Poli, M. C. et al. Human inborn errors of immunity: 2024 update on the classification from the International Union of Immunological Societies Expert Committee. J. Hum. Immun. 1, e20250003 (2025). This is the most current IUIS Expert Committee classification, the backbone reference for the genetic categories that anchors the entire field.
Bousfiha, A. A. et al. The 2024 update of IUIS phenotypic classification of human inborn errors of immunity. J. Hum. Immun. 1, e20250002 (2025). This 2024 IUIS update provides a comprehensive, expert-curated classification of all known human IEIs, reflecting the latest advances in genetics and immunopathology.
Fischer, A., Provot, J., Jais, J. P., Alcais, A. & Mahlaoui, N. Autoimmune and inflammatory manifestations occur frequently in patients with primary immunodeficiencies. J. Allergy Clin. Immunol. 140, 1388–1393 (2017).
Mortaz, E. et al. Cancers related to immunodeficiencies: update and perspectives. Front. Immunol. 7, 365 (2016).
Tegtmeyer, D., Seidl, M., Gerner, P., Baumann, U. & Klemann, C. Inflammatory bowel disease caused by primary immunodeficiencies-Clinical presentations, review of literature, and proposal of a rational diagnostic algorithm. Pediatr. Allergy Immunol. 28, 412–429 (2017).
Bucciol, G., Delafontaine, S., Meyts, I. & Poli, C. Inborn errors of immunity: a field without frontiers. Immunol. Rev. 322, 15–27 (2024).
Kuehn, H. S. et al. Immune dysregulation in human subjects with heterozygous germline mutations in CTLA4. Science 345, 1623–1627 (2014). A landmark paper on CTLA4 haploinsufficiency, which fundamentally shifted the understanding of immune dysregulation and autoimmunity in IEIs.
Cook, S. A. et al. HEM1 deficiency disrupts mTORC2 and F-actin control in inherited immunodysregulatory disease. Science 369, 202–207 (2020). A cutting-edge study defining HEM1 deficiency and linking mTORC2 and F-actin control to immunodysregulation.
Walport, M. J. Complement and systemic lupus erythematosus. Arthritis Res. 4, 279–293 (2002).
Toubiana, J. et al. Heterozygous STAT1 gain-of-function mutations underlie an unexpectedly broad clinical phenotype. Blood 127, 3154–3164 (2016).
Mizoguchi, Y. & Okada, S. Inborn errors of STAT1 immunity. Curr. Opin. Immunol. 72, 59–64 (2021).
Lucas, C. L., Chandra, A., Nejentsev, S., Condliffe, A. M. & Okkenhaug, K. PI3Kδ and primary immunodeficiencies. Nat. Rev. Immunol. 16, 702–714 (2016).
Price, S. et al. Natural history of autoimmune lymphoproliferative syndrome associated with FAS gene mutations. Blood 123, 1989–1999 (2014).
Stewart, O. et al. Monoallelic expression can govern penetrance of inborn errors of immunity. Nature 637, 1186–1197 (2025).
Vogan, K. Implementing polygenic risk scores in the clinic. Nat. Genet. 56, 557 (2024).
McLornan, D. P., Pope, J. E., Gotlib, J. & Harrison, C. N. Current and future status of JAK inhibitors. Lancet 398, 803–816 (2021).
Rao, V. K. et al. Effective ‘activated PI3Kδ syndrome’–targeted therapy with the PI3Kδ inhibitor leniolisib. Blood 130, 2307–2316 (2017). Proof-of-concept targeted therapy using a PI3Kδ inhibitor in APDS; this translational reference shows how genetic insights can guide treatment.
Ozen, A. et al. Evaluating the efficacy and safety of pozelimab in patients with CD55 deficiency with hyperactivation of complement, angiopathic thrombosis, and protein-losing enteropathy disease: an open-label phase 2 and 3 study. Lancet 403, 645–656 (2024).
Lo, B. et al. Patients with LRBA deficiency show CTLA4 loss and immune dysregulation responsive to abatacept therapy. Science 349, 436–440 (2015).
Polmar, S. H. et al. Enzyme replacement therapy for adenosine deaminase deficiency and severe combined immunodeficiency. N. Engl. J. Med. 295, 1337–1343 (1976).
Snowden, J. A. et al. Indications for haematopoietic cell transplantation for haematological diseases, solid tumours and immune disorders: current practice in Europe, 2022. Bone Marrow Transplant. 57, 1217–1239 (2022).
