J, Kwon YJ, Oretsky O, McCormick EM, et al. Mitochondrial function requires NGLY1. Mitochondrion. 2018;38:6–16.

CAS 

Google Scholar
 

Lehrbach NJ, Ruvkun G. Endoplasmic reticulum-associated SKN-1A/Nrf1 mediates a cytoplasmic unfolded protein response and promotes longevity. Elife. 2019;8:e44425.

CAS 

Google Scholar
 

Iyer S, Mast JD, Tsang H, Rodriguez TP, DiPrimio N, Prangley M, et al. Drug screens of NGLY1 deficiency in worm and fly models reveal catecholamine, NRF2 and anti-inflammatory-pathway activation as potential clinical approaches. Dis Model Mech. 2019;12:dmm040576.

CAS 

Google Scholar
 

Lehrbach NJ, Ruvkun G. Proteasome dysfunction triggers activation of SKN-1A/Nrf1 by the aspartic protease DDI-1. Elife. 2016;5:e17721.


Google Scholar
 

Yanagi KS, Jochim B, Kunjo SO, Breen P, Ruvkun G, Lehrbach N. Mutations in nucleotide metabolism genes bypass proteasome defects in png-1/NGLY1-deficient Caenorhabditis elegans. PLoS Biol. 2024;22:e3002720.

CAS 

Google Scholar
 

Funakoshi Y, Negishi Y, Gergen JP, Seino J, Ishii K, Lennarz WJ, et al. Evidence for an essential deglycosylation-independent activity of PNGase in Drosophila melanogaster. PLoS One. 2010;5:e10545.


Google Scholar
 

Galeone A, Adams JM, Matsuda S, Presa MF, Pandey A, Han SY, et al. Tissue-specific regulation of BMP signaling by Drosophila N-glycanase 1. Elife. 2017;6:e27612.


Google Scholar
 

Han SY, Pandey A, Moore T, Galeone A, Duraine L, Cowan TM, et al. A conserved role for AMP-activated protein kinase in NGLY1 deficiency. PLoS Genet. 2020;16:e1009258.

CAS 

Google Scholar
 

Pandey A, Galeone A, Han SY, Story BA, Consonni G, Mueller WF, et al. Gut barrier defects, intestinal immune hyperactivation and enhanced lipid catabolism drive lethality in NGLY1-deficient Drosophila. Nat Commun. 2023;14:5667.

CAS 

Google Scholar
 

Galeone A, Adams JM, Matsuda S, Presa MF, Pandey A, Han SY, et al. Regulation of BMP4/Dpp retrotranslocation and signaling by deglycosylation. Elife. 2020;9:e55596.

CAS 

Google Scholar
 

Pandey A, Jafar-Nejad H. Tracing the NGLY1 footprints: insights from Drosophila. J Biochem. 2022;171:153–60.

CAS 

Google Scholar
 

Fujihira H, Masahara-Negishi Y, Tamura M, Huang C, Harada Y, Wakana S, et al. Lethality of mice bearing a knockout of the Ngly1-gene is partially rescued by the additional deletion of the Engase gene. PLoS Genet. 2017;13:e1006696.


Google Scholar
 

Asahina M, Fujinawa R, Fujihira H, Masahara-Negishi Y, Andou T, Tozawa R, et al. JF1/B6F1 Ngly1(-/-) mouse as an isogenic animal model of NGLY1 deficiency. Proc Jpn Acad Ser B Phys Biol Sci. 2021;97:89–102.

CAS 

Google Scholar
 

Need AC, Shashi V, Hitomi Y, Schoch K, Shianna KV, McDonald MT, et al. Clinical application of exome sequencing in undiagnosed genetic conditions. J Med Genet. 2012;49:353–61.

CAS 

Google Scholar
 

Abuduxikuer K, Zou L, Wang L, Chen L, Wang JS. Novel NGLY1 gene variants in Chinese children with global developmental delay, microcephaly, hypotonia, hypertransaminasemia, alacrimia, and feeding difficulty. J Hum Genet. 2020;65:387–96.

