Kuzmin, E., Taylor, J. S. & Boone, C. Retention of duplicated genes in evolution. Trends Genet. 38, 59–72 (2022).

Article 
PubMed 

Google Scholar
 

Reams, A. B. & Roth, J. R. Mechanisms of gene duplication and amplification. Cold Spring Harb. Perspect. Biol. 7, a016592 (2015).

Article 
PubMed 

Google Scholar
 

Soltis, P. S. & Soltis, D. E. The role of hybridization in plant speciation. Annu. Rev. Plant Biol. 60, 561–588 (2009).

Article 
PubMed 

Google Scholar
 

Dehal, P. & Boore, J. L. Two rounds of whole genome duplication in the ancestral vertebrate. PLoS Biol. 3, e314 (2005).

Article 
PubMed 

Google Scholar
 

Li, Z. et al. Multiple large-scale gene and genome duplications during the evolution of hexapods. Proc. Natl Acad. Sci. USA 115, 4713–4718 (2018).

Article 
PubMed 

Google Scholar
 

Fernández, R. & Gabaldón, T. Gene gain and loss across the metazoan tree of life. Nat. Ecol. Evol. 4, 524–533 (2020).

Article 
PubMed 

Google Scholar
 

Ohno, S. Evolution by Gene Duplication (Springer, 1970).

Force, A. et al. Preservation of duplicate genes by complementary, degenerative mutations. Genetics 151, 1531–1545 (1999).

Article 
PubMed 

Google Scholar
 

Gibson, T. A. & Goldberg, D. S. Questioning the ubiquity of neofunctionalization. PLoS Comput. Biol. 5, e1000252 (2009).

Article 
PubMed 

Google Scholar
 

Gout, J.-F. & Lynch, M. Maintenance and loss of duplicated genes by dosage subfunctionalization. Mol. Biol. Evol. 32, 2141–2148 (2015). This study finds that specific genes can be lost if their expression levels become too low and their paralogues assume most of the contribution to fitness, leading the study’s authors to propose the model of ADS, which postulates that the expression levels of paralogues diverge while their total expression remains constant.

Article 
PubMed 

Google Scholar
 

Lynch, M. & Force, A. The probability of duplicate gene preservation by subfunctionalization. Genetics 154, 459–473 (2000).

Article 
PubMed 

Google Scholar
 

McKeown, A. N. et al. Evolution of DNA specificity in a transcription factor family produced a new gene regulatory module. Cell 159, 58–68 (2014).

Article 
PubMed 

Google Scholar
 

Harms, M. J. & Thornton, J. W. Historical contingency and its biophysical basis in glucocorticoid receptor evolution. Nature 512, 203–207 (2014).

Article 
PubMed 

Google Scholar
 

Cortez-Romero, C. R., Lyu, J., Pillai, A. S., Langanowsky, A. & Thornton, J. W. Symmetry facilitated the evolution of heterospecificity and high-order stoichiometry in vertebrate hemoglobin. Proc. Natl Acad. Sci. USA 122, e2414756122 (2025). Using ancestral sequence reconstruction, the authors identify the mutations that promoted the transition of haemoglobin from a homodimer to a homotetramer, and later to a selective heterotetramer of paralogues.

Article 
PubMed 

Google Scholar
 

Pillai, A. S. et al. Origin of complexity in haemoglobin evolution. Nature 581, 480–485 (2020).

Article 
PubMed 

Google Scholar
 

Katju, V. & Lynch, M. The structure and early evolution of recently arisen gene duplicates in the Caenorhabditis elegans genome. Genetics 165, 1793–1803 (2003).

Article 
PubMed 

Google Scholar
 

Dennis, M. Y. et al. Evolution of human-specific neural SRGAP2 genes by incomplete segmental duplication. Cell 149, 912–922 (2012).

Article 
PubMed 

Google Scholar
 

Kimura, M. The Neutral Theory of Molecular Evolution (Cambridge Univ. Press, 1983).

Papp, B., Pál, C. & Hurst, L. D. Dosage sensitivity and the evolution of gene families in yeast. Nature 424, 194–197 (2003).

Article 
PubMed 

Google Scholar
 

Veitia, R. A. Gene dosage balance: deletions, duplications and dominance. Trends Genet. 21, 33–35 (2005).

Article 
PubMed 

Google Scholar
 

Ascencio, D. et al. Expression attenuation as a mechanism of robustness against gene duplication. Proc. Natl Acad. Sci. USA 118, e2014345118 (2021). By introducing a second copy of around 800 essential genes in yeast, the authors show the immediate fitness effects of duplications and observe attenuation mechanisms by which the expression of the second copy is reduced.

Article 
PubMed 

Google Scholar
 

Stoebel, D. M., Dean, A. & Dykhuizen, D. The cost of expression of Escherichia coli lac operon proteins is in the process, not in the products. Genetics 178, 1653–1660 (2008).

Article 
PubMed 

Google Scholar
 

Kafri, M., Metzl-Raz, E., Jona, G. & Barkai, N. The cost of protein production. Cell Rep. 14, 22–31 (2016).

Article 
PubMed 

Google Scholar
 

Fujita, Y., Namba, S., Kamada, Y. & Moriya, H. Impact of maximal overexpression of a non-toxic protein on yeast cell physiology. eLife 13, RP99572 (2025).

Article 
PubMed 

Google Scholar
 

Vavouri, T., Semple, J. I., Garcia-Verdugo, R. & Lehner, B. Intrinsic protein disorder and interaction promiscuity are widely associated with dosage sensitivity. Cell 138, 198–208 (2009).

Article 
PubMed 

Google Scholar
 

Bhattacharyya, S. et al. Transient protein-protein interactions perturb E. coli metabolome and cause gene dosage toxicity. eLife 5, e20309 (2016).

Article 
PubMed 

Google Scholar
 

Prelich, G. Gene overexpression: uses, mechanisms, and interpretation. Genetics 190, 841–854 (2012).

Article 
PubMed 

Google Scholar
 

Youn, J.-Y. et al. Functional analysis of kinases and transcription factors in Saccharomyces cerevisiae using an integrated overexpression library. G3 Genes Genomes Genet. 7, 911–921 (2017).

Article 

Google Scholar
 

Shen, W. et al. The regulatory mechanism of the yeast osmoresponse under different glucose concentrations. iScience 26, 105809 (2023).

Article 
PubMed 

Google Scholar
 

Kondrashov, F. A. & Kondrashov, A. S. Role of selection in fixation of gene duplications. J. Theor. Biol. 239, 141–151 (2006).

Article 
PubMed 

Google Scholar
 

Perry, G. H. et al. Diet and the evolution of human amylase gene copy number variation. Nat. Genet. 39, 1256–1260 (2007).

Article 
PubMed 

Google Scholar
 

Hardwick, R. J. et al. Haptoglobin (HP) and Haptoglobin-related protein (HPR) copy number variation, natural selection, and trypanosomiasis. Hum. Genet. 133, 69–83 (2014).

Article 
PubMed 

Google Scholar
 

Robinson, D. et al. Gene-by-environment interactions influence the fitness cost of gene copy-number variation in yeast. G3 Genes Genomes Genet. 13, jkad159 (2023).

