Franks, P. W. et al. Precision medicine for cardiometabolic disease: a framework for clinical translation. Lancet Diabetes Endocrinol. 11, 822–835 (2023).

Article 
PubMed 

Google Scholar
 

Guasch-Ferré, M. et al. Precision nutrition for cardiometabolic diseases. Nat. Med. 31, 1444–1453 (2025).

Article 
PubMed 

Google Scholar
 

Bjørnsbo, K. S. et al. Protocol for the combined cardiometabolic deep phenotyping and registry-based 20-year follow-up study of the Inter99 cohort. BMJ Open 14, e078501 (2014).

Article 

Google Scholar
 

Shen, X. et al. Multi-omics microsampling for the profiling of lifestyle-associated changes in health. Nat. Biomed. Eng. 8, 11–29 (2024).

Article 
CAS 
PubMed 

Google Scholar
 

Sankar, P. L. & Parker, L. S. The Precision Medicine Initiative’s All of Us Research Program: an agenda for research on its ethical, legal and social issues. Genet. Med. 19, 743–750 (2017).

Article 
PubMed 

Google Scholar
 

Willett, W. et al. Food in the Anthropocene: the EAT-Lancet Commission on healthy diets from sustainable food systems. Lancet 393, 447–492 (2019).

Article 
PubMed 

Google Scholar
 

Li, Y. et al. Reducing climate change impacts from the global food system through diet shifts. Nat. Clim. Change 14, 943–953 (2024).

Article 
ADS 

Google Scholar
 

Springmann, M., Clark, M. A., Rayner, M., Scarborough, P. & Webb, P. The global and regional costs of healthy and sustainable dietary patterns: a modelling study. Lancet Planet. Health 5, e797–e807 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar
 

He, P., Feng, K., Baiocchi, G., Sun, L. & Hubacek, K. Shifts towards healthy diets in the US can reduce environmental impacts but would be unaffordable for poorer minorities. Nat. Food 2, 664–672 (2021).

Article 
PubMed 

Google Scholar
 

Henn, K., Goddyn, H., Olsen, S. B. & Bredie, W. L. P. Identifying behavioral and attitudinal barriers and drivers to promote consumption of pulses: a quantitative survey across five European countries. Food Qual. Preference 98, 104455 (2022).

Article 

Google Scholar
 

Grummon, A. H., Lee, C. J. Y., Robinson, T. N., Rimm, E. B. & Rose, D. Simple dietary substitutions can reduce carbon footprints and improve dietary quality across diverse segments of the US population. Nat. Food 4, 966–977 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Tuninetti, M., Ridolfi, L. & Laio, F. Compliance with EAT–Lancet dietary guidelines would reduce global water footprint but increase it for 40% of the world population. Nat. Food 3, 143–151 (2022).

Article 
PubMed 

Google Scholar
 

Bunge, A. C., Mazac, R., Clark, M., Wood, A. & Gordon, L. Sustainability benefits of transitioning from current diets to plant-based alternatives or whole-food diets in Sweden. Nat. Commun. 15, 951 (2024).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Ravelli, M. N. & Schoeller, D. A. Traditional self-reported dietary instruments are prone to inaccuracies and new approaches are needed. Front. Nutr. 7, 90 (2020).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Kipnis, V. et al. Structure of dietary measurement error: results of the OPEN biomarker study. Am. J. Epidemiol. 158, 14–21 (2003).

Article 
PubMed 

Google Scholar
 

Willett, W. Nutritional Epidemiology (Oxford Univ. Press, 2012).

Palaniappan, U., Cue, R., Payette, H. & Gray-Donald, K. Implications of day-to-day variability on measurements of usual food and nutrient intakes. J. Nutr. 133, 232–235 (2003).

Article 
CAS 
PubMed 

Google Scholar
 

Bingham, S. A. et al. in Manual on Methodology for Food Consumption Studies (eds Cameron, M. E. & van Staveren, W. A.) 53–106 (Oxford Univ. Press, 1988).

Eldridge, A. L. et al. Evaluation of new technology-based tools for dietary intake assessment—an ILSI Europe Dietary Intake and Exposure Task Force evaluation. Nutrients 11, 55 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Blanton, C. A., Moshfegh, A. J., Baer, D. J. & Kretsch, M. J. The USDA Automated Multiple-Pass Method accurately estimates group total energy and nutrient intake. J. Nutr. 136, 2594–2599 (2006).