Markert, M. L. et al. Transplantation of thymus tissue in complete DiGeorge syndrome. N. Engl. J. Med. 341, 1180–1189 (1999).
Heimall, J. et al. Immune reconstitution and survival of 100 SCID patients post-hematopoietic cell transplant: a PIDTC natural history study. Blood 130, 2718–2727 (2017).
Tangye, S. G. et al. Human Inborn Errors of Immunity: 2022 Update on the Classification from the International Union of Immunological Societies Expert Committee. J. Clin. Immunol. 42, 1473–1507 (2022).
Nguyen, A. T. & Aquino, M. R. Primary antibody deficiencies. Allergy Asthma Proc. 45, 310–316 (2024).
Bonilla, F. A. et al. International Consensus Document (ICON): common variable immunodeficiency disorders. J. Allergy Clin. Immunol. Pr. 4, 38–59 (2016).
Revy, P. et al. Activation-induced cytidine deaminase (AID) deficiency causes the autosomal recessive form of the Hyper-IgM syndrome (HIGM2). Cell 102, 565–575 (2000).
Kline, A. et al. Outcomes in hematopoetic cell transplantation in the setting of mold infections in patients with chronic granulomatous disease. Bone Marrow Transplant. 60, 191–200 (2024).
Mastellos, D. C., Hajishengallis, G. & Lambris, J. D. A guide to complement biology, pathology and therapeutic opportunity. Nat. Rev. Immunol. 24, 118–141 (2024).
Bustamante, J., Boisson-Dupuis, S., Abel, L. & Casanova, J. -L. Mendelian susceptibility to mycobacterial disease: genetic, immunological, and clinical features of inborn errors of IFN-γ immunity. Semin. Immunol. 26, 454–470 (2014).
Puel, A. et al. Chronic mucocutaneous candidiasis in humans with inborn errors of interleukin-17 immunity. Science 332, 65–68 (2011).
Glocker, E.-O. et al. A homozygous CARD9 mutation in a family with susceptibility to fungal infections. N. Engl. J. Med. 361, 1727–1735 (2009).
Tangye, S. G. Genetic susceptibility to EBV infection: insights from inborn errors of immunity. Hum. Genet. 139, 885–901 (2020).
Tangye, S. G. Impact of SARS-CoV-2 infection and COVID-19 on patients with inborn errors of immunity. J. Allergy Clin. Immunol. 151, 818–831 (2023).
Drzymalla, E. et al. COVID-19-related health outcomes in people with primary immunodeficiency: a systematic review. Clin. Immunol. 243, 109097 (2022).
Su, H. C., Jing, H., Zhang, Y. & Casanova, J. L. Interfering with interferons: a critical mechanism for critical COVID-19 pneumonia. Annu. Rev. Immunol. 41, 561–585 (2023).
Zhang, Q. et al. Inborn errors of type I IFN immunity in patients with life-threatening COVID-19. Science 370, eabd4570 (2020). Genetic mutations within the IFN-I immunity pathway can put individuals at greater risk for severe COVID-19 pneumonia.
Zhang, Q. et al. Recessive inborn errors of type I IFN immunity in children with COVID-19 pneumonia. J. Exp. Med. 219, e20220131 (2022).
García-García, A. et al. Humans with inherited MyD88 and IRAK-4 deficiencies are predisposed to hypoxemic COVID-19 pneumonia. J. Exp. Med. 220, e20220170 (2023).
Asano, T. et al. X-linked recessive TLR7 deficiency in ~1% of men under 60 years old with life-threatening COVID-19. Sci. Immunol. 6, eabl4348 (2021).
Bastard, P. et al. Autoantibodies against type I IFNs in patients with life-threatening COVID-19. Science 370, eabd4585 (2020). This paper reveals autoantibodies against IFN-I as drivers of severe COVID-19—a paradigm-shifting immune mechanism with both genetic and acquired underpinnings.
Bastard, P. et al. Autoantibodies neutralizing type I IFNs are present in ~4% of uninfected individuals over 70 years old and account for ~20% of COVID-19 deaths. Sci. Immunol. 6, eabl4340 (2021).
Bastard, P. et al. Vaccine breakthrough hypoxemic COVID-19 pneumonia in patients with auto-Abs neutralizing type I IFNs. Sci. Immunol. 8, eabp8966 (2023).
Bastard, P. et al. Preexisting autoantibodies to type I IFNs underlie critical COVID-19 pneumonia in patients with APS-1. J. Exp. Med. 218, e20210554 (2021).
