Monod, J. Chance and Necessity: an Essay on the Natural Philosophy of Modern Biology (Vintage Books, 1972).

Blount, Z. D., Lenski, R. E. & Losos, J. B. Contingency and determinism in evolution: replaying life’s tape. Science 362, eaam5979 (2018).

PubMed 

Google Scholar
 

Luria, S. E. & Delbrück, M. Mutations of bacteria from virus sensitivity to virus resistance. Genetics 28, 491–511 (1943). This foundational paper introduced the fluctuation test, providing the first experimental evidence that bacterial mutations arise randomly rather than in response to selective pressure.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Lederberg, J. & Lederberg, E. M. Replica plating and indirect selection of bacterial mutants. J. Bacteriol. 63, 399–406 (1952).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Helling, R. B., Vargas, C. N. & Adams, J. Evolution of Escherichia coli during growth in a constant environment. Genetics 116, 349–358 (1987).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Lenski, R. E., Rose, M. R., Simpson, S. C. & Tadler, S. C. Long-term experimental evolution in Escherichia coli. I. Adaptation and divergence during 2,000 generations. Am. Nat. 138, 1315–1341 (1991). This landmark paper reported the first results from the E. coli LTEE, now the longest-running evolution experiment, which has transformed our understanding of bacterial adaptation.


Google Scholar
 

Zamenhof, S. & Eichhorn, H. H. Study of microbial evolution through loss of biosynthetic functions: establishment of “defective” mutants. Nature 216, 456–458 (1967).

CAS 
PubMed 

Google Scholar
 

Lenski, R. E. & Levin, B. R. Constraints on the coevolution of bacteria and virulent phage: a model, some experiments, and predictions for natural communities. Am. Nat. 125, 585–602 (1985).


Google Scholar
 

Tenaillon, O. et al. Tempo and mode of genome evolution in a 50,000-generation experiment. Nature 536, 165–170 (2016). This study sequenced hundreds of clones isolated from the E. coli LTEE, revealing widespread parallelism in the targets of mutations across replicate populations.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Chou, H.-H., Chiu, H.-C., Delaney, N. F., Segrè, D. & Marx, C. J. Diminishing returns epistasis among beneficial mutations decelerates adaptation. Science 332, 1190–1192 (2011).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Khan, A. I., Dinh, D. M., Schneider, D., Lenski, R. E. & Cooper, T. F. Negative epistasis between beneficial mutations in an evolving bacterial population. Science 332, 1193–1196 (2011).

CAS 
PubMed 

Google Scholar
 

Kryazhimskiy, S., Rice, D. P., Jerison, E. R. & Desai, M. M. Global epistasis makes adaptation predictable despite sequence-level stochasticity. Science 344, 1519–1522 (2014).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Rozen, D. E. & Lenski, R. E. Long-term experimental evolution in Escherichia coli. VIII. Dynamics of a balanced polymorphism. Am. Nat. 155, 24–35 (2000). This study uncovered the spontaneous emergence of a simple two-ecotype ecosystem in the E. coli LTEE, driven by metabolic cross-feeding, which has persisted for tens of thousands of generations.

PubMed 

Google Scholar
 

Rozen, D. E., Philippe, N., Arjan de Visser, J., Lenski, R. E. & Schneider, D. Death and cannibalism in a seasonal environment facilitate bacterial coexistence. Ecol. Lett. 12, 34–44 (2009).

PubMed 

Google Scholar
 

Herron, M. D. & Doebeli, M. Parallel evolutionary dynamics of adaptive diversification in Escherichia coli. PLoS Biol. 11, e1001490 (2013).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Barrick, J. E. et al. Genome evolution and adaptation in a long-term experiment with Escherichia coli. Nature 461, 1243–1247 (2009).

CAS 
PubMed 

Google Scholar
 

Miller, C. R., Joyce, P. & Wichman, H. A. Mutational effects and population dynamics during viral adaptation challenge current models. Genetics 187, 185 (2011).

PubMed 
PubMed Central 

Google Scholar
 

Levin, B. R., Stewart, F. M. & Chao, L. Resource-limited growth, competition, and predation: a model and experimental studies with bacteria and bacteriophage. Am. Nat. 111, 3–24 (1977).


Google Scholar
 

Hegreness, M., Shoresh, N., Hartl, D. & Kishony, R. An equivalence principle for the incorporation of favorable mutations in asexual populations. Science 311, 1615–1617 (2006).

CAS 
PubMed 

Google Scholar
 

Jagdish, T. & Nguyen Ba, A. N. Microbial experimental evolution in a massively multiplexed and high-throughput era. Curr. Opin. Genet. Dev. 75, 101943 (2022).