CAS 

Google Scholar
 

Bosch DG, Boonstra FN, de Leeuw N, Pfundt R, Nillesen WM, de Ligt J, et al. Novel genetic causes for cerebral visual impairment. Eur J Hum Genet. 2016;24:660–5.

CAS 

Google Scholar
 

Caglayan AO, Comu S, Baranoski JF, Parman Y, Kaymakçalan H, Akgumus GT, et al. NGLY1 mutation causes neuromotor impairment, intellectual disability, and neuropathy. Eur J Med Genet. 2015;58:39–43.


Google Scholar
 

Chang CA, Wei XC, Martin SR, Sinasac DS, Al-Hertani W. Transiently elevated plasma methionine, S-adenosylmethionine and S-adenosylhomocysteine: unreported laboratory findings in a patient with NGLY1 deficiency, a congenital disorder of deglycosylation. JIMD Rep. 2019;49:21–29.


Google Scholar
 

Dabaj I, Sudrié-Arnaud B, Lecoquierre F, Raymond K, Ducatez F, Guerrot AM, et al. NGLY1 deficiency: a rare newly described condition with a typical presentation. Life. 2021;11:187.


Google Scholar
 

Enns GM, Shashi V, Bainbridge M, Gambello MJ, Zahir FR, Bast T, et al. Mutations in NGLY1 cause an inherited disorder of the endoplasmic reticulum-associated degradation pathway. Genet Med. 2014;16:751–8.

CAS 

Google Scholar
 

Frater CH, Ruzhnikov M, Beres S, Alcorn D, Shue A, Levy RJ. Ocular features of NGLY1 deficiency from a prospective longitudinal cohort. J AAPOS. 2024;28:103925.


Google Scholar
 

Ge H, Wu Q, Lu H, Huang Y, Zhou T, Tan D, et al. Two novel compound heterozygous mutations in NGLY1as a cause of congenital disorder of deglycosylation: a case presentation. BMC Med Genet. 2020;21:135.

CAS 

Google Scholar
 

Heeley J, Shinawi M. Multi-systemic involvement in NGLY1-related disorder caused by two novel mutations. Am J Med Genet A. 2015;167A:816–20.


Google Scholar
 

Kalfon L, Baydany M, Samra N, Heno N, Segal Z, Eran A, et al. Congenital hypotonia: cracking a SAGA of consanguineous kindred harboring four genetic variants. Mol Genet Genom Med. 2022;10:e1849.

CAS 

Google Scholar
 

Kariminejad A, Shakiba M, Shams M, Namiranian P, Eghbali M, Talebi S, et al. NGLY1 deficiency: novel variants and literature review. Eur J Med Genet. 2021;64:104146.

CAS 

Google Scholar
 

Lam C, Ferreira C, Krasnewich D, Toro C, Latham L, Zein WM, et al. Prospective phenotyping of NGLY1-CDDG, the first congenital disorder of deglycosylation. Genet Med. 2017;19:160–8.

CAS 

Google Scholar
 

Levy RJ, Frater CH, Gallentine WB, Phillips JM, Ruzhnikov MR. Delineating the epilepsy phenotype of NGLY1 deficiency. J Inherit Metab Dis. 2022;45:571–83.

CAS 

Google Scholar
 

Lipari Pinto P, Machado C, Janeiro P, Dupont J, Quintas S, Sousa AB, et al. NGLY1 deficiency-A rare congenital disorder of deglycosylation. JIMD Rep. 2020;53:2–9.


Google Scholar
 

Lipiński P, Bogdańska A, Różdżyńska-Świątkowska A, Wierzbicka-Rucińska A, Tylki-Szymańska A. NGLY1 deficiency: Novel patient, review of the literature and diagnostic algorithm. JIMD Rep. 2020;51:82–88.


Google Scholar
 

Lipiński P, Bogdańska A, Socha P, Tylki-Szymańska A. Liver involvement in congenital disorders of glycosylation and deglycosylation. Front Pediatr. 2021;9:696918.


Google Scholar
 

Lipiński P, Cielecka-Kuszyk J, Socha P, Tylki-Szymańska A. Liver involvement in NGLY1 congenital disorder of deglycosylation. Pol J Pathol. 2020;71:66–68.