Monk, P. D. et al. Safety and efficacy of inhaled nebulised interferon beta-1a (SNG001) for treatment of SARS-CoV-2 infection: a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Respir. Med. 9, 196–206 (2021).
Hung, I. F. et al. Triple combination of interferon beta-1b, lopinavir-ritonavir, and ribavirin in the treatment of patients admitted to hospital with COVID-19: an open-label, randomised, phase 2 trial. Lancet 395, 1695–1704 (2020).
Kalil, A. C. et al. Efficacy of interferon beta-1a plus remdesivir compared with remdesivir alone in hospitalised adults with COVID-19: a double-bind, randomised, placebo-controlled, phase 3 trial. Lancet Respir. Med. 9, 1365–1376 (2021).
Brzoska, J., von Eick, H. & Hündgen, M. Interferons in COVID-19: missed opportunities to prove efficacy in clinical phase III trials? Front. Med. 10, 1198576 (2023).
Pazmandi, J., Kalinichenko, A., Ardy, R. C. & Boztug, K. Early‐onset inflammatory bowel disease as a model disease to identify key regulators of immune homeostasis mechanisms. Immunol. Rev. 287, 162–185 (2019).
Ni, J., Wu, G. D., Albenberg, L. & Tomov, V. T. Gut microbiota and IBD: causation or correlation? Nat. Rev. Gastroenterol. Hepatol. 14, 573–584 (2017).
Ananthakrishnan, A. N. et al. Environmental triggers in IBD: a review of progress and evidence. Nat. Rev. Gastroenterol. Hepatol. 15, 39–49 (2018).
Levine, A. et al. Pediatric modification of the Montreal classification for inflammatory bowel disease: the Paris classification. Inflamm. Bowel Dis. 17, 1314–1321 (2011).
Uhlig, H. H. et al. The diagnostic approach to monogenic very early onset inflammatory bowel disease. Gastroenterology 147, 990–1007 (2014).
Hall, C. H. T. & de Zoeten, E. F. Understanding very early onset inflammatory bowel disease (VEOIBD) in relation to inborn errors of immunity. Immunol. Rev. 322, 329–338 (2024).
Glocker, E. -O. et al. Inflammatory bowel disease and mutations affecting the interleukin-10 receptor. N. Engl. J. Med. 361, 2033–2045 (2009). Seminal paper identifying IL-10 receptor mutations causing infantile-onset IBD, a cornerstone for linking monogenic defects to gut inflammation.
Glocker, E. -O. et al. Infant colitis—it’s in the genes. Lancet 376, 1272 (2010).
Cleynen, I. et al. Inherited determinants of Crohn’s disease and ulcerative colitis phenotypes: a genetic association study. Lancet 387, 156–167 (2016).
Ouahed, J. D. Understanding inborn errors of immunity: a lens into the pathophysiology of monogenic inflammatory bowel disease. Front. Immunol. 13, 1026511 (2022).
Nambu, R. et al. A systematic review of monogenic inflammatory bowel disease. Clin. Gastroenterol. Hepatol. 20, e653–e663 (2022).
Levine, A. E., Mark, D., Smith, L., Zheng, H. B. & Suskind, D. L. Pharmacologic management of monogenic and very early onset inflammatory bowel diseases. Pharmaceutics 15, 969 (2023).
Conrey, P. E. et al. IgA deficiency destabilizes homeostasis toward intestinal microbes and increases systemic immune dysregulation. Sci. Immunol. 8, eade2335 (2023).
Lane, J. P., Stewart, C. J., Cummings, S. P. & Gennery, A. R. Gut microbiome variations during hematopoietic stem cell transplant in severe combined immunodeficiency. J. Allergy Clin. Immunol. 135, 1654–1656 (2015).
Zhang, L., Li, Y. Y., Tang, X. & Zhao, X. Faecal microbial dysbiosis in children with Wiskott–Aldrich syndrome. Scand. J. Immunol. 91, e12805 (2020).
Sokol, H. et al. Intestinal dysbiosis in inflammatory bowel disease associated with primary immunodeficiency. J. Allergy Clin. Immunol. 143, 775–778 (2019).
Macpherson, M. E. et al. Gut microbiota-dependent trimethylamine N-oxide associates with inflammation in common variable immunodeficiency. Front. Immunol. 11, 574500 (2020).