Article 
CAS 
PubMed 

Google Scholar
 

Subar, A. F. et al. Addressing current criticism regarding the value of self-report dietary data. J. Nutr. 145, 2639–2645 (2015).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Forster, H., Walsh, M. C., Gibney, M. J., Brennan, L. & Gibney, E. R. Personalised nutrition: the role of new dietary assessment methods. Proc. Nutr. Soc. 75, 96–105 (2016).

Article 
CAS 
PubMed 

Google Scholar
 

Kipnis, V. et al. Bias in dietary-report instruments and its implications for nutritional epidemiology. Public Health Nutr. 5, 915–923 (2002).

Article 
PubMed 

Google Scholar
 

Thompson, F. E. & Subar, A. F. in Nutrition in the Prevention and Treatment of Disease 4th edn (eds Coulston, A. M. et al.) 5–48 (Academic Press, 2017).

Young, L. R. & Nestle, M. Portion sizes in dietary assessment: issues and policy implications. Nutr. Rev. 53, 149–158 (1995).

Article 
CAS 
PubMed 

Google Scholar
 

Amoutzopoulos, B. et al. Portion size estimation in dietary assessment: a systematic review of existing tools, their strengths and limitations. Nutr. Rev. 78, 885–900 (2020).

Article 
PubMed 

Google Scholar
 

Faulkner, G. P. et al. An evaluation of portion size estimation aids: precision, ease of use and likelihood of future use. Public Health Nutr. 19, 2377–2387 (2016).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Lucassen, D. A., Willemsen, R. F., Geelen, A., Brouwer-Brolsma, E. M. & Feskens, E. J. M. The accuracy of portion size estimation using food images and textual descriptions of portion sizes: an evaluation study. J. Hum. Nutr. Diet. 34, 945–952 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Vuckovic, N., Ritenbaugh, C., Taren, D. L. & Tobar, M. A qualitative study of participants’ experiences with dietary assessment. J. Am. Diet. Assoc. 100, 1023–1028 (2000).

Article 
CAS 
PubMed 

Google Scholar
 

Brinkley, S. et al. The state of food composition databases: data attributes and FAIR data harmonization in the era of digital innovation. Front. Nutr. 12, 1552367 (2025).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Li, Z., Forester, S., Jennings-Dobbs, E. & Heber, D. Perspective: a comprehensive evaluation of data quality in nutrient databases. Adv. Nutr. 14, 379–391 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Pennington, J. A. T. et al. Food composition data: the foundation of dietetic practice and research. J. Am. Diet. Assoc. 107, 2105–2113 (2007).

Article 
PubMed 

Google Scholar
 

Neuhouser, M. L. et al. Novel application of nutritional biomarkers from a controlled feeding study and an observational study to characterization of dietary patterns in postmenopausal women. Am. J. Epidemiol. 190, 2461–2473 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Neuhouser, M. L. et al. Use of recovery biomarkers to calibrate nutrient consumption self-reports in the Women’s Health Initiative. Am. J. Epidemiol. 167, 1247–1259 (2008).

Article 
PubMed 

Google Scholar
 

Jenab, M., Slimani, N., Bictash, M., Ferrari, P. & Bingham, S. A. Biomarkers in nutritional epidemiology: applications, needs and new horizons. Hum. Genet. 125, 507–525 (2009).

Article 
PubMed 

Google Scholar
 

Bingham, S. A. Biomarkers in nutritional epidemiology. Public Health Nutr. 5, 821–827 (2002).

Article 
PubMed 

Google Scholar
 

Shiffman, S., Stone, A. A. & Hufford, M. R. Ecological momentary assessment. Annu. Rev. Clin. Psychol. 4, 1–32 (2008).

Article 
PubMed 

Google Scholar
 

Lucassen, D. A., Brouwer-Brolsma, E. M., Slotegraaf, A. I., Kok, E. & Feskens, E. J. DIetary ASSessment (DIASS) Study: design of an evaluation study to assess validity, usability and perceived burden of an innovative dietary assessment methodology. Nutrients 14, 1156 (2022).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Lucassen, D. A. et al. Validation of the smartphone-based dietary assessment tool ‘Traqq’ for assessing actual dietary intake by repeated 2-h recalls in adults: comparison with 24-h recalls and urinary biomarkers. Am. J. Clin. Nutr. 117, 1278–1287 (2023).

