Hawley, J. A., Hargreaves, M., Joyner, M. J. & Zierath, J. R. Integrative biology of exercise. Cell 159, 738–749 (2014).

Article 
PubMed 
CAS 

Google Scholar
 

Chow, L. S. et al. Exerkines in health, resilience and disease. Nat. Rev. Endocrinol. 18, 273–289 (2022).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Williams, R. S. & Neufer, P. D. in The Handbook of Physiology, Section 12, Exercise: Regulation and Integration of Multiple Systems (eds Rowell, L. B. & Shepherd, J. T.) 1124–1150 (Oxford Univ. Press, 1996).

Perry, C. G. R. et al. Repeated transient mRNA bursts precede increases in transcriptional and mitochondrial proteins during training in human skeletal muscle. J. Physiol. 588, 4795–4810 (2010).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Goldstein, M. S. Humoral nature of the hypoglycemic factor of muscular work. Diabetes 10, 232–234 (1961).

Article 
PubMed 
CAS 

Google Scholar
 

Pedersen, B. K. & Febbraio, M. A. Muscles, exercise and obesity: skeletal muscle as a secretory organ. Nat. Rev. Endocrinol. 8, 457–465 (2012).

Article 
PubMed 
CAS 

Google Scholar
 

Whitham, M. et al. Extracellular vesicles provide a means for tissue crosstalk during exercise. Cell Metab. 27, 237–251 (2018).

Article 
PubMed 
CAS 

Google Scholar
 

Contrepois, K. et al. Molecular choreography of acute exercise. Cell 181, 1112–1130 (2020).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Hoffman, N. J. et al. Phosphoproteomics uncovers exercise intensity-specific skeletal muscle signaling networks underlying high-intensity interval training in healthy male participants. Sports Med. https://doi.org/10.1007/s40279-025-02217-2 (2025).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Bishop, D. J. et al. Discordant skeletal muscle gene and protein responses to exercise. Trends Biochem. Sci. 48, 927–936 (2023).

Article 
PubMed 
CAS 

Google Scholar