Jørgensen, S. F. et al. Altered gut microbiota profile in common variable immunodeficiency associates with levels of lipopolysaccharide and markers of systemic immune activation. Mucosal Immunol. 9, 1455–1465 (2016).
Lionakis, M. S., Drummond, R. A. & Hohl, T. M. Immune responses to human fungal pathogens and therapeutic prospects. Nat. Rev. Immunol. 23, 433–452 (2023).
Benech, N. & Sokol, H. Targeting the gut microbiota in inflammatory bowel diseases: where are we? Curr. Opin. Microbiol. 74, 102319 (2023).
Pai, N. et al. Results of the first pilot randomized controlled trial of fecal microbiota transplant in pediatric ulcerative colitis: lessons, limitations, and future prospects. Gastroenterology 161, 388–393 (2021).
Yao, Y. et al. Mucus sialylation determines intestinal host-commensal homeostasis. Cell 185, 1172–1188 (2022).
Tiri, A. et al. Inborn errors of immunity and cancer. Biology 10, 313 (2021).
Filipovich, A. H., Mathur, A., Kamat, D. & Shapiro, R. S. Primary immunodeficiencies: genetic risk factors for lymphoma. Cancer Res. 52, 5465s–5467s (1992).
Jonkman-Berk, B. M. et al. Primary immunodeficiencies in the Netherlands: national patient data demonstrate the increased risk of malignancy. Clin. Immunol. 156, 154–162 (2015).
Kebudi, R., Kiykim, A. & Sahin, M. K. Primary immunodeficiency and cancer in children; a review of the literature. Curr. Pediatr. Rev. 15, 245–250 (2019).
Mayor, P. C. et al. Cancer in primary immunodeficiency diseases: cancer incidence in the United States Immune Deficiency Network Registry. J. Allergy Clin. Immunol. 141, 1028–1035 (2018). A study comparing cancer incidence in individuals with primary immunodeficiency diseases from the USIDNET registry to the SEER database found a 1.42-fold increase overall cancer risk.
Riaz, I. B., Faridi, W., Patnaik, M. M. & Abraham, R. S. A systematic review on predisposition to lymphoid (B and T cell) neoplasias in patients with primary immunodeficiencies and immune dysregulatory disorders (inborn errors of immunity). Front. Immunol. 10, 777 (2019).
Vajdic, C. M. et al. Are antibody deficiency disorders associated with a narrower range of cancers than other forms of immunodeficiency? Blood 116, 1228–1234 (2010).
Thaventhiran, J. E. D. et al. Whole-genome sequencing of a sporadic primary immunodeficiency cohort. Nature 583, 90–95 (2020). Primary immunodeficiency involves severe infections, autoimmunity and cancer, and a whole-genome sequencing study of 1,318 participants identified genetic mutations, enhancing diagnostic accuracy and understanding of immune pathways.
Bartkova, J. et al. DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature 434, 864–870 (2005).
Rothblum-Oviatt, C. et al. Ataxia telangiectasia: a review. Orphanet J. Rare Dis. 11, 159 (2016).
Chrzanowska, K. H., Gregorek, H., Dembowska-Bagińska, B., Kalina, M. A. & Digweed, M. Nijmegen breakage syndrome (NBS). Orphanet J. Rare Dis. 7, 13 (2012).
Sugrañes, T. A. et al. Age of first cancer diagnosis and survival in Bloom syndrome. Genet. Med. 24, 1476–1484 (2022).
De Vos, M. et al. PMS2 mutations in childhood cancer. J. Natl Cancer Inst. 98, 358–361 (2006).
Bednarski, J. J. & Sleckman, B. P. Lymphocyte development: integration of DNA damage response signaling. Adv. Immunol. 116, 175–204 (2012).
Germeshausen, M., Ballmaier, M. & Welte, K. Incidence of CSF3R mutations in severe congenital neutropenia and relevance for leukemogenesis: results of a long-term survey. Blood 109, 93–99 (2007).
Cohen, J. I. Epstein–Barr virus infection. N. Engl. J. Med. 343, 481–492 (2000).
Frisch, M., Biggar, R. J. & Goedert, J. J.Human papillomavirus-associated cancers in patients with human immunodeficiency virus infection and acquired immunodeficiency syndrome. J. Natl Cancer Inst. 92, 1500–1510 (2000).
Sancho-Shimizu, V. et al. Genetic susceptibility to herpes simplex virus 1 encephalitis in mice and humans. Curr. Opin. Allergy Clin. Immunol. 7, 495–505 (2007).