Google Scholar
 

Nolan DK, Pastore MT, McBride KL. Expanding the NGLY1 deficiency phenotype: case report of an atypical patient. Eur J Med Genet. 2022;65:104558.

CAS 

Google Scholar
 

Pandey A, Adams JM, Han SY, Jafar-Nejad H. NGLY1 deficiency, a congenital disorder of deglycosylation: from disease gene function to pathophysiology. Cells. 2022;11:1155.

CAS 

Google Scholar
 

Panneman DM, Wortmann SB, Haaxma CA, van Hasselt PM, Wolf NI, Hendriks Y, et al. Variants in NGLY1 lead to intellectual disability, myoclonus epilepsy, sensorimotor axonal polyneuropathy and mitochondrial dysfunction. Clin Genet. 2020;97:556–66.

CAS 

Google Scholar
 

Rios-Flores IM, Bonal-Pérez MÁ, Castellanos-González A, Velez-Gómez E, Bertoli-Avella AM, Bobadilla-Morales L, et al. Acute liver failure in a male patient with NGLY1-congenital disorder of deglycosylation. Eur J Med Genet. 2020;63:103952.


Google Scholar
 

Sonoda Y, Fujita A, Torio M, Mukaino T, Sakata A, Matsukura M, et al. Progressive myoclonic epilepsy as an expanding phenotype of NGLY1-associated congenital deglycosylation disorder: a case report and review of the literature. Eur J Med Genet. 2024;67:104895.

CAS 

Google Scholar
 

Stanclift CR, Dwight SS, Lee K, Eijkenboom QL, Wilsey M, Wilsey K, et al. NGLY1 deficiency: estimated incidence, clinical features, and genotypic spectrum from the NGLY1 Registry. Orphanet J Rare Dis. 2022;17:440.


Google Scholar
 

Stuut T, Popescu O, Oviedo A. N-Glycanase 1 deficiency is a rare cause of pediatric neurodegeneration with neuronal inclusions and liver steatosis. Cureus. 2021;13:e19126.


Google Scholar
 

Tong S, Ventola P, Frater CH, Klotz J, Phillips JM, Muppidi S, et al. NGLY1 deficiency: a prospective natural history study. Hum Mol Genet. 2023;32:2787–96.


Google Scholar
 

Ullah A, Shah AA, Alluqmani M, Haider N, Aman H, Alfadhli F, et al. Clinical and genetic characterization of patients segregating variants in KPTN, MINPP1, NGLY1, AP4B1, and SON underlying neurodevelopmental disorders: genetic and phenotypic expansion. Int J Dev Neurosci. 2022;82:789–805.

CAS 

Google Scholar
 

van Keulen BJ, Rotteveel J, Finken MJJ. Unexplained death in patients with NGLY1 mutations may be explained by adrenal insufficiency. Physiol Rep. 2019;7:e13979.


Google Scholar
 

Zidoune H, Martinerie L, Tan DS, Askari M, Rezgoune D, Ladjouze A, et al. Expanding DSD phenotypes associated with variants in the DEAH-Box RNA helicase DHX37. Sex Dev. 2021;15:244–52.

CAS 

Google Scholar
 

Hirayama H, Tachida Y, Seino J, Suzuki T. A method for assaying peptide: N-glycanase/N-glycanase 1 activities in crude extracts using an N-glycosylated cyclopeptide. Glycobiology. 2022;32:110–22.

CAS 

Google Scholar
 

Fujihira H, Sato K, Nishiuchi Y, Murase T, Matsuda Y, Yoshida Y, et al. ELISA-based highly sensitive assay system for the detection of endogenous NGLY1 activity. Biochem Biophys Res Commun. 2024;710:149826.

CAS 

Google Scholar
 

Achouitar S, Mohamed M, Gardeitchik T, Wortmann SB, Sykut-Cegielska J, Ensenauer R, et al. Nijmegen paediatric CDG rating scale: a novel tool to assess disease progression. J Inherit Metab Dis. 2011;34:923–7.