CAS 
PubMed 

Google Scholar
 

Desai, M. M. Statistical questions in experimental evolution. J. Stat. Mech. Theory Exp. 2013, P01003 (2013).


Google Scholar
 

Venkataram, S. et al. Development of a comprehensive genotype-to-fitness map of adaptation-driving mutations in yeast. Cell 166, 1585–1596.e22 (2016).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Tenaillon, O. et al. The molecular diversity of adaptive convergence. Science 335, 457–461 (2012).

CAS 
PubMed 

Google Scholar
 

Jerison, E. R., Nguyen Ba, A. N., Desai, M. M. & Kryazhimskiy, S. Chance and necessity in the pleiotropic consequences of adaptation for budding yeast. Nat. Ecol. Evol. 4, 601–611 (2020).

PubMed 
PubMed Central 

Google Scholar
 

Lang, G. I. et al. Pervasive genetic hitchhiking and clonal interference in forty evolving yeast populations. Nature 500, 571–574 (2013).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Good, B. H., McDonald, M. J., Barrick, J. E., Lenski, R. E. & Desai, M. M. The dynamics of molecular evolution over 60,000 generations. Nature 551, 45–50 (2017). This study performed time-resolved metagenomic sequencing on all 12 LTEE populations over 60,000 generations of evolution, revealing that most (9/12) populations showed signatures of multiple ecotypes coexisting over tens of thousands of generations.

PubMed 
PubMed Central 

Google Scholar
 

Levy, S. F. et al. Quantitative evolutionary dynamics using high-resolution lineage tracking. Nature 519, 181–186 (2015). This study introduced high-resolution lineage tracking using DNA barcoding, revolutionizing our ability to observe evolutionary dynamics in real time.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Wetmore, K. M. et al. Rapid quantification of mutant fitness in diverse bacteria by sequencing randomly bar-coded transposons. mBio 6, e00306–e00315 (2015).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Nguyen Ba, A. N. et al. High-resolution lineage tracking reveals travelling wave of adaptation in laboratory yeast. Nature 575, 494–499 (2019). This work demonstrated the power of re-barcoding to maintain barcode diversity during evolution, allowing for the high-resolution observation of evolutionary dynamics beyond the first fixation event.

CAS 
PubMed 

Google Scholar
 

Price, M. N. et al. Mutant phenotypes for thousands of bacterial genes of unknown function. Nature 557, 503–509 (2018).

CAS 
PubMed 

Google Scholar
 

Ang, R. M. L., Chen, S.-A. A., Kern, A. F., Xie, Y. & Fraser, H. B. Widespread epistasis among beneficial genetic variants revealed by high-throughput genome editing. Cell Genomics 3, 100260 (2023).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Dadonaite, B. et al. Spike deep mutational scanning helps predict success of SARS-CoV-2 clades. Nature 631, 617–626 (2024).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Li, F., Salit, M. L. & Levy, S. F. Unbiased fitness estimation of pooled barcode or amplicon sequencing studies. Cell Syst. 7, 521–525.e4 (2018).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Limdi, A. & Baym, M. Resolving deleterious and near-neutral effects requires different pooled fitness assay designs. J. Mol. Evol. 91, 325–333 (2023).

CAS 
PubMed 

Google Scholar
 

Jasinska, W. et al. Chromosomal barcoding of E. coli populations reveals lineage diversity dynamics at high resolution. Nat. Ecol. Evol. 4, 437–452 (2020).

PubMed 

Google Scholar
 

Good, B. H., Rouzine, I. M., Balick, D. J., Hallatschek, O. & Desai, M. M. Distribution of fixed beneficial mutations and the rate of adaptation in asexual populations. Proc. Natl Acad. Sci. USA 109, 4950–4955 (2012).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Smith, A. M. et al. Quantitative phenotyping via deep barcode sequencing. Genome Res. 19, 1836–1842 (2009).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Giaever, G. et al. Functional profiling of the Saccharomyces cerevisiae genome. Nature 418, 387–391 (2002).

CAS 
PubMed 

Google Scholar
 

Ascensao, J. A., Wetmore, K. M., Good, B. H., Arkin, A. P. & Hallatschek, O. Quantifying the local adaptive landscape of a nascent bacterial community. Nat. Commun. 14, 248 (2023). This paper used a barcoded knockout approach to uncover how the ecological interactions between E. coli LTEE ecotypes impact evolutionary adaptability, revealing that community composition and other ecological conditions pervasively and predictably impact knockout fitness effects.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Couce, A. et al. Changing fitness effects of mutations through long-term bacterial evolution. Science 383, eadd1417 (2024). This study used a barcoded knockout approach to quantify how the distribution of fitness effects changed over time in the E. coli LTEE, revealing strong diminishing returns epistasis and shifting knockout fitness effects.

