Harvey, J. et al. Machine learning-based prediction of cognitive outcomes in de novo Parkinson’s disease. npj Parkinsons Dis. 8, 150 (2022).


Google Scholar
 

Kandiah, N. et al. Montreal cognitive assessment for the screening and prediction of cognitive decline in early Parkinson’s disease. Parkinsonism Relat. Disord. 20, 1145–1148 (2014).


Google Scholar
 

Wilson, H. et al. Predict cognitive decline with clinical markers in Parkinson’s disease (PRECODE-1). J. Neural Transm. 127, 51–59 (2020).

CAS 

Google Scholar
 

Garcia-Diaz, A. I. et al. Cortical thinning correlates of changes in visuospatial and visuoperceptual performance in Parkinson’s disease: a 4-year follow-up. Parkinsonism Relat. Disord. 46, 62–68 (2018).

CAS 

Google Scholar
 

Luca, A. et al. Cognitive impairment and levodopa induced dyskinesia in Parkinson’s disease: a longitudinal study from the PACOS cohort. Sci. Rep. 11, 867 (2021).

CAS 

Google Scholar
 

van Laar, T., De Deyn, P. P., Aarsland, D., Barone, P. & Galvin, J. E. Effects of cholinesterase inhibitors in Parkinson’s disease dementia: a review of clinical data. CNS Neurosci. Ther. 17, 428–441 (2011).


Google Scholar
 

Sun, C. & Armstrong, M. J. Treatment of Parkinson’s disease with cognitive impairment: current approaches and future directions. Behav. Sci. 11, 54 (2021).


Google Scholar
 

Bernini, S. et al. A double-blind randomized controlled trial of the efficacy of cognitive training delivered using two different methods in mild cognitive impairment in Parkinson’s disease: preliminary report of benefits associated with the use of a computerized tool. Aging Clin. Exp. Res. 33, 1567–1575 (2020).


Google Scholar
 

Mantovani, E., Zucchella, C., Argyriou, A. A. & Tamburin, S. Treatment for cognitive and neuropsychiatric non-motor symptoms in Parkinson’s disease: current evidence and future perspectives. Expert Rev. Neurotherapeutics 23, 25–43 (2023).

CAS 

Google Scholar
 

Loetscher, T. Cognitive training interventions for dementia and mild cognitive impairment in Parkinson’s disease – a cochrane review summary with commentary. NeuroRehabilitation 48, 385–387 (2021).


Google Scholar
 

Carlisle, T. C., Medina, L. D. & Holden, S. K. Original research: initial development of a pragmatic tool to estimate cognitive decline risk focusing on potentially modifiable factors in Parkinson’s disease. Front. Neurosci. 17, 1278817 (2023).


Google Scholar
 

Pavelka, L. et al. Age at onset as stratifier in idiopathic Parkinson’s disease – effect of ageing and polygenic risk score on clinical phenotypes. npj Parkinsons Dis. 8, 102 (2022).

CAS 

Google Scholar
 

Chung, S. J. et al. Baseline cognitive profile is closely associated with long-term motor prognosis in newly diagnosed Parkinson’s disease. J. Neurol. 268, 4203–4212 (2021).

CAS 

Google Scholar
 

Yıldız, Z. et al. Relationship between apathy and cognitive functions in Parkinson’s disease. Psychological Appl. Trends https://doi.org/10.36315/2023inpact145 (2023).

Goldman, J. G. et al. Diagnosing PD-MCI by MDS Task Force criteria: how many and which neuropsychological tests?. Mov. Disord.30, 402–406 (2014).


Google Scholar
 

Pan, F.-F., Huang, L., Chen, K.-L., Zhao, Q.-H. & Guo, Q.-H. A comparative study on the validations of three cognitive screening tests in identifying subtle cognitive decline. BMC Neurol. 20, 78 (2020).


Google Scholar
 

Cersonsky, T. E. K. et al. Using the Montreal cognitive assessment to identify individuals with subtle cognitive decline. Neuropsychology 36, 373–383 (2022).


Google Scholar
 

Mills, K. A. et al. Cognitive impairment in Parkinson’s disease: Association between patient-reported and clinically measured outcomes. Parkinsonism Relat. Disord. 33, 107–114 (2016).