Article 

Google Scholar
 

Sionov, E., Lee, H., Chang, Y. C. & Kwon-Chung, K. J. Cryptococcus neoformans overcomes stress of azole drugs by formation of disomy in specific multiple chromosomes. PLoS Pathog. 6, e1000848 (2010).

Article 
PubMed 

Google Scholar
 

Selmecki, A., Gerami-Nejad, M., Paulson, C., Forche, A. & Berman, J. An isochromosome confers drug resistance in vivo by amplification of two genes, ERG11 and TAC1. Mol. Microbiol. 68, 624–641 (2008).

Article 
PubMed 

Google Scholar
 

Bergin, S. et al. Analysis of clinical Candida parapsilosis isolates reveals copy number variation in key fluconazole resistance genes. Antimicrob. Agents Chemother. 68, e0161923 (2024).

Article 
PubMed 

Google Scholar
 

Iantorno, S. A. et al. Gene expression in Leishmania is regulated predominantly by gene dosage. mBio 8, e01393-17 (2017).

Article 
PubMed 

Google Scholar
 

Dekel, E. & Alon, U. Optimality and evolutionary tuning of the expression level of a protein. Nature 436, 588–592 (2005).

Article 
PubMed 

Google Scholar
 

Robinson, D., Place, M., Hose, J., Jochem, A. & Gasch, A. P. Natural variation in the consequences of gene overexpression and its implications for evolutionary trajectories. eLife 10, e70564 (2021).

Article 
PubMed 

Google Scholar
 

Naseeb, S., Ames, R. M., Delneri, D. & Lovell, S. C. Rapid functional and evolutionary changes follow gene duplication in yeast. Proc. R. Soc. B 284, 20171393 (2017).

Article 
PubMed 

Google Scholar
 

Bautista, C. et al. Hybrid adaptation is hampered by Haldane’s sieve. Nat. Commun. 15, 10319 (2024).

Article 
PubMed 

Google Scholar
 

Todd, R. T. & Selmecki, A. Expandable and reversible copy number amplification drives rapid adaptation to antifungal drugs. eLife 9, e58349 (2020).

Article 
PubMed 

Google Scholar
 

Zhang, Z. & Ren, Q. Why are essential genes essential? — The essentiality of Saccharomyces genes. Microb. Cell 2, 280–287 (2015).

Article 
PubMed 

Google Scholar
 

Hausser, J., Mayo, A., Keren, L. & Alon, U. Central dogma rates and the trade-off between precision and economy in gene expression. Nat. Commun. 10, 68 (2019).

Article 
PubMed 

Google Scholar
 

Keren, L. et al. Massively parallel interrogation of the effects of gene expression levels on fitness. Cell 166, 1282–1294.e18 (2016).

Article 
PubMed 

Google Scholar
 

Gelperin, D. M. et al. Biochemical and genetic analysis of the yeast proteome with a movable ORF collection. Genes Dev. 19, 2816–2826 (2005).

Article 
PubMed 

Google Scholar
 

Sopko, R. et al. Mapping pathways and phenotypes by systematic gene overexpression. Mol. Cell 21, 319–330 (2006).

Article 
PubMed 

Google Scholar
 

Arita, Y. et al. A genome-scale yeast library with inducible expression of individual genes. Mol. Syst. Biol. 17, e10207 (2021).

Article 
PubMed 

Google Scholar
 

Hawkins, J. S. et al. Mismatch-CRISPRi reveals the co-varying expression-fitness relationships of essential genes in Escherichia coli and Bacillus subtilis. Cell Syst. 11, 523–535.e9 (2020).

Article 
PubMed 

Google Scholar
 

Otto, R. M., Turska-Nowak, A., Brown, P. M. & Reynolds, K. A. A continuous epistasis model for predicting growth rate given combinatorial variation in gene expression and environment. Cell Syst. 15, 134–148.e7 (2024). The authors use CRISPR interference to modulate the expression of pairs of genes participating in metabolic pathways and show how epistasis can result from changes in expression of the two genes.

Article 
PubMed 

Google Scholar
 

Clark, T. et al. CRISPR activation screens: navigating technologies and applications. Trends Biotechnol. 42, 1017–1034 (2024).

Article 
PubMed 

Google Scholar
 

Siddiq, M. A., Duveau, F. & Wittkopp, P. J. Plasticity and environment-specific relationships between gene expression and fitness in Saccharomyces cerevisiae. Nat. Ecol. Evol. 8, 2184–2194 (2024).

Article 
PubMed 

Google Scholar
 

Moreno, P. et al. Expression Atlas update: gene and protein expression in multiple species. Nucleic Acids Res. 50, D129–D140 (2022).

Article 
PubMed 

Google Scholar
 

Huang, Q., Szklarczyk, D., Wang, M., Simonovic, M. & von Mering, C. PaxDb 5.0: curated protein quantification data suggests adaptive proteome changes in yeasts. Mol. Cell. Proteom. 22, 100640 (2023).

Article 

Google Scholar
 

Rice, A. M., Li, Y., Donnelly, P. & McLysaght, A. Evolution of dosage-sensitive genes by tissue-restricted expression changes. Genome Biol. Evol. 17, evaf132 (2025).

Article 
PubMed 

Google Scholar
 

Qian, W., Ma, D., Xiao, C., Wang, Z. & Zhang, J. The genomic landscape and evolutionary resolution of antagonistic pleiotropy in yeast. Cell Rep. 2, 1399–1410 (2012).

Article 
PubMed 

Google Scholar
 

Rogers, R. L., Shao, L. & Thornton, K. R. Tandem duplications lead to novel expression patterns through exon shuffling in Drosophila yakuba. PLoS Genet. 13, e1006795 (2017).

Article 
PubMed 

Google Scholar
 

Loehlin, D. W. & Carroll, S. B. Expression of tandem gene duplicates is often greater than twofold. Proc. Natl Acad. Sci. USA 113, 5988–5992 (2016).

Article 
PubMed 

Google Scholar
 

Song, M. J., Potter, B. I., Doyle, J. J. & Coate, J. E. Gene balance predicts transcriptional responses immediately following ploidy change in Arabidopsis thaliana. Plant Cell 32, 1434–1448 (2020).

Article 
PubMed 

Google Scholar
 

Semple, J. I., Vavouri, T. & Lehner, B. A simple principle concerning the robustness of protein complex activity to changes in gene expression. BMC Syst. Biol. 2, 1 (2008).

Article 
PubMed 

Google Scholar
 

Dephoure, N. et al. Quantitative proteomic analysis reveals posttranslational responses to aneuploidy in yeast. eLife 3, e03023 (2014).

Article 
PubMed 

Google Scholar
 

Chen, Y. et al. Overdosage of balanced protein complexes reduces proliferation rate in aneuploid cells. Cell Syst. 9, 129–142.e5 (2019).

Article 
PubMed 

Google Scholar
 

Ishikawa, K., Makanae, K., Iwasaki, S., Ingolia, N. T. & Moriya, H. Post-translational dosage compensation buffers genetic perturbations to stoichiometry of protein complexes. PLoS Genet. 13, e1006554 (2017).

Article 
PubMed 

Google Scholar
 

Spealman, P., de Santana, C., De, T. & Gresham, D. Multilevel gene expression changes in lineages containing adaptive copy number variants. Mol. Biol. Evol. 42, msaf005 (2025). This study shows how adaptive duplications during experimental evolution can become subject to post-transcriptional and post-translational regulatory mechanisms that further tune total gene expression.