Article 
CAS 
PubMed 

Google Scholar
 

Lucassen, D. A., Brouwer-Brolsma, E. M., Boshuizen, H. C., Balvers, M. & Feskes, E. J. Evaluation of the smartphone-based dietary assessment tool “Traqq” for assessing habitual dietary intake by random 2-H recalls in adults: comparison with a Food Frequency Questionnaire and blood concentration biomarkers. J. Nutr. 155, 634–642 (2024).

Article 
PubMed 

Google Scholar
 

Vu, T., Lin, F., Alshurafa, N. & Xu, W. Wearable food intake monitoring technologies: a comprehensive review. Computers 6, 4 (2017).

Article 

Google Scholar
 

Fontana, J., Farooq, M. & Sazonov, E. in Wearable Sensors (ed. Sazonov, E.). 541–574 (Academic Press, 2020).

McClung, H. L. et al. Dietary intake and physical activity assessment: current tools, techniques and technologies for use in adult populations. Am. J. Prevent. Med. 55, e93–e104 (2018).

Article 

Google Scholar
 

Doulah, A., Ghosh, T., Hossain, D., Imtiaz, M. H. & Sazonov, E. ‘Automatic Ingestion Monitor Version 2’ —a novel wearable device for automatic food intake detection and passive capture of food images. IEEE J. Biomed. Health Inform. 25, 568–576 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Bedri, A., Li, D., Khurana, R., Bhuwalka, K. & Goel, M. FitByte: automatic diet monitoring in unconstrained situations using multimodal sensing on eyeglasses. In Proc. 2020 CHI Conference on Human Factors in Computing Systems 1–12 (ACM, 2020).

Lo, F. P. W. et al. Dietary assessment with multimodal ChatGPT: a systematic analysis. IEEE J. Biomed. Health Inform. 28, 7577–7587 (2024).

Article 
PubMed 

Google Scholar
 

Zhang, S., Callaghan, V. & Che, Y. Image-based methods for dietary assessment: a survey. J. Food Meas. Charact. 18, 727–743 (2024).

Article 

Google Scholar
 

Jia, W. et al. Automatic food detection in egocentric images using artificial intelligence technology. Public Health Nutr. 22, 1168–1179 (2019).

PubMed 

Google Scholar
 

Marín-Méndez, J.-J. et al. Hyperspectral imaging as a non-destructive technique for estimating the nutritional value of food. Curr. Res. Food Sci. 9, 100799 (2024).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Kok, E., Chauhan, A., Tufano, M., Feskens, E. & Camps, G. The potential of short-wave infrared hyperspectral imaging and deep learning for dietary assessment: a prototype on predicting closed sandwiches fillings. Front. Nutr. 11, 1520674 (2024).

Article 
PubMed 

Google Scholar
 

Gao, Q. et al. A scheme for a flexible classification of dietary and health biomarkers. Genes Nutr. 12, 34 (2017).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Scalbert, A. et al. The food metabolome: a window over dietary exposure. Am. J. Clin. Nutr. 99, 1286–1308 (2014).

Article 
CAS 
PubMed 

Google Scholar
 

Cuparencu, C. et al. Towards nutrition with precision: unlocking biomarkers as dietary assessment tools. Nat. Metab. 6, 1438–1453 (2024).

Article 
PubMed 

Google Scholar
 

Dragsted, L. O. et al. Validation of biomarkers of food intake-critical assessment of candidate biomarkers. Genes Nutr. 13, 14 (2018).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Brouwer-Brolsma, E. M. et al. Combining traditional dietary assessment methods with novel metabolomics techniques: present efforts by the Food Biomarker Alliance. Proc. Nutr. Soc. 76, 619–627 (2017).

Article 
PubMed 

Google Scholar
 

Playdon, M. C. et al. Measuring diet by metabolomics: a 14-d controlled feeding study of weighed food intake. Am. J. Clin. Nutr. 119, 511–526 (2024).

