Yoshimura, Y. & Callaway, E. M. Fine-scale specificity of cortical networks depends on inhibitory cell type and connectivity. Nat. Neurosci. 8, 1552–1559 (2005).

Article 
CAS 
PubMed 

Google Scholar
 

Naka, A. et al. Complementary networks of cortical somatostatin interneurons enforce layer specific control. eLife 8, e43696 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Wu, S. J. et al. Cortical somatostatin interneuron subtypes form cell-type-specific circuits. Neuron 111, 2675–2692.e9 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Tasic, B. et al. Adult mouse cortical cell taxonomy revealed by single cell transcriptomics. Nat. Neurosci. 19, 335–346 (2016).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Tasic, B. et al. Shared and distinct transcriptomic cell types across neocortical areas. Nature 563, 72–78 (2018).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Yao, Z. et al. A taxonomy of transcriptomic cell types across the isocortex and hippocampal formation. Cell 184, 3222–3241.e26 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Krook-Magnuson, E., Varga, C., Lee, S.-H. & Soltesz, I. New dimensions of interneuronal specialization unmasked by principal cell heterogeneity. Trends Neurosci. 35, 175–184 (2012).

Article 
CAS 
PubMed 

Google Scholar
 

Bortone, D. S., Olsen, S. R. & Scanziani, M. Translaminar inhibitory cells recruited by layer 6 corticothalamic neurons suppress visual cortex. Neuron 82, 474–485 (2014).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Muñoz, W., Tremblay, R., Levenstein, D. & Rudy, B. Layer-specific modulation of neocortical dendritic inhibition during active wakefulness. Science 355, 954–959 (2017).

Article 
ADS 
PubMed 

Google Scholar
 

Lu, J. et al. Selective inhibitory control of pyramidal neuron ensembles and cortical subnetworks by chandelier cells. Nat. Neurosci. 20, 1377–1383 (2017).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Nigro, M. J., Hashikawa-Yamasaki, Y. & Rudy, B. Diversity and connectivity of layer 5 somatostatin-expressing interneurons in the mouse barrel cortex. J. Neurosci. 38, 1622–1633 (2018).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Allaway, K. C. et al. Genetic and epigenetic coordination of cortical interneuron development. Nature 597, 693–697 (2021).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Yao, Z. et al. A high-resolution transcriptomic and spatial atlas of cell types in the whole mouse brain. Nature 624, 317–332 (2023).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Hilscher, M. M., Leão, R. N., Edwards, S. J., Leão, K. E. & Kullander, K. Chrna2-Martinotti cells synchronize layer 5 type A pyramidal cells via rebound excitation. PLoS Biol. 15, e2001392 (2017).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Scala, F. et al. Layer 4 of mouse neocortex differs in cell types and circuit organization between sensory areas. Nat. Commun. 10, 4174 (2019).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Fazzari, P., Mortimer, N., Yabut, O., Vogt, D. & Pla, R. Cortical distribution of GABAergic interneurons is determined by migration time and brain size. Development 147, dev185033 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Hevner, R. F., Daza, R. A. M., Englund, C., Kohtz, J. & Fink, A. Postnatal shifts of interneuron position in the neocortex of normal and reeler mice: evidence for inward radial migration. Neuroscience 124, 605–618 (2004).

Article 
CAS 
PubMed 

Google Scholar
 

Lodato, S. et al. Excitatory projection neuron subtypes control the distribution of local inhibitory interneurons in the cerebral cortex. Neuron 69, 763–779 (2011).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Ye, Z. et al. Instructing perisomatic inhibition by direct lineage reprogramming of neocortical projection neurons. Neuron 88, 475–483 (2015).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Darbandi, S. F. et al. Neonatal Tbr1 dosage controls cortical layer 6 connectivity. Neuron 100, 831–845.e7 (2018).

Article 

Google Scholar
 

Wester, J. C. et al. Neocortical projection neurons instruct inhibitory interneuron circuit development in a lineage-dependent manner. Neuron 102, 960–975.e6 (2019).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Yook, C. et al. A TBR1-K228E mutation induces Tbr1 upregulation, altered cortical distribution of interneurons, increased inhibitory synaptic transmission, and autistic-like behavioral deficits in mice. Front. Mol. Neurosci. 12, 241 (2019).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Molyneaux, B. J., Arlotta, P., Hirata, T., Hibi, M. & Macklis, J. D. Fezl is required for the birth and specification of corticospinal motor neurons. Neuron 47, 817–831 (2005).