Article 
PubMed 

Google Scholar
 

Qian, W., Liao, B.-Y., Chang, A. Y.-F. & Zhang, J. Maintenance of duplicate genes and their functional redundancy by reduced expression. Trends Genet. 26, 425–430 (2010).

Article 
PubMed 

Google Scholar
 

Edger, P. P. et al. Subgenome dominance in an interspecific hybrid, synthetic allopolyploid, and a 140-year-old naturally established neo-allopolyploid monkeyflower. Plant Cell 29, 2150–2167 (2017).

Article 
PubMed 

Google Scholar
 

Liang, Z. & Schnable, J. C. Functional divergence between subgenomes and gene pairs after whole genome duplications. Mol. Plant 11, 388–397 (2018).

Article 
PubMed 

Google Scholar
 

Bird, K. A. et al. Replaying the evolutionary tape to investigate subgenome dominance in allopolyploid Brassica napus. New Phytol. 230, 354–371 (2021).

Article 
PubMed 

Google Scholar
 

Schnable, J. C., Wang, X., Pires, J. C. & Freeling, M. Escape from preferential retention following repeated whole genome duplications in plants. Front. Plant Sci. 3, 94 (2012).

Article 
PubMed 

Google Scholar
 

Gillard, G. B. et al. Comparative regulomics supports pervasive selection on gene dosage following whole genome duplication. Genome Biol. 22, 103 (2021).

Article 
PubMed 

Google Scholar
 

Thompson, A., Vo, D., Comfort, C. & Zakon, H. H. Expression evolution facilitated the convergent neofunctionalization of a sodium channel gene. Mol. Biol. Evol. 31, 1941–1955 (2014).

Article 
PubMed 

Google Scholar
 

Thompson, A., Zakon, H. H. & Kirkpatrick, M. Compensatory drift and the evolutionary dynamics of dosage-sensitive duplicate genes. Genetics 202, 765–774 (2016).

Article 
PubMed 

Google Scholar
 

Gout, J.-F. et al. Dynamics of gene loss following ancient whole-genome duplication in the cryptic Paramecium complex. Mol. Biol. Evol. 40, msad107 (2023).

Article 
PubMed 

Google Scholar
 

Peñalba, J. V. et al. The role of hybridization in species formation and persistence. Cold Spring Harb. Perspect. Biol. 16, a041445 (2024).

Article 
PubMed 

Google Scholar
 

Chang, A. Y.-F. & Liao, B.-Y. Reduced translational efficiency of eukaryotic genes after duplication events. Mol. Biol. Evol. 37, 1452–1461 (2020).

Article 
PubMed 

Google Scholar
 

Nguyen Ba, A. N. et al. Detecting functional divergence after gene duplication through evolutionary changes in posttranslational regulatory sequences. PLoS Comput. Biol. 10, e1003977 (2014).

Article 
PubMed 

Google Scholar
 

Johri, P., Gout, J.-F., Doak, T. G. & Lynch, M. A population-genetic lens into the process of gene loss following whole-genome duplication. Mol. Biol. Evol. 39, msac118 (2022). The authors find that expression reduction and the accumulation of coding mutations in one of two paralogues both predate its loss, leading them to extend the ADS model showing that the cumulative activity of paralogous proteins is also under selection; results also highlight that evolutionary fates are determined early on.

Article 
PubMed 

Google Scholar
 

Ganko, E. W., Meyers, B. C. & Vision, T. J. Divergence in expression between duplicated genes in Arabidopsis. Mol. Biol. Evol. 24, 2298–2309 (2007).

Article 
PubMed 

Google Scholar
 

Evans-Yamamoto, D. et al. Parallel nonfunctionalization of CK1δ/ε kinase ohnologs following a whole-genome duplication event. Mol. Biol. Evol. 40, msad246 (2023).

Article 
PubMed 

Google Scholar
 

Shi, T., Gao, Z., Chen, J. & Van de Peer, Y. Dosage sensitivity shapes balanced expression and gene longevity of homoeologs after whole-genome duplications in angiosperms. Plant Cell 36, 4323–4337 (2024).

Article 
PubMed 

Google Scholar
 

Drummond, D. A., Bloom, J. D., Adami, C., Wilke, C. O. & Arnold, F. H. Why highly expressed proteins evolve slowly. Proc. Natl Acad. Sci. USA 102, 14338–14343 (2005).

Article 
PubMed 

Google Scholar
 

Serohijos, A. W. R., Rimas, Z. & Shakhnovich, E. I. Protein biophysics explains why highly abundant proteins evolve slowly. Cell Rep. 2, 249–256 (2012).

Article 
PubMed 

Google Scholar
 

DeLuna, A. et al. Exposing the fitness contribution of duplicated genes. Nat. Genet. 40, 676–681 (2008).

Article 
PubMed 

Google Scholar
 

VanderSluis, B. et al. Genetic interactions reveal the evolutionary trajectories of duplicate genes. Mol. Syst. Biol. 6, 429 (2010).

Article 
PubMed 

Google Scholar
 

Kuzmin, E. et al. Exploring whole-genome duplicate gene retention with complex genetic interaction analysis. Science 368, eaaz5667 (2020).

Article 
PubMed 

Google Scholar
 

Kolodrubetz, D., Kruppa, M. & Burgum, A. Gene dosage affects the expression of the duplicated NHP6 genes of Saccharomyces cerevisiae. Gene 272, 93–101 (2001).

Article 
PubMed 

Google Scholar
 

DeLuna, A., Springer, M., Kirschner, M. W. & Kishony, R. Need-based up-regulation of protein levels in response to deletion of their duplicate genes. PLoS Biol. 8, e1000347 (2010).

Article 
PubMed 

Google Scholar
 

Iohannes, S. D. & Jackson, D. Tackling redundancy: genetic mechanisms underlying paralog compensation in plants. New Phytol. 240, 1381–1389 (2023).

Article 
PubMed 

Google Scholar
 

Diss, G., Ascencio, D., DeLuna, A. & Landry, C. R. Molecular mechanisms of paralogous compensation and the robustness of cellular networks. J. Exp. Zool. B Mol. Dev. Evol. 322, 488–499 (2014).

Article 
PubMed 

Google Scholar
 

Kafri, R., Bar-Even, A. & Pilpel, Y. Transcription control reprogramming in genetic backup circuits. Nat. Genet. 37, 295–299 (2005).

Article 
PubMed 

Google Scholar
 

Kafri, R., Levy, M. & Pilpel, Y. The regulatory utilization of genetic redundancy through responsive backup circuits. Proc. Natl Acad. Sci. USA 103, 11653–11658 (2006).

Article 
PubMed 

Google Scholar
 

Loker, R. & Mann, R. S. Divergent expression of paralogous genes by modification of shared enhancer activity through a promoter-proximal silencer. Curr. Biol. 32, 3545–3555.e4 (2022).