CAS 

Google Scholar
 

Melnyk S, Pogribna M, Pogribny IP, Yi P, James SJ. Measurement of plasma and intracellular S-adenosylmethionine and S-adenosylhomocysteine utilizing coulometric electrochemical detection: alterations with plasma homocysteine and pyridoxal 5’-phosphate concentrations. Clin Chem. 2000;46:265–72.

CAS 

Google Scholar
 

Asahina M, Fujinawa R, Hirayama H, Tozawa R, Kajii Y, Suzuki T. Reversibility of motor dysfunction in the rat model of NGLY1 deficiency. Mol Brain. 2021;14:91.

CAS 

Google Scholar
 

Zhu L, Tan B, Dwight SS, Beahm B, Wilsey M, Crawford BE, et al. AAV9-NGLY1 gene replacement therapy improves phenotypic and biomarker endpoints in a rat model of NGLY1 Deficiency. Mol Ther Methods Clin Dev. 2022;27:259–71.

CAS 

Google Scholar
 

Du A, Yang K, Zhou X, Ren L, Liu N, Zhou C, et al. Systemic gene therapy corrects neurological phenotype in a mouse model of NGLY1 deficiency. JCI Insight. 2024;9:e183189.


Google Scholar
 

Chan KY, Jang MJ, Yoo BB, Greenbaum A, Ravi N, Wu WL, et al. Engineered AAVs for efficient noninvasive gene delivery to the central and peripheral nervous systems. Nat Neurosci. 2017;20:1172–9.

CAS 

Google Scholar
 

Froemke RC, Young LJ. Oxytocin, neural plasticity, and social behavior. Annu Rev Neurosci. 2021;44:359–81.

CAS 

Google Scholar
 

Makita Y, Asahina M, Fujinawa R, Yukitake H, Suzuki T. Intranasal oxytocin suppresses seizure-like behaviors in a mouse model of NGLY1 deficiency. Commun Biol. 2024;7:460.

CAS 

Google Scholar
 

Hope KA, Berman AR, Peterson RT, Chow CY. An in vivo drug repurposing screen and transcriptional analyses reveals the serotonin pathway and GSK3 as major therapeutic targets for NGLY1 deficiency. PLoS Genet. 2022;18:e1010228.

CAS 

Google Scholar
 

Rodriguez TP, Mast JD, Hartl T, Lee T, Sand P, Perlstein EO. Defects in the neuroendocrine axis contribute to global development delay in a drosophila model of NGLY1 deficiency. G3 Bethesda. 2018;8:2193–204.

CAS 

Google Scholar
 

Yoshida Y, Asahina M, Murakami A, Kawawaki J, Yoshida M, Fujinawa R, et al. Loss of peptide:N-glycanase causes proteasome dysfunction mediated by a sugar-recognizing ubiquitin ligase. Proc Natl Acad Sci USA. 2021;118:e2102902118.

CAS 

Google Scholar
 

Satoh T, Yagi-Utsumi M, Ishii N, Mizushima T, Yagi H, Kato R, et al. Structural basis of sugar recognition by SCF(FBS2) ubiquitin ligase involved in NGLY1 deficiency. FEBS Lett. 2024;598:2259–68.

CAS 

Google Scholar
 

Yoshida Y, Tokunaga F, Chiba T, Iwai K, Tanaka K, Tai T. Fbs2 is a new member of the E3 ubiquitin ligase family that recognizes sugar chains. J Biol Chem. 2003;278:43877–84.

CAS 

Google Scholar
 

Yoshida Y, Takahashi T, Ishii N, Matsuo I, Takahashi S, Inoue H, et al. Sugar-mediated non-canonical ubiquitination impairs Nrf1/NFE2L1 activation. Mol Cell. 2024;84:3115–27.

CAS 

Google Scholar
 

Haijes HA, de Sain-van der Velden M, Prinsen H, Willems AP, van der Ham M, Gerrits J, et al. Aspartylglycosamine is a biomarker for NGLY1-CDDG, a congenital disorder of deglycosylation. Mol Genet Metab. 2019;127:368–72.

CAS 

Google Scholar