Google Scholar
 

Rosenblum, S. et al. The Montreal Cognitive Assessment: Is it suitable for identifying mild cognitive impairment in Parkinson’s disease?. Mov. Disord. Clin. Pract. 7, 648–655 (2020).


Google Scholar
 

Marino, S. E. et al. Subjective perception of cognition is related to mood and not performance. Epilepsy Behav. 14, 459–464 (2009).

CAS 

Google Scholar
 

Goldman, J. G., Stebbins, G. T., Leung, V., Tilley, B. C. & Goetz, C. G. Relationships among cognitive impairment, sleep, and fatigue in Parkinson’s disease using the MDS-UPDRS. Parkinsonism Relat. Disord. 20, 1135–1139 (2014).


Google Scholar
 

Huang, J. et al. Subjective cognitive decline in patients with Parkinson’s disease: an updated review. Front. Aging Neurosci. 15, 1117068 (2023).


Google Scholar
 

Ren, J. et al. Comparing the effects of GBA variants and onset age on clinical features and progression in Parkinson’s disease. CNS Neurosci. Ther. 30, e14387 (2024).

CAS 

Google Scholar
 

Wang, Y.-X. et al. Associations between cognitive impairment and motor dysfunction in Parkinson’s disease. Brain Behav. 7, e00719 (2017).


Google Scholar
 

Ikeda, M., Kataoka, H. & Ueno, S. Can levodopa prevent cognitive decline in patients with Parkinson’s disease?. Am. J. Neurodegener. Dis. 6, 9–14 (2017).


Google Scholar
 

Loo, R. T. J. et al. Levodopa-induced dyskinesia in Parkinson’s disease: Insights from cross-cohort prognostic analysis using machine learning. Parkinsonism Relat. Disord. 126, 107054 (2024).

CAS 

Google Scholar
 

Pavelka, L. et al. Luxembourg Parkinson’s study -comprehensive baseline analysis of Parkinson’s disease and atypical parkinsonism. Front. Neurol. 14, 1330321 (2023).


Google Scholar
 

Marek, K. et al. The Parkinson Progression Marker Initiative (PPMI). Prog. Neurobiol. 95, 629–635 (2011).


Google Scholar
 

Dodet, P. et al. Sleep disorders in Parkinson’s disease, an early and multiple problem. npj Parkinson’s Dis. 10, 46 (2024).


Google Scholar
 

Zhang, Z. et al. Effect of onset age on the levodopa threshold dosage for dyskinesia in Parkinson’s disease. Neurol. Sci. 43, 3165–3174 (2022).


Google Scholar
 

Ciafone, J., Little, B., Thomas, A. J. & Gallagher, P. The neuropsychological profile of mild cognitive impairment in lewy body dementias. J. Int. Neuropsychol. Soc. 26, 210–225 (2020).


Google Scholar
 

Devigili, G. et al. Unraveling autonomic dysfunction in GBA-related Parkinson’s disease. Mov. Disord. Clin. Pract. 10, 1620–1638 (2023).


Google Scholar
 

Kelly, M. J. et al. Predictors of motor complications in early Parkinson’s disease: a prospective cohort study. Mov. Disord. 34, 1174–1183 (2019).


Google Scholar
 

Chen, J. et al. Predictors of cognitive impairment in newly diagnosed Parkinson’s disease with normal cognition at baseline: A 5-year cohort study. Front. Aging Neurosci. 15, 1142558 (2023).

CAS 

Google Scholar
 

Biundo, R. et al. Cognitive profiling of Parkinson disease patients with mild cognitive impairment and dementia. Parkinsonism Relat. Disord. 20, 394–399 (2014).


Google Scholar
 

Phongpreecha, T. et al. Multivariate prediction of dementia in Parkinson’s disease. npj Parkinson’s Dis. 6, 20 (2020).


Google Scholar
 

Gorji, A. & Jouzdani, A. F. Machine learning for predicting cognitive decline within five years in Parkinson’s disease: comparing cognitive assessment scales with DAT SPECT and clinical biomarkers. PLoS ONE 19, e0304355 (2024).