Article 
PubMed 

Google Scholar
 

Vande Zande, P., Siddiq, M. A., Hodgins-Davis, A., Kim, L. & Wittkopp, P. J. Active compensation for changes in TDH3 expression mediated by direct regulators of TDH3 in Saccharomyces cerevisiae. PLoS Genet. 19, e1011078 (2023). This study presents the regulatory mechanisms that mediate the upregulation of TDH2 in response to the deletion of its paralogue TDH3 in yeast, providing a clear demonstration that active compensation between paralogues can arise from shared regulation.

Article 
PubMed 

Google Scholar
 

Springer, M., Weissman, J. S. & Kirschner, M. W. A general lack of compensation for gene dosage in yeast. Mol. Syst. Biol. 6, 368 (2010).

Article 
PubMed 

Google Scholar
 

Dandage, R. et al. Single-cell imaging of protein dynamics of paralogs reveals sources of gene retention. iScience 28, 112771 (2025).

Article 
PubMed 

Google Scholar
 

Teufel, A. I., Liu, L. & Liberles, D. A. Models for gene duplication when dosage balance works as a transition state to subsequent neo- or sub-functionalization. BMC Evol. Biol. 16, 45 (2016).

Article 
PubMed 

Google Scholar
 

Wilson, A. E. & Liberles, D. A. Dosage balance acts as a time-dependent selective barrier to subfunctionalization. BMC Ecol. Evol. 23, 14 (2023).

Article 
PubMed 

Google Scholar
 

Mihajlovic, L. et al. A direct experimental test of Ohno’s hypothesis. eLife 13, RP97216 (2025). By evolving Escherichia coli cells with one or two copies of a fluorescent protein, the authors experimentally validate the fact that although gene duplication leads to relaxed selection, the rate of phenotypic evolution remains unchanged if one of the two copies is inactivated.

Article 
PubMed 

Google Scholar
 

Conant, G. C. & Wagner, A. Asymmetric sequence divergence of duplicate genes. Genome Res. 13, 2052–2058 (2003).

Article 
PubMed 

Google Scholar
 

Zhang, P., Gu, Z. & Li, W.-H. Different evolutionary patterns between young duplicate genes in the human genome. Genome Biol. 4, R56 (2003).

Article 
PubMed 

Google Scholar
 

Qiu, Y., Liu, S.-L. & Adams, K. L. Concerted divergence after gene duplication in polycomb repressive complexes. Plant Physiol. 174, 1192–1204 (2017).

Article 
PubMed 

Google Scholar
 

Ascencio, D., Ochoa, S., Delaye, L. & DeLuna, A. Increased rates of protein evolution and asymmetric deceleration after the whole-genome duplication in yeasts. BMC Evol. Biol. 17, 40 (2017).

Article 
PubMed 

Google Scholar
 

Gagnon-Arsenault, I. et al. Transcriptional divergence plays a role in the rewiring of protein interaction networks after gene duplication. J. Proteom. 81, 112–125 (2013).

Article 

Google Scholar
 

Mattenberger, F., Sabater-Muñoz, B., Toft, C. & Fares, M. A. The phenotypic plasticity of duplicated genes in Saccharomyces cerevisiae and the origin of adaptations. G3 Genes Genomes Genet. 7, 63–75 (2017).

Article 

Google Scholar
 

Li, J.-T. et al. The fate of recent duplicated genes following a fourth-round whole genome duplication in a tetraploid fish, common carp (Cyprinus carpio). Sci. Rep. 5, 8199 (2015).

Article 
PubMed 

Google Scholar
 

Lien, S. et al. The Atlantic salmon genome provides insights into rediploidization. Nature 533, 200–205 (2016).

Article 
PubMed 

Google Scholar
 

Kryuchkova-Mostacci, N. & Robinson-Rechavi, M. Tissue-specificity of gene expression diverges slowly between orthologs, and rapidly between paralogs. PLoS Comput. Biol. 12, e1005274 (2016).

Article 
PubMed 

Google Scholar
 

Hoffmeier, A. et al. A dead gene walking: convergent degeneration of a clade of MADS-box genes in crucifers. Mol. Biol. Evol. 35, 2618–2638 (2018).

PubMed 

Google Scholar
 

Dibyachintan, S. et al. Cryptic genetic variation shapes the fate of gene duplicates in a protein interaction network. Nat. Commun. 16, 1530 (2025). This study shows how the effects of new mutations on protein–protein interactions of two paralogous proteins are contingent on the cryptic genetic variation accumulated following duplication, and dictate which mutations can subfunctionalize the paralogues.

Article 
PubMed 

Google Scholar
 

Sane, M., Diwan, G. D., Bhat, B. A., Wahl, L. M. & Agashe, D. Shifts in mutation spectra enhance access to beneficial mutations. Proc. Natl Acad. Sci. USA 120, e2207355120 (2023).

Article 
PubMed 

Google Scholar
 

Sane, M., Parveen, S. & Agashe, D. Mutation bias alters the distribution of fitness effects of mutations. PLoS Biol. 23, e3003282 (2025).

Article 
PubMed 

Google Scholar
 

Cope, A. L., Schraiber, J. G. & Pennell, M. Macroevolutionary divergence of gene expression driven by selection on protein abundance. Science 387, 1063–1068 (2025).

Article 
PubMed 

Google Scholar
 

Aubé, S., Nielly-Thibault, L. & Landry, C. R. Evolutionary trade-off and mutational bias could favor transcriptional over translational divergence within paralog pairs. PLoS Genet. 19, e1010756 (2023).

Article 
PubMed 

Google Scholar
 

Wang, S. & Chen, Y. Fine-tuning the expression of duplicate genes by translational regulation in Arabidopsis and maize. Front. Plant Sci. 10, 534 (2019).

Article 
PubMed 

Google Scholar
 

Blake, W. J., Kaern, M., Cantor, C. R. & Collins, J. J. Noise in eukaryotic gene expression. Nature 422, 633–637 (2003).

Article 
PubMed 

Google Scholar
 

Chapal, M., Mintzer, S., Brodsky, S., Carmi, M. & Barkai, N. Resolving noise–control conflict by gene duplication. PLoS Biol. 17, e3000289 (2019).

Article 
PubMed 

Google Scholar
 

David, K. T. et al. Convergent expansions of keystone gene families drive metabolic innovation in Saccharomycotina yeasts. Proc. Natl Acad. Sci. USA 122, e2500165122 (2025).

Article 
PubMed 

Google Scholar
 

Nocedal, I. & Laub, M. T. Ancestral reconstruction of duplicated signaling proteins reveals the evolution of signaling specificity. eLife 11, e77346 (2022).

Article 
PubMed 

Google Scholar
 

Ukken, F. P., Dowell, N. L., Hajra, M. & Carroll, S. B. A novel broad spectrum venom metalloproteinase autoinhibitor in the rattlesnake Crotalus atrox evolved via a shift in paralog function. Proc. Natl Acad. Sci. USA 119, e2214880119 (2022).

Article 
PubMed 

Google Scholar
 

Harms, M. J. et al. Biophysical mechanisms for large-effect mutations in the evolution of steroid hormone receptors. Proc. Natl Acad. Sci. USA 110, 11475–11480 (2013).

Article 
PubMed 

Google Scholar
 

Grassi, L. et al. Identity and divergence of protein domain architectures after the yeast whole-genome duplication event. Mol. BioSyst. 6, 2305–2315 (2010).