Article 
CAS 
PubMed 

Google Scholar
 

Eichelmann, F. et al. Lipidome changes due to improved dietary fat quality inform cardiometabolic risk reduction and precision nutrition. Nat. Med. 30, 2867–2877 (2024).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Aristizabal-Henao, J. J., Biltoft-Jensen, A. P., Christensen, T. & Stark, K. D. Lipidomic and fatty acid biomarkers in whole blood can predict the dietary intake of eicosapentaenoic and docosahexaenoic acids in a Danish population. J. Nutr. 154, 2108–2119 (2024).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Bagheri, M. et al. A lipid-related metabolomic pattern of diet quality. Am. J. Clin. Nutr. 112, 1613–1630 (2020).

Article 
PubMed 
PubMed Central 

Google Scholar
 

McKeown, N. M. et al. Comparison of plasma alkylresorcinols (AR) and urinary AR metabolites as biomarkers of compliance in a short-term, whole-grain intervention study. Eur. J. Nutr. 55, 1235–1244 (2016).

Article 
CAS 
PubMed 

Google Scholar
 

Andersen, M. B. S. et al. Untargeted metabolomics as a screening tool for estimating compliance to a dietary pattern. J. Proteome Res. 13, 1405–1418 (2014).

Article 
CAS 
PubMed 

Google Scholar
 

Unión-Caballero, A. et al. Metabolome biomarkers linking dietary fibre intake with cardiometabolic effects: results from the Danish Diet, Cancer and Health-Next Generations MAX study. Food Function 15, 1643–1654 (2024).

Article 
PubMed 

Google Scholar
 

Marklund, M. et al. A dietary biomarker approach captures compliance and cardiometabolic effects of a healthy Nordic diet in individuals with metabolic syndrome. J. Nutr. 144, 1642–1649 (2014).

Article 
CAS 
PubMed 

Google Scholar
 

Wilson, T. et al. Spot and cumulative urine samples are suitable replacements for 24-hour urine collections for objective measures of dietary exposure in adults using metabolite biomarkers. J. Nutr. 149, 1692–1700 (2019).

Article 
CAS 
PubMed 

Google Scholar
 

Lloyd, A. J. et al. Developing community-based urine sampling methods to deploy biomarker technology for the assessment of dietary exposure. Public Health Nutr. 23, 3081–3092 (2020).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Xi, M. et al. Combined urinary biomarkers to assess coffee intake using untargeted metabolomics: discovery in three pilot human intervention studies and validation in cross-sectional studies. J. Agric. Food Chem. 69, 7230–7242 (2021).

Article 
CAS 
PubMed 

Google Scholar
 

Vázquez-Manjarrez, N. et al. Discovery and validation of banana intake biomarkers using untargeted metabolomics in human intervention and cross-sectional studies. J. Nutr. 149, 1701–1713 (2019).

Article 
PubMed 

Google Scholar
 

Cuparencu, C. et al. The anserine to carnosine ratio: an excellent discriminator between white and red meats consumed by free-living overweight participants of the PREVIEW study. Eur. J. Nutr. 60, 179–192 (2021).

Article 
CAS 
PubMed 

Google Scholar
 

Landberg, R. et al. Dose response of whole-grain biomarkers: alkylresorcinols in human plasma and their metabolites in urine in relation to intake. Am. J. Clin. Nutr. 89, 290–296 (2009).

Article 
CAS 
PubMed 

Google Scholar
 

Yin, X. et al. Estimation of chicken intake by adults using metabolomics-derived markers. J. Nutr. 147, 1850–1857 (2017).

Article 
CAS 
PubMed 

Google Scholar
 

Gibbons, H. et al. Demonstration of the utility of biomarkers for dietary intake assessment; proline betaine as an example. Mol. Nutr. Food Res. https://doi.org/10.1002/mnfr.201700037 (2017).

Hu, Y. et al. Calibration of citrus intake assessed by food frequency questionnaires using urinary proline betaine in an observational study setting. Am. J. Clin. Nutr. 120, 178–186 (2024).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Maixner, F. et al. The Iceman’s last meal consisted of fat, wild meat and cereals. Curr. Biol. 28, 2348–2355 (2018).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Garnick, S., Barboza, P. S. & Walker, J. W. Assessment of animal-based methods used for estimating and monitoring rangeland herbivore diet composition. Rangeland Ecol. Manag. 71, 449–457 (2018).