CAS 

Google Scholar
 

Palermo, G. et al. Dopamine transporter, age, and motor complications in Parkinson’s disease: a clinical and single-photon emission computed tomography study. Mov. Disord. 35, 1028–1036 (2020).

CAS 

Google Scholar
 

Xiao, Y. et al. Different associated factors of subjective cognitive complaints in patients with early- and late-onset Parkinson’s disease. Front. Neurol. 12, 749471 (2021).


Google Scholar
 

Zhou, F. et al. Abnormal intra- and inter-network functional connectivity of brain networks in early-onset Parkinson’s disease and late-onset Parkinson’s disease. Front. Aging Neurosci. 15, 1132723 (2023).


Google Scholar
 

Picillo, M. et al. Sex-related longitudinal change of motor, non-motor, and biological features in early Parkinson’s disease. J. Parkinsons Dis. 12, 421–436 (2021).


Google Scholar
 

Beheshti, I., Booth, S. & Ko, J. H. Differences in brain aging between sexes in Parkinson’s disease. npj Parkinsons Dis. 10, 35 (2024).


Google Scholar
 

Iwaki, H. et al. Differences in the presentation and progression of Parkinson’s disease by sex. Mov. Disord. 36, 106–117 (2021).


Google Scholar
 

Chen, H. et al. Performance of the Benton Judgment of Line Orientation test across patients with different types of dementia. J. Alzheimers Dis. 102, 437–448 (2024).


Google Scholar
 

Cholerton, B. et al. Sex differences in progression to mild cognitive impairment and dementia in Parkinson’s disease. Parkinsonism Relat. Disord. 50, 29–36 (2018).


Google Scholar
 

Chiara, P. et al. Cognitive function in Parkinson’s disease: the influence of gender. Basal Ganglia 3, 131–135 (2013).


Google Scholar
 

Bakeberg, M. C. et al. Differential effects of sex on longitudinal patterns of cognitive decline in Parkinson’s disease. J. Neurol. 268, 1903–1912 (2021).


Google Scholar
 

Reekes, T. H. et al. Sex specific cognitive differences in Parkinson disease. npj Parkinsons Dis. 6, 7 (2020).

CAS 

Google Scholar
 

Almgren, H. et al. Machine learning-based prediction of longitudinal cognitive decline in early Parkinson’s disease using multimodal features. Sci. Rep. 13, 13193 (2023).

CAS 

Google Scholar
 

Kang, S. H., Lee, J. & Koh, S.-B. Constipation is associated with mild cognitive impairment in patients with de novo Parkinson’s disease. J. Mov. Disord. 15, 38–42 (2021).


Google Scholar
 

Jones, J. D., Rahmani, E., Garcia, E. & Jacobs, J. P. Gastrointestinal symptoms are predictive of trajectories of cognitive functioning in de novo Parkinson’s disease. Parkinsonism Relat. Disord. 72, 7–12 (2020).


Google Scholar
 

Tur, E. K. & Gözke, E. Autonomic symptoms in early-stage Parkinson’s patients and their relationship with cognition and disease parameters. Anatol. Curr. Med J.5, 498–502 (2023).


Google Scholar
 

Nagy, A. V. et al. Cognitive impairment in REM-sleep behaviour disorder and individuals at risk of Parkinson’s disease. Parkinsonism Relat. Disord. 109, 105312 (2023).

CAS 

Google Scholar
 

Maggi, G., Trojano, L., Barone, P. & Santangelo, G. Sleep disorders and cognitive dysfunctions in Parkinson’s disease: a meta-analytic study. Neuropsychol. Rev. 31, 643–682 (2021).


Google Scholar
 

Cosgrove, J., Alty, J. E. & Jamieson, S. Cognitive impairment in Parkinson’s disease. Postgrad. Med. J. 91, 212–220 (2015).


Google Scholar
 

Ma, C.-H., Ren, N., Xu, J. & Chen, L. Clinical features, plasma neurotransmitter levels and plasma neurohormone levels among patients with early-stage Parkinson’s disease with sleep disorders. Cell Commun. Signal. 23, 144 (2025).