Article 
PubMed 

Google Scholar
 

Mallik, S., Tawfik, D. S. & Levy, E. D. How gene duplication diversifies the landscape of protein oligomeric state and function. Curr. Opin. Genet. Dev. 76, 101966 (2022).

Article 
PubMed 

Google Scholar
 

Yang, X. et al. Widespread expansion of protein interaction capabilities by alternative splicing. Cell 164, 805–817 (2016).

Article 
PubMed 

Google Scholar
 

Baker, M. E. Steroid receptors and vertebrate evolution. Mol. Cell. Endocrinol. 496, 110526 (2019).

Article 
PubMed 

Google Scholar
 

Thornton, J. W. Evolution of vertebrate steroid receptors from an ancestral estrogen receptor by ligand exploitation and serial genome expansions. Proc. Natl Acad. Sci. USA 98, 5671–5676 (2001).

Article 
PubMed 

Google Scholar
 

Ortlund, E. A., Bridgham, J. T., Redinbo, M. R. & Thornton, J. W. Crystal structure of an ancient protein: evolution by conformational epistasis. Science 317, 1544–1548 (2007).

Article 
PubMed 

Google Scholar
 

Bridgham, J. T., Brown, J. E., Rodríguez-Marí, A., Catchen, J. M. & Thornton, J. W. Evolution of a new function by degenerative mutation in cephalochordate steroid receptors. PLoS Genet. 4, e1000191 (2008).

Article 
PubMed 

Google Scholar
 

Anderson, D. W., McKeown, A. N. & Thornton, J. W. Intermolecular epistasis shaped the function and evolution of an ancient transcription factor and its DNA binding sites. eLife 4, e07864 (2015).

Article 
PubMed 

Google Scholar
 

Starr, T. N., Picton, L. K. & Thornton, J. W. Alternative evolutionary histories in the sequence space of an ancient protein. Nature 549, 409–413 (2017).

Article 
PubMed 

Google Scholar
 

Muiño, J. M. et al. Evolution of DNA-binding sites of a floral master regulatory transcription factor. Mol. Biol. Evol. 33, 185–200 (2016).

Article 
PubMed 

Google Scholar
 

Pougach, K. et al. Duplication of a promiscuous transcription factor drives the emergence of a new regulatory network. Nat. Commun. 5, 4868 (2014).

Article 
PubMed 

Google Scholar
 

Gera, T., Jonas, F., More, R. & Barkai, N. Evolution of binding preferences among whole-genome duplicated transcription factors. eLife 11, e73225 (2022).

Article 
PubMed 

Google Scholar
 

Siggers, T., Reddy, J., Barron, B. & Bulyk, M. L. Diversification of transcription factor paralogs via noncanonical modularity in C2H2 zinc finger DNA binding. Mol. Cell 55, 640–648 (2014).

Article 
PubMed 

Google Scholar
 

Hudson, W. H. et al. Distal substitutions drive divergent DNA specificity among paralogous transcription factors through subdivision of conformational space. Proc. Natl Acad. Sci. USA 113, 326–331 (2016).

Article 
PubMed 

Google Scholar
 

Shen, N. et al. Divergence in DNA specificity among paralogous transcription factors contributes to their differential in vivo binding. Cell Syst. 6, 470–483.e8 (2018).

Article 
PubMed 

Google Scholar
 

Casewell, N. R., Wagstaff, S. C., Harrison, R. A., Renjifo, C. & Wüster, W. Domain loss facilitates accelerated evolution and neofunctionalization of duplicate snake venom metalloproteinase toxin genes. Mol. Biol. Evol. 28, 2637–2649 (2011).

Article 
PubMed 

Google Scholar
 

Li, Z. et al. A tale of two copies: evolutionary trajectories of moth pheromone receptors. Proc. Natl Acad. Sci. USA 120, e2221166120 (2023).

Article 
PubMed 

Google Scholar
 

Lavy, T., Yanagida, H. & Tawfik, D. S. Gal3 binds Gal80 tighter than Gal1 indicating adaptive protein changes following duplication. Mol. Biol. Evol. 33, 472–477 (2016).

Article 
PubMed 

Google Scholar
 

Park, Y., Metzger, B. P. H. & Thornton, J. W. Epistatic drift causes gradual decay of predictability in protein evolution. Science 376, 823–830 (2022).

Article 
PubMed 

Google Scholar
 

Capra, E. J. & Laub, M. T. Evolution of two-component signal transduction systems. Annu. Rev. Microbiol. 66, 325–347 (2012).

Article 
PubMed 

Google Scholar
 

Capra, E. J., Perchuk, B. S., Skerker, J. M. & Laub, M. T. Adaptive mutations that prevent crosstalk enable the expansion of paralogous signaling protein families. Cell 150, 222–232 (2012).

Article 
PubMed 

Google Scholar
 

Ghose, D. A., Przydzial, K. E., Mahoney, E. M., Keating, A. E. & Laub, M. T. Marginal specificity in protein interactions constrains evolution of a paralogous family. Proc. Natl Acad. Sci. USA 120, e2221163120 (2023). Using deep mutational scanning, the authors show that single mutations can lead to the loss of specificity within paralogues that have diversified to mediate different signalling pathways.

Article 
PubMed 

Google Scholar
 

Smith, J. M. Natural selection and the concept of a protein space. Nature 225, 563–564(1970).

Article 
PubMed 

Google Scholar
 

DePristo, M. A., Weinreich, D. M. & Hartl, D. L. Missense meanderings in sequence space: a biophysical view of protein evolution. Nat. Rev. Genet. 6, 678–687 (2005).

Article 
PubMed 

Google Scholar
 

Xie, V. C., Pu, J., Metzger, B. P., Thornton, J. W. & Dickinson, B. C. Contingency and chance erase necessity in the experimental evolution of ancestral proteins. eLife 10, e67336 (2021). Using phage-assisted continuous evolution, the authors show that, although the starting genotype constrains the group of accessible outcomes (contingency), the observed outcome in different replicates derived from the same starting genotype might vary (chance).

Article 
PubMed 

Google Scholar
 

Bloom, J. D., Labthavikul, S. T., Otey, C. R. & Arnold, F. H. Protein stability promotes evolvability. Proc. Natl Acad. Sci. USA 103, 5869–5874 (2006).

Article 
PubMed 

Google Scholar
 

Bershtein, S., Segal, M., Bekerman, R., Tokuriki, N. & Tawfik, D. S. Robustness–epistasis link shapes the fitness landscape of a randomly drifting protein. Nature 444, 929–932 (2006).

Article 
PubMed 

Google Scholar
 

Tokuriki, N. & Tawfik, D. S. Stability effects of mutations and protein evolvability. Curr. Opin. Struct. Biol. 19, 596–604 (2009).

Article 
PubMed 

Google Scholar
 

Tokuriki, N., Stricher, F., Serrano, L. & Tawfik, D. S. How protein stability and new functions trade off. PLoS Comput. Biol. 4, e1000002 (2008).

Article 
PubMed 

Google Scholar
 

Zheng, J., Guo, N. & Wagner, A. Selection enhances protein evolvability by increasing mutational robustness and foldability. Science 370, eabb5962 (2020).