Brianti, P., De Flammineis, E. & Mercuri, S. R. Review of HPV-related diseases and cancers. New Microbiol. 40, 80–85 (2017).
Coffey, A. J. et al. Host response to EBV infection in X-linked lymphoproliferative disease results from mutations in an SH2-domain encoding gene. Nat. Genet. 20, 129–135 (1998).
Rigaud, S. et al. XIAP deficiency in humans causes an X-linked lymphoproliferative syndrome. Nature 444, 110–114 (2006).
Kanellopoulou, C. et al. Mg2+ regulation of kinase signaling and immune function. J. Exp. Med. 216, 1828–1842 (2019).
Ravell, J. C. et al. Defective glycosylation and multisystem abnormalities characterize the primary immunodeficiency XMEN disease. J. Clin. Invest. 130, 507–522 (2020).
Matsuda-Lennikov, M. et al. Magnesium transporter 1 (MAGT1) deficiency causes selective defects in N-linked glycosylation and expression of immune-response genes. J. Biol. Chem. 294, 13638–13656 (2019).
Izawa, K. et al. Inherited CD70 deficiency in humans reveals a critical role for the CD70-CD27 pathway in immunity to Epstein–Barr virus infection. J. Exp. Med. 214, 73–89 (2017).
Rodriguez, R. et al. Concomitant PIK3CD and TNFRSF9 deficiencies cause chronic active Epstein–Barr virus infection of T cells. J. Exp. Med. 216, 2800–2818 (2019).
Leiding, J. W. & Holland, S. M. Warts and all: human papillomavirus in primary immunodeficiencies. J. Allergy Clin. Immunol. 130, 1030–1048 (2012).
Grulich, A. E., van Leeuwen, M. T., Falster, M. O. & Vajdic, C. M. Incidence of cancers in people with HIV/AIDS compared with immunosuppressed transplant recipients: a meta-analysis. Lancet 370, 59–67 (2007).
Menotti, M. et al. Wiskott–Aldrich syndrome protein (WASP) is a tumor suppressor in T cell lymphoma. Nat. Med. 25, 130–140 (2019).
Malinova, D. et al. WASp-dependent actin cytoskeleton stability at the dendritic cell immunological synapse is required for extensive, functional T cell contacts. J. Leukoc. Biol. 99, 699–710 (2016).
Orange, J. S. et al. Wiskott-Aldrich syndrome protein is required for NK cell cytotoxicity and colocalizes with actin to NK cell-activating immunologic synapses. Proc. Natl Acad. Sci. USA 99, 11351–11356 (2002).
Orange, J. S. Natural killer cell deficiency. J. Allergy Clin. Immunol. 132, 515–525 (2013).
Hughes, C. R. et al. MCM4 mutation causes adrenal failure, short stature, and natural killer cell deficiency in humans. J. Clin. Invest. 122, 814–820 (2012).
Tran, H. et al. Immunodeficiency-associated lymphomas. Blood Rev. 22, 261–281 (2008).
Berglund, L. J. Modulating the PI3K signalling pathway in activated PI3K delta syndrome: a clinical perspective. J. Clin. Immunol. 44, 34 (2023).
Lévy, R. et al. Efficacy of ruxolitinib in subcutaneous panniculitis-like T-cell lymphoma and hemophagocytic lymphohistiocytosis. Blood Adv. 4, 1383–1387 (2020).
Coiffier, B. Rituximab therapy in malignant lymphoma. Oncogene 26, 3603–3613 (2007).
June, C. H., O’Connor, R. S., Kawalekar, O. U., Ghassemi, S. & Milone, M. C. CAR T cell immunotherapy for human cancer. Science 359, 1361–1365 (2018).
Labrijn, A. F., Janmaat, M. L., Reichert, J. M. & Parren, P. Bispecific antibodies: a mechanistic review of the pipeline. Nat. Rev. Drug Discov. 18, 585–608 (2019).
Waldman, A. D., Fritz, J. M. & Lenardo, M. J. A guide to cancer immunotherapy: from T cell basic science to clinical practice. Nat. Rev. Immunol. 20, 651–668 (2020). This review covers the historical and biological development of immnunotherapies, clinical trial outcomes, associated toxicities and future prospects in cancer immunotherapy.
Majzner, R. G., Heitzeneder, S. & Mackall, C. L. Harnessing the immunotherapy revolution for the treatment of childhood cancers. Cancer Cell 31, 476–485 (2017).