Article 

Google Scholar
 

Wibowo, M. C. et al. Reconstruction of ancient microbial genomes from the human gut. Nature 594, 234–239 (2021).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Søe, M. J. et al. Ancient DNA from latrines in Northern Europe and the Middle East (500 BC–1700 AD) reveals past parasites and diet. PLoS ONE 13, e0195481 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Maixner, F. et al. Hallstatt miners consumed blue cheese and beer during the Iron Age and retained a non-Westernized gut microbiome until the Baroque period. Curr. Biol. 31, 5149–5162.e6 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Carlino, N. et al. Unexplored microbial diversity from 2,500 food metagenomes and links with the human microbiome. Cell 187, 5775–5795.e15 (2024).

Article 
CAS 
PubMed 

Google Scholar
 

Shinn, L. M. et al. Fecal metagenomics to identify biomarkers of food intake in healthy adults: findings from randomized, controlled, nutrition trials. J. Nutr. 154, 271–283 (2024).

Article 
CAS 
PubMed 

Google Scholar
 

Ando, H. et al. Methodological trends and perspectives of animal dietary studies by noninvasive fecal DNA metabarcoding. Environ. DNA 2, 391–406 (2020).

Article 

Google Scholar
 

Thuo, D. et al. Food from faeces: evaluating the efficacy of scat DNA metabarcoding in dietary analyses. PLoS ONE 14, e0225805 (2019).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Zeng, J. et al. Food DNA sequencing reveals associations between dietary perturbations and patient outcomes in hematopoietic stem cell transplant. Transplant. Cell. Ther. 30, S132 (2024).

Article 

Google Scholar
 

Petrone, B. L. et al. Diversity of plant DNA in stool is linked to dietary quality, age, and household income. Proc. Natl Acad. Sci. USA 120, e2304441120 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Petrone, B. L. et al. A pilot study of metaproteomics and DNA metabarcoding as tools to assess dietary intake in humans. Food Function 16, 282–296 (2025).

Article 
CAS 
PubMed 

Google Scholar
 

Diener, C. et al. Metagenomic estimation of dietary intake from human stool. Nat. Metab. 7, 617–630 (2025).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Valdés-Mas, R. et al. Metagenome-informed metaproteomics of the human gut microbiome, host, and dietary exposome uncovers signatures of health and inflammatory bowel disease. Cell 188, 1062–1083.e36 (2025).

Article 
PubMed 

Google Scholar
 

Dragsted, L. O., Roager, H. M. & Cuparencu, C. Querying stool for dietary information. Nat. Metab. 7, 450–451 (2025).

Article 
PubMed 

Google Scholar
 

Jacobs, D. R. & Temple, N. J. in Nutritional Health: Strategies for Disease Prevention (eds Temple, N. J. et al.) 287–296 (Springer, 2023).

Jacobs, D. R., Gross, M. D. & Tapsell, L. C. Food synergy: an operational concept for understanding nutrition. Am. J. Clin. Nutr. 89, 1543S–1548S (2009).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Gürdeniz, G. et al. Analysis of the SYSDIET Healthy Nordic Diet randomized trial based on metabolic profiling reveal beneficial effects on glucose metabolism and blood lipids. Clin. Nutr. 41, 441–451 (2022).

Article 
PubMed 

Google Scholar
 

D’Angelo, S. et al. Combining biomarker and food intake data: calibration equations for citrus intake. Am. J. Clin. Nutr. 110, 977–983 (2019).

Article 
PubMed 

Google Scholar
 

Hua, H. et al. A wipe-based stool collection and preservation kit for microbiome community profiling. Front. Immunol. 13, 889702 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Ahmed, S. et al. Foodomics: a data-driven approach to revolutionize nutrition and sustainable diets. Front. Nutr. 9, 874312 (2022).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Chakraborty, H. et al. The Dietary Biomarkers Development Consortium: an initiative for discovery and validation of dietary biomarkers for precision nutrition. Curr. Dev. Nutr. 9, 107435 (2025).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Bobokhidze, E. et al. Standardised and Objective Dietary Intake Assessment Tool (SODIAT): protocol of a dual-site dietary intervention study to integrate dietary assessment methods. F1000Res. 13, 1144 (2024).

Article 
CAS 
PubMed 

Google Scholar