Google Scholar
 

Gibb, W. R. & Lees, A. J. The relevance of the Lewy body to the pathogenesis of idiopathic Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 51, 745–752 (1988).

CAS 

Google Scholar
 

Marek, K. et al. The Parkinson’s progression markers initiative (PPMI) – establishing a PD biomarker cohort. Ann. Clin. Transl. Neurol. 5, 1460–1477 (2018).

CAS 

Google Scholar
 

Rosenblum, S., Meyer, S., Richardson, A. & Hassin-Baer, S. Capturing subjective mild cognitive decline in Parkinson’s disease. Brain Sci. 12, 741 (2022).


Google Scholar
 

Azur, M. J., Stuart, E. A., Frangakis, C. & Leaf, P. J. Multiple imputation by chained equations: what is it and how does it work?. Int. J. Methods Psychiatr. Res. 20, 40–49 (2011).


Google Scholar
 

van Buuren, S. & Groothuis-Oudshoorn, K. mice: Multivariate Imputation by Chained Equations in R. J. Stat. Soft. 45, 1–67 (2011).


Google Scholar
 

Luo, J. et al. A comparison of batch effect removal methods for enhancement of prediction performance using MAQC-II microarray gene expression data. Pharmacogenomics J. 10, 278–291 (2010).

CAS 

Google Scholar
 

Bolstad, B. M., Irizarry, R. A., Åstrand, M. & Speed, T. P. A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19, 185–193 (2003).

CAS 

Google Scholar
 

Kostka, D. & Spang, R. Microarray based diagnosis profits from better documentation of gene expression signatures. PLoS Comput. Biol. 4, e22 (2008).


Google Scholar
 

Johnson, W. E., Li, C. & Rabinovic, A. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics 8, 118–127 (2007).


Google Scholar
 

Chen, C. et al. Removing batch effects in analysis of expression microarray data: an evaluation of six batch adjustment methods. PLoS One 6, e17238 (2011).

CAS 

Google Scholar
 

Lazar, C. et al. Batch effect removal methods for microarray gene expression data integration: a survey. Brief. Bioinform. 14, 469–490 (2012).


Google Scholar
 

Stein, C. K. et al. Removing batch effects from purified plasma cell gene expression microarrays with modified ComBat. BMC Bioinforma. 16, 63 (2015).


Google Scholar
 

Bach, M., Werner, A. & Palt, M. The proposal of undersampling method for learning from imbalanced datasets. Proc. Comput. Sci. 159, 125–134 (2019).


Google Scholar
 

Karami, G., Giuseppe Orlando, M., Delli Pizzi, A., Caulo, M. & Del Gratta, C. Predicting overall survival time in glioblastoma patients using gradient boosting machines algorithm and recursive feature elimination technique. Cancers 13, 4976 (2021).


Google Scholar
 

Wood, I. A., Visscher, P. M. & Mengersen, K. L. Classification based upon gene expression data: bias and precision of error rates. Bioinformatics 23, 1363–1370 (2007).

CAS 

Google Scholar
 

Freund, Y. & Schapire, R. E. A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 55, 119–139 (1997).


Google Scholar
 

Freund, Y. & Schapire, R. A short introduction to boosting. J. Jpn. Soc. Artif. 14, 1612 (1999).


Google Scholar
 

Berk, R. A. Classification and Regression Trees (CART). In Statistical Learning from a Regression Perspective (ed. Berk, R. A.) 157–211 (Springer International Publishing, 2020). https://doi.org/10.1007/978-3-030-40189-4_3.

Prokhorenkova, L., Gusev, G., Vorobev, A., Dorogush, A. V. & Gulin, A. CatBoost: unbiased boosting with categorical features. In Advances in Neural Information Processing Systems ((NeurIPS, 2018).

Quinlan, J. R. Improved use of continuous attributes in C4.5. J. Artif. Intell. Res. 4, 77–90 (1996).


Google Scholar
 

Tan, Y. S. et al. Fast interpretable greedy-tree sums. Proc. Natl. Acad. Sci. U.S.A. 122, e2310151122 (2025).