Article 
PubMed 

Google Scholar
 

Metzger, B. P. H., Park, Y., Starr, T. N. & Thornton, J. W. Epistasis facilitates functional evolution in an ancient transcription factor. eLife 12, RP88737 (2024).

Article 
PubMed 

Google Scholar
 

Herrera-Álvarez, S., Patton, J. E. J. & Thornton, J. W. The structure of an ancient genotype–phenotype map shaped the functional evolution of a protein family. Nat. Ecol. Evol. 9, 1656–1669 (2025). Using combinatorial mutagenesis on the reconstructed ancestors of paralogous steroid receptor and high-throughput binding assays with DNA motifs, the authors find that some DNA motifs are bound by more genotypes, which can influence which DNA motif specificity is likely to fix during evolution.

Article 
PubMed 

Google Scholar
 

Tuckey, A. J. et al. Structural and functional characterisation of a reconstructed ancestral strigolactone receptor. Preprint at bioRxiv https://doi.org/10.1101/2025.08.03.668049 (2025).

Ikezaki, Y. et al. Molecular evolution of terpene synthase underlying the diversification of isoprene emission in Fagaceae. Preprint at bioRxiv https://doi.org/10.1101/2025.07.31.667835 (2025).

Bridgham, J. T., Carroll, S. M. & Thornton, J. W. Evolution of hormone-receptor complexity by molecular exploitation. Science 312, 97–101 (2006).

Article 
PubMed 

Google Scholar
 

Horowitz, N. H. On the evolution of biochemical syntheses. Proc. Natl Acad. Sci. USA 31, 153–157 (1945).

Article 
PubMed 

Google Scholar
 

Light, S. & Kraulis, P. Network analysis of metabolic enzyme evolution in Escherichia coli. BMC Bioinform. 5, 15 (2004).

Article 

Google Scholar
 

Carroll, S., Bridgham, J. & Thornton, J. W. Evolution of hormone signaling in elasmobranchs by exploitation of promiscuous receptors. Mol. Biol. Evol. 25, 2643–2652 (2008).

Article 
PubMed 

Google Scholar
 

Steube, N. et al. Fortuitously compatible protein surfaces primed allosteric control in cyanobacterial photoprotection. Nat. Ecol. Evol. 7, 756–767 (2023).

Article 
PubMed 

Google Scholar
 

Copley, S. D., Newton, M. S. & Widney, K. A. How to recruit a promiscuous enzyme to serve a new function. Biochemistry 62, 300–308 (2023).

Article 
PubMed 

Google Scholar
 

Lemieux, P., Bradley, D., Dubé, A. K., Dionne, U. & Landry, C. R. Dissection of the role of a Src homology 3 domain in the evolution of binding preference of paralogous proteins. Genetics 226, iyad175 (2023).

Article 

Google Scholar
 

Lynch, M. The evolution of multimeric protein assemblages. Mol. Biol. Evol. 29, 1353–1366 (2012).

Article 
PubMed 

Google Scholar
 

Levy, E. D. & Teichmann, S. in Progress in Molecular Biology and Translational Science Vol. 117 (eds Giraldo, J. & Ciruela, F.) 25–51 (Academic Press, 2013).

Schweke, H. et al. An atlas of protein homo-oligomerization across domains of life. Cell 187, 999–1010 (2024).

Article 
PubMed 

Google Scholar
 

Pereira-Leal, J. B., Levy, E. D., Kamp, C. & Teichmann, S. A. Evolution of protein complexes by duplication of homomeric interactions. Genome Biol. 8, R51 (2007).

Article 
PubMed 

Google Scholar
 

Kaltenegger, E. & Ober, D. Paralogue interference affects the dynamics after gene duplication. Trends Plant Sci. 20, 814–821 (2015).

Article 
PubMed 

Google Scholar
 

Dandage, R. et al. Frequent assembly of chimeric complexes in the protein interaction network of an interspecies yeast hybrid. Mol. Biol. Evol. 38, 1384–1401 (2021).

Article 
PubMed 

Google Scholar
 

Leducq, J.-B. et al. Evidence for the robustness of protein complexes to inter-species hybridization. PLoS Genet. 8, e1003161 (2012).

Article 
PubMed 

Google Scholar
 

Ng, D. W.-K., Chen, H. H. Y. & Chen, Z. J. Heterologous protein-DNA interactions lead to biased allelic expression of circadian clock genes in interspecific hybrids. Sci. Rep. 7, 45087 (2017).

Article 
PubMed 

Google Scholar
 

Bergendahl, L. T. et al. The role of protein complexes in human genetic disease. Protein Sci. 28, 1400–1411 (2019).

Article 
PubMed 

Google Scholar
 

Hochberg, G. K. A. et al. Structural principles that enable oligomeric small heat-shock protein paralogs to evolve distinct functions. Science 359, 930–935 (2018).

Article 
PubMed 

Google Scholar
 

Cisneros, A. F., Nielly-Thibault, L., Mallik, S., Levy, E. D. & Landry, C. R. Mutational biases favor complexity increases in protein interaction networks after gene duplication. Mol. Syst. Biol. 20, 549–572 (2024).

Article 
PubMed 

Google Scholar
 

Cisneros, A. F. et al. Paralog interference preserves genetic redundancy. Preprint at bioRxiv https://doi.org/10.1101/2025.06.13.659495 (2025).

Herskowitz, I. Functional inactivation of genes by dominant negative mutations. Nature 329, 219–222 (1987).

Article 
PubMed 

Google Scholar
 

Gerasimavicius, L., Livesey, B. J. & Marsh, J. A. Loss-of-function, gain-of-function and dominant-negative mutations have profoundly different effects on protein structure. Nat. Commun. 13, 3895 (2022).

Article 
PubMed 

Google Scholar
 

Badonyi, M. & Marsh, J. A. Prevalence of loss-of-function, gain-of-function and dominant-negative mechanisms across genetic disease phenotypes. Nat. Commun. 16, 8392 (2025).

Article 
PubMed 

Google Scholar
 

Pal, T., Dibyachintan, S., Cisneros, A. F. & Landry, C. R. Phenotypic dominance emerges from activity fitness functions and molecular interactions. Genetics https://doi.org/10.1093/genetics/iyaf254 (2025).

Article 
PubMed 

Google Scholar
 

Wente, S. R. & Schachman, H. K. Shared active sites in oligomeric enzymes: model studies with defective mutants of aspartate transcarbamoylase produced by site-directed mutagenesis. Proc. Natl Acad. Sci. USA 84, 31–35 (1987).

Article 
PubMed 

Google Scholar
 

Ringel, A. E. et al. Yeast Tdh3 (glyceraldehyde 3-phosphate dehydrogenase) is a Sir2-interacting factor that regulates transcriptional silencing and rDNA recombination. PLoS Genet. 9, e1003871 (2013).

Article 
PubMed 

Google Scholar
 

Pérez-Bercoff, A., Makino, T. & McLysaght, A. Duplicability of self-interacting human genes. BMC Evol. Biol. 10, 160 (2010).

Article 
PubMed 

Google Scholar
 

Diss, G. et al. Gene duplication can impart fragility, not robustness, in the yeast protein interaction network. Science 355, 630–634 (2017).

Article 
PubMed 

Google Scholar
 

Marchant, A. et al. The role of structural pleiotropy and regulatory evolution in the retention of heteromers of paralogs. eLife 8, e46754 (2019).