Article 
CAS 
PubMed 

Google Scholar
 

Chen, B. et al. The Fezf2–Ctip2 genetic pathway regulates the fate choice of subcortical projection neurons in the developing cerebral cortex. Proc. Natl Acad. Sci. USA 105, 11382–11387 (2008).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Matho, K. S. et al. Genetic dissection of the glutamatergic neuron system in cerebral cortex. Nature 598, 182–187 (2021).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Stogsdill, J. A. et al. Pyramidal neuron subtype diversity governs microglia states in the neocortex. Nature 608, 750–756 (2022).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Tsyporin, J. et al. Transcriptional repression by FEZF2 restricts alternative identities of cortical projection neurons. Cell Rep. 35, 109269 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Southwell, D. G. et al. Intrinsically determined cell death of developing cortical interneurons. Nature 491, 109–113 (2012).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Priya, R. et al. Activity regulates cell death within cortical interneurons through a calcineurin-dependent mechanism. Cell Rep. 22, 1695–1709 (2018).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Wong, F. K. et al. Pyramidal cell regulation of interneuron survival sculpts cortical networks. Nature 557, 668–673 (2018).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Xu, Q., Tam, M. & Anderson, S. A. Fate mapping Nkx2.1-lineage cells in the mouse telencephalon. J. Comp. Neurol. 506, 16–29 (2008).

Article 
CAS 
PubMed 

Google Scholar
 

La Manno, G. et al. RNA velocity of single cells. Nature 560, 494–498 (2018).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Klein, D. et al. Mapping cells through time and space with moscot. Nature 638, 1065–1075 (2025).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Thompson, C. L. et al. A high resolution spatiotemporal atlas of gene expression of the developing mouse brain. Neuron 83, 309–323 (2014).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Lodato, S. et al. Gene co-regulation by Fezf2 selects neurotransmitter identity and connectivity of corticospinal neurons. Nat. Neurosci. 17, 1046–1054 (2014).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Tuncdemir, S. N. et al. Early somatostatin interneuron connectivity mediates the maturation of deep layer cortical circuits. Neuron 89, 521–535 (2016).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Marques-Smith, A. et al. A transient translaminar GABAergic interneuron circuit connects thalamocortical recipient layers in neonatal somatosensory cortex. Neuron 89, 536–549 (2016).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Anastasiades, P. G. et al. GABAergic interneurons form transient layer-specific circuits in early postnatal neocortex. Nat. Commun. 7, 10584 (2016).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Favuzzi, E. et al. GABA-receptive microglia selectively sculpt developing inhibitory circuits. Cell 184, 4048–4063.e32 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Lepiemme, F. et al. Oligodendrocyte precursors guide interneuron migration by unidirectional contact repulsion. Science 376, eabn6204 (2022).

Article 
CAS 
PubMed 

Google Scholar
 

Irala, D. et al. Astrocyte-secreted neurocan controls inhibitory synapse formation and function. Neuron 112, 1657–1675.e10 (2024).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Stickels, R. R. et al. Highly sensitive spatial transcriptomics at near-cellular resolution with Slide-seq v2. Nat. Biotechnol. 39, 313–319 (2021).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Hirata, T. et al. Zinc finger gene fez-like functions in the formation of subplate neurons and thalamocortical axons. Dev. Dyn. 230, 546–556 (2004).

Article 
CAS 
PubMed 

Google Scholar
 

Wolock, S. L., Lopez, R. & Klein, A. M. Scrublet: computational identification of cell doublets in single-cell transcriptomic data. Cell Syst. 8, 281–291.e9 (2019).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Dai, M., Pei, X. & Wang, X.-J. Accurate and fast cell marker gene identification with COSG. Brief. Bioinformatics 23, bbab579 (2022).

Article 
PubMed 

Google Scholar
 

Di Bella, D. J. et al. Molecular logic of cellular diversification in the mouse cerebral cortex. Nature 595, 554–559 (2021)

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Yao, Z. et al. A transcriptomic and epigenomic cell atlas of the mouse primary motor cortex. Nature 598, 103–110 (2021).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Jin, S. et al. Inference and analysis of cell–cell communication using CellChat. Nat. Commun. 12, 1088 (2021).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Finak, G. et al. MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data. Genome Biol. 16, 278 (2015).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Moffitt, J. R. et al. High-throughput single-cell gene-expression profiling with multiplexed error-robust fluorescence in situ hybridization. Proc. Natl Acad. Sci. USA 113, 11046–11051 (2016).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Zhang, M. et al. Spatially resolved cell atlas of the mouse primary motor cortex by MERFISH. Nature 598, 137–143 (2021).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Stringer, C., Wang, T., Michaelos, M. & Pachitariu, M. Cellpose: a generalist algorithm for cellular segmentation. Nat. Methods 18, 100–106 (2021).

Article 
CAS 
PubMed 

Google Scholar
 

Korsunsky, I. et al. Fast, sensitive and accurate integration of single-cell data with Harmony. Nat. Methods 16, 1289–1296 (2019).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Rodriques, S. G. et al. Slide-seq: a scalable technology for measuring genome-wide expression at high spatial resolution. Science 363, 1463–1467 (2019).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Stickels, R. et al. Library generation using Slide-seq v2. protocols.io https://www.protocols.io/view/library-generation-using-slide-seqv2-bxijpkcn (2021).

Cable, D. M. et al. Robust decomposition of cell type mixtures in spatial transcriptomics. Nat. Biotechnol. 40, 517–526 (2022).

Article 
CAS 
PubMed 

Google Scholar