McTavish, H. et al. Fast Sparse Decision Tree Optimization via reference ensembles. AAAI 36, 9604–9613 (2022).


Google Scholar
 

Friedman, J. H. Greedy function approximation: a gradient boosting machine. Ann. Stat. 29, 1189–1232 (2001).


Google Scholar
 

Agarwal, A., Tan, Y. S., Ronen, O., Singh, C. & Yu, B. Hierarchical shrinkage: improving the accuracy and interpretability of tree-based models. In International Conference on Machine Learning 111–135 (PMLR, 2022).

Chen, T. & Guestrin, C. XGBoost: a scalable tree boosting system. In ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 785–794, https://doi.org/10.1145/2939672.2939785 (2016).

He, K. et al. Component-wise gradient boosting and false discovery control in survival analysis with high-dimensional covariates. Bioinformatics 32, 50–57 (2015).


Google Scholar
 

Bertsimas, D., Dunn, J., Gibson, E. & Orfanoudaki, A. Optimal survival trees. Mach. Learn. 111, 2951–3023 (2022).


Google Scholar
 

Geurts, P., Ernst, D. & Wehenkel, L. Extremely randomized trees. Mach. Learn. 63, 3–42 (2006).


Google Scholar
 

Wang, M. et al. Dementia risk prediction in individuals with mild cognitive impairment: a comparison of Cox regression and machine learning models. BMC Med. Res. Methodol. 22, 284 (2022).


Google Scholar
 

Park, M. Y. & Hastie, T. L1-regularization path algorithm for generalized linear models. J. R. Stat. Soc. Ser. B Stat. Methodol. 69, 659–677 (2007).


Google Scholar
 

Simon, N., Friedman, J., Hastie, T. & Tibshirani, R. Regularization paths for Cox’s proportional hazards model via coordinate descent. J. Stat. Softw. 39, 1–13 (2011).


Google Scholar
 

Ishwaran, H., Kogalur, U. B., Blackstone, E. H. & Lauer, M. S. Random survival forests. Ann. Appl. Stat. 2, 841–860 (2008).


Google Scholar
 

Lundberg, S. M. & Lee, S.-I. A unified approach to interpreting model predictions. In Neural Information Processing Systems (NIPS 2017) 4768–4777 (NIPS, 2017).

Sundrani, S. & Lu, J. Computing the hazard ratios associated with explanatory variables using machine learning models of survival data. JCO Clin. Cancer Inform. 5, 364–378 (2021).


Google Scholar
 

Sun, X. & Xu, W. Fast implementation of DeLong’s algorithm for comparing the areas under correlated receiver operating characteristic curves. IEEE Signal Process. Lett. 21, 1389–1393 (2014).


Google Scholar
 

Kang, L., Chen, W., Petrick, N. A. & Gallas, B. D. Comparing two correlated C indices with right-censored survival outcome: a one-shot nonparametric approach. Stat. Med. 34, 685–703 (2015).


Google Scholar
 

Ferreira, J. A. & Zwinderman, A. H. On the Benjamini–Hochberg method. Ann. Stat. 34, 1827–1849 (2006).


Google Scholar
 

Corani, G. & Benavoli, A. A Bayesian approach for comparing cross-validated algorithms on multiple data sets. Mach. Learn. 100, 285–304 (2015).


Google Scholar
 

Piovani, D., Sokou, R., Tsantes, A. G., Vitello, A. S. & Bonovas, S. Optimizing clinical decision making with decision curve analysis: Insights for clinical investigators. Healthcare 11, 2244 (2023).


Google Scholar
 

Zhang, Z. et al. Decision curve analysis: a technical note. Ann. Transl. Med. 6, 308 (2018).


Google Scholar
 

Trucano, T. G., Swiler, L. P., Igusa, T., Oberkampf, W. L. & Pilch, M. Calibration, validation, and sensitivity analysis: What’s what. Reliab. Eng. Syst. Saf. 91, 1331–1357 (2006).


Google Scholar
 

Bamber, D. Evaluation of the performance of survival analysis models: Discrimination and calibration measures. In Handbook of Statistics vol. 23 1–25 (Elsevier, 2003).