Article 
PubMed 

Google Scholar
 

Singh, P. P. et al. On the expansion of ‘dangerous’ gene repertoires by whole-genome duplications in early vertebrates. Cell Rep. 2, 1387–1398 (2012).

Article 
PubMed 

Google Scholar
 

Malaguti, G., Singh, P. P. & Isambert, H. On the retention of gene duplicates prone to dominant deleterious mutations. Theor. Popul. Biol. 93, 38–51 (2014).

Article 
PubMed 

Google Scholar
 

Baker, C. R., Hanson-Smith, V. & Johnson, A. D. Following gene duplication, paralog interference constrains transcriptional circuit evolution. Science 342, 104–108 (2013).

Article 
PubMed 

Google Scholar
 

Charrier, C. et al. Inhibition of SRGAP2 function by its human-specific paralogs induces neoteny during spine maturation. Cell 149, 923–935 (2012).

Article 
PubMed 

Google Scholar
 

Fossati, M. et al. SRGAP2 and its human-specific paralog co-regulate the development of excitatory and inhibitory synapses. Neuron 91, 356–369 (2016).

Article 
PubMed 

Google Scholar
 

Marques, A. C., Vinckenbosch, N., Brawand, D. & Kaessmann, H. Functional diversification of duplicate genes through subcellular adaptation of encoded proteins. Genome Biol. 9, R54 (2008).

Article 
PubMed 

Google Scholar
 

Bruno, L. et al. Selective deployment of transcription factor paralogs with submaximal strength facilitates gene regulation in the immune system. Nat. Immunol. 20, 1372–1380 (2019).

Article 
PubMed 

Google Scholar
 

Yeh, C.-W. et al. Altered assembly paths mitigate interference among paralogous complexes. Nat. Commun. 15, 7169 (2024).

Article 
PubMed 

Google Scholar
 

Mallik, S. & Tawfik, D. S. Determining the interaction status and evolutionary fate of duplicated homomeric proteins. PLoS Comput. Biol. 16, e1008145 (2020).

Article 
PubMed 

Google Scholar
 

Mallik, S., Cisneros, A. F., Landry, C. R. & Levy, E. D. Co-translational assembly promotes functional diversification of paralogous proteins. Preprint at bioRxiv https://doi.org/10.1101/2025.01.22.634331 (2025). This preprint shows that homomeric paralogues typically emerge due to barriers against heteromerization and have a higher functional divergence than heteromeric ones, with co-translational assembly acting as a strong barrier against heteromerization.

Hsiao, T.-L. & Vitkup, D. Role of duplicate genes in robustness against deleterious human mutations. PLoS Genet. 4, e1000014 (2008).

Article 
PubMed 

Google Scholar
 

Dean, E. J., Davis, J. C., Davis, R. W. & Petrov, D. A. Pervasive and persistent redundancy among duplicated genes in yeast. PLoS Genet. 4, e1000113 (2008).

Article 
PubMed 

Google Scholar
 

Dandage, R. & Landry, C. R. Paralog dependency indirectly affects the robustness of human cells. Mol. Syst. Biol. 15, e8871 (2019).

Article 
PubMed 

Google Scholar
 

Greco, B. M. et al. PARPAL: PARalog Protein Redistribution using Abundance and Localization in yeast database. G3 Genes Genomes Genet. https://doi.org/10.1093/g3journal/jkaf148 (2025).

Article 

Google Scholar
 

Després, P. C. et al. Compensatory mutations potentiate constructive neutral evolution by gene duplication. Science 385, 770–775 (2024). Using deep mutational scanning libraries, this study identifies more than 200 pairs of loss-of-function alleles that complement each other when forming heteromers, representing direct examples of subfunctionalization and dependency between duplicates.

Article 
PubMed 

Google Scholar
 

Boncoeur, E. et al. PatA and PatB form a functional heterodimeric ABC multidrug efflux transporter responsible for the resistance of Streptococcus pneumoniae to fluoroquinolones. Biochemistry 51, 7755–7765 (2012).

Article 
PubMed 

Google Scholar
 

Emlaw, J. R. et al. A single historical substitution drives an increase in acetylcholine receptor complexity. Proc. Natl Acad. Sci. USA 118, e2018731118 (2021).

Article 
PubMed 

Google Scholar
 

Ashenberg, O., Rozen-Gagnon, K., Laub, M. T. & Keating, A. E. Determinants of homodimerization specificity in histidine kinases. J. Mol. Biol. 413, 222–235 (2011).

Article 
PubMed 

Google Scholar
 

Finnigan, G. C., Hanson-Smith, V., Stevens, T. H. & Thornton, J. W. Evolution of increased complexity in a molecular machine. Nature 481, 360–364 (2012).

Article 
PubMed 

Google Scholar
 

Hochberg, G. K. A. et al. A hydrophobic ratchet entrenches molecular complexes. Nature 588, 503–508 (2020).

Article 
PubMed 

Google Scholar
 

Kim, T.-Y., Ha, C. W. & Huh, W.-K. Differential subcellular localization of ribosomal protein L7 paralogs in Saccharomyces cerevisiae. Mol. Cell 27, 539–546 (2009).

Article 

Google Scholar
 

Natan, E., Wells, J. N., Teichmann, S. A. & Marsh, J. A. Regulation, evolution and consequences of cotranslational protein complex assembly. Curr. Opin. Struct. Biol. 42, 90–97 (2017).

Article 
PubMed 

Google Scholar
 

Natan, E. et al. Cotranslational protein assembly imposes evolutionary constraints on homomeric proteins. Nat. Struct. Mol. Biol. 25, 279–288 (2018).

Article 
PubMed 

Google Scholar
 

Shiber, A. et al. Cotranslational assembly of protein complexes in eukaryotes revealed by ribosome profiling. Nature 561, 268–272 (2018).

Article 
PubMed 

Google Scholar
 

Mallik, S. et al. Structural determinants of co-translational protein complex assembly. Cell 188, 764–777.e22 (2025).

Article 
PubMed 

Google Scholar
 

Bertolini, M. et al. Interactions between nascent proteins translated by adjacent ribosomes drive homomer assembly. Science 371, 57–64 (2021).

Article 
PubMed 

Google Scholar
 

Eyre-Walker, A. & Keightley, P. D. The distribution of fitness effects of new mutations. Nat. Rev. Genet. 8, 610–618 (2007).

Article 
PubMed 

Google Scholar
 

Keeling, D. M., Garza, P., Nartey, C. M. & Carvunis, A.-R. The meanings of ‘function’ in biology and the problematic case of de novo gene emergence. eLife 8, e47014 (2019).

Article 
PubMed 

Google Scholar
 

Stoltzfus, A. On the possibility of constructive neutral evolution. J. Mol. Evol. 49, 169–181 (1999).

Article 
PubMed 

Google Scholar
 

Assis, R. et al. Models for the retention of duplicate genes and their biological underpinnings. F1000Research 12, 1400 (2024).

Article 
PubMed 

Google Scholar
 

Presser, A., Elowitz, M. B., Kellis, M. & Kishony, R. The evolutionary dynamics of the Saccharomyces cerevisiae protein interaction network after duplication. Proc. Natl Acad. Sci. USA 105, 950–954 (2008).

Article 
PubMed 

Google Scholar
 

Sandve, S. R., Rohlfs, R. V. & Hvidsten, T. R. Subfunctionalization versus neofunctionalization after whole-genome duplication. Nat. Genet. 50, 908–909 (2018).

Article 
PubMed 

Google Scholar
 

Assis, R. & Bachtrog, D. Neofunctionalization of young duplicate genes in Drosophila. Proc. Natl Acad. Sci. USA 110, 17409–17414 (2013).

Article 
PubMed 

Google Scholar
 

Braasch, I. et al. The spotted gar genome illuminates vertebrate evolution and facilitates human-teleost comparisons. Nat. Genet. 48, 427–437 (2016).

Article 
PubMed 

Google Scholar
 

Fitch, W. M. Toward defining the course of evolution: minimum change for a specific tree topology. Syst. Biol. 20, 406–416 (1971).

Article 

Google Scholar
 

Pauling, L. & Zuckerkandl, E. Chemical paleogenetics: molecular “restoration studies” of extinct forms of life. Acta Chem. Scand. 17, S9–S16 (1963).

Article 

Google Scholar
 

Vialle, R. A., Tamuri, A. U. & Goldman, N. Alignment modulates ancestral sequence reconstruction accuracy. Mol. Biol. Evol. 35, 1783–1797 (2018).

Article 
PubMed 

Google Scholar
 

Hochberg, G. K. A. & Thornton, J. W. Reconstructing ancient proteins to understand the causes of structure and function. Annu. Rev. Biophys. 46, 247–269 (2017).

Article 
PubMed 

Google Scholar
 

Schulz, L. et al. Evolution of increased complexity and specificity at the dawn of form I Rubiscos. Science 378, 155–160 (2022).

Article 
PubMed 

Google Scholar
 

Ng, J. Z. Y. et al. Origin of chaperone dependence and assembly complexity in Rubisco’s biogenesis. Preprint at bioRxiv https://doi.org/10.1101/2025.09.22.677769 (2025).

Merkl, R. & Sterner, R. Ancestral protein reconstruction: techniques and applications. Biol. Chem. 397, 1–21 (2016).

Article 
PubMed 

Google Scholar
 

Cano, A. et al. Misrepresenting biases in arrival: a comment on Svensson. Preprint at EcoEvoRxiv https://doi.org/10.32942/X2SG6V (2022).

Stoltzfus, A. & Norris, R. W. On the causes of evolutionary transition:transversion bias. Mol. Biol. Evol. 33, 595–602 (2016).

Article 
PubMed 

Google Scholar
 

Lee, H., Popodi, E., Tang, H. & Foster, P. L. Rate and molecular spectrum of spontaneous mutations in the bacterium Escherichia coli as determined by whole-genome sequencing. Proc. Natl Acad. Sci. USA 109, E2774–E2783 (2012).

Article 
PubMed 

Google Scholar
 

Zhu, Y. O., Siegal, M. L., Hall, D. W. & Petrov, D. A. Precise estimates of mutation rate and spectrum in yeast. Proc. Natl Acad. Sci. USA 111, E2310–E2318 (2014).

Article 
PubMed 

Google Scholar
 

Ossowski, S. et al. The rate and molecular spectrum of spontaneous mutations in Arabidopsis thaliana. Science 327, 92–94 (2010).

Article 
PubMed 

Google Scholar
 

Petrov, D. A. & Hartl, D. L. Patterns of nucleotide substitution in Drosophila and mammalian genomes. Proc. Natl Acad. Sci. USA 96, 1475–1479 (1999).

Article 
PubMed 

Google Scholar
 

Hershberg, R. & Petrov, D. A. Evidence that mutation is universally biased towards AT in bacteria. PLoS Genet. 6, e1001115 (2010).

Article 
PubMed 

Google Scholar
 

Lynch, M. R. Rate, molecular spectrum, and consequences of human mutation. Proc. Natl Acad. Sci. USA 107, 961–968 (2010).

Article 
PubMed 

Google Scholar
 

Matsushita, T. & Kano-Sueoka, T. Non-random codon usage of synonymous and non-synonymous mutations in the human HLA-A gene. J. Mol. Evol. 91, 169–191 (2023).

Article 
PubMed 

Google Scholar
 

Fryxell, K. J. & Moon, W.-J. CpG mutation rates in the human genome are highly dependent on local GC content. Mol. Biol. Evol. 22, 650–658 (2005).

Article 
PubMed 

Google Scholar
 

Wojciechowski, M., Czapinska, H. & Bochtler, M. CpG underrepresentation and the bacterial CpG-specific DNA methyltransferase M.MpeI. Proc. Natl Acad. Sci. USA 110, 105–110 (2013).

Article 
PubMed 

Google Scholar
 

Cano, A. V., Rozhoňová, H., Stoltzfus, A., McCandlish, D. M. & Payne, J. L. Mutation bias shapes the spectrum of adaptive substitutions. Proc. Natl Acad. Sci. USA 119, e2119720119 (2022).

Article 
PubMed 

Google Scholar
 

Horton, J. S. & Taylor, T. B. Mutation bias and adaptation in bacteria. Microbiology 169, 001404 (2023).

Article 
PubMed 

Google Scholar
 

Mendez, R., Fritsche, M., Porto, M. & Bastolla, U. Mutation bias favors protein folding stability in the evolution of small populations. PLoS Comput. Biol. 6, e1000767 (2010).

Article 
PubMed 

Google Scholar
 

Levy, E. D. A simple definition of structural regions in proteins and its use in analyzing interface evolution. J. Mol. Biol. 403, 660–670 (2010).

Article 
PubMed 

Google Scholar
 

Garcia-Seisdedos, H., Empereur-Mot, C., Elad, N. & Levy, E. D. Proteins evolve on the edge of supramolecular self-assembly. Nature 548, 244–247 (2017).

Article 
PubMed 

Google Scholar
 

Yampolsky, L. Y. & Stoltzfus, A. Bias in the introduction of variation as an orienting factor in evolution. Evol. Dev. 3, 73–83 (2001).

Article 
PubMed 

Google Scholar
 

Cano, A. V. & Payne, J. L. Mutation bias interacts with composition bias to influence adaptive evolution. PLoS Comput. Biol. 16, e1008296 (2020).

Article 
PubMed 

Google Scholar
 

Gitschlag, B. L., Stoltzfus, A. & McCandlish, D. M. Molecular adaptation reflects taxon-specific mutational biases. Preprint at bioRxiv https://doi.org/10.1101/2025.09.03.674101 (2025).

McShea, H. et al. The effectiveness of selection in a species affects the direction of amino acid frequency evolution. Preprint at bioRxiv https://doi.org/10.1101/2023.02.01.526552 (2025).

Schaper, S. & Louis, A. A. The arrival of the frequent: how bias in genotype-phenotype maps can steer populations to local optima. PLoS One 9, e86635 (2014).

Article 
PubMed 

Google Scholar
 

Sung, W., Ackerman, M. S., Miller, S. F., Doak, T. G. & Lynch, M. Drift-barrier hypothesis and mutation-rate evolution. Proc. Natl Acad. Sci. USA 109, 18488–18492 (2012).

Article 
PubMed 

Google Scholar