CAS 
PubMed 

Google Scholar
 

Loes, A. N. et al. High-throughput sequencing-based neutralization assay reveals how repeated vaccinations impact titers to recent human H1N1 influenza strains. J. Virol. 98, e00689–24 (2024).

PubMed 
PubMed Central 

Google Scholar
 

Mutalik, V. K. et al. Dual-barcoded shotgun expression library sequencing for high-throughput characterization of functional traits in bacteria. Nat. Commun. 10, 308 (2019).

PubMed 
PubMed Central 

Google Scholar
 

Johnson, M. S., Martsul, A., Kryazhimskiy, S. & Desai, M. M. Higher-fitness yeast genotypes are less robust to deleterious mutations. Science 366, 490–493 (2019).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Peters, J. M. et al. Enabling genetic analysis of diverse bacteria with Mobile-CRISPRi. Nat. Microbiol. 4, 244–250 (2019).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Hawkins, J. S. et al. Mismatch-CRISPRi reveals the co-varying expression–fitness relationships of essential genes in Escherichia coli and Bacillus subtilis. Cell Syst. 11, 523–535.e9 (2020).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Sharon, E. et al. Functional genetic variants revealed by massively parallel precise genome editing. Cell 175, 544–557.e16 (2018).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Chen, S.-A. A., Kern, A. F., Ang, R. M. L., Xie, Y. & Fraser, H. B. Gene-by-environment interactions are pervasive among natural genetic variants. Cell Genomics 3, 100273 (2023).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Lee, J. M. et al. Deep mutational scanning of hemagglutinin helps predict evolutionary fates of human H3N2 influenza variants. Proc. Natl. Acad. Sci. 115, E8276–E8285 (2018).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Starr, T. N. et al. Deep mutational scanning of SARS-CoV-2 receptor binding domain reveals constraints on folding and ACE2 binding. Cell 182, 1295–1310.e20 (2020).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Bakerlee, C. W., Nguyen Ba, A. N., Shulgina, Y., Rojas Echenique, J. I. & Desai, M. M. Idiosyncratic epistasis leads to global fitness-correlated trends. Science 376, 630–635 (2022).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Wu, N. C., Dai, L., Olson, C. A., Lloyd-Smith, J. O. & Sun, R. Adaptation in protein fitness landscapes is facilitated by indirect paths. eLife 5, e16965 (2016).

PubMed 
PubMed Central 

Google Scholar
 

Pokusaeva, V. O. et al. An experimental assay of the interactions of amino acids from orthologous sequences shaping a complex fitness landscape. PLoS Genet. 15, e1008079 (2019).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Faure, A. J. et al. Mapping the energetic and allosteric landscapes of protein binding domains. Nature 604, 175–183 (2022).

CAS 
PubMed 

Google Scholar
 

Kuo, S.-T. et al. Global fitness landscapes of the Shine–Dalgarno sequence. Genome Res. 30, 711–723 (2020).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Domingo, J., Diss, G. & Lehner, B. Pairwise and higher-order genetic interactions during the evolution of a tRNA. Nature 558, 117–121 (2018).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Weinreich, D. M., Delaney, N. F., Depristo, M. A. & Hartl, D. L. Darwinian evolution can follow only very few mutational paths to fitter proteins. Science 312, 111–114 (2006).

CAS 
PubMed 

Google Scholar
 

Papkou, A., Garcia-Pastor, L., Escudero, J. A. & Wagner, A. A rugged yet easily navigable fitness landscape. Science 382, eadh3860 (2023).

CAS 
PubMed 

Google Scholar
 

Phillips, A. M. et al. Binding affinity landscapes constrain the evolution of broadly neutralizing anti-influenza antibodies. eLife 10, e71393 (2021).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Phillips, A. M. et al. Hierarchical sequence-affinity landscapes shape the evolution of breadth in an anti-influenza receptor binding site antibody. eLife 12, e83628 (2023).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Moulana, A. et al. Compensatory epistasis maintains ACE2 affinity in SARS-CoV-2 Omicron BA.1. Nat. Commun. 13, 7011 (2022).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Johnston, K. E. et al. A combinatorially complete epistatic fitness landscape in an enzyme active site. Proc. Natl Acad. Sci. USA 121, e2400439121 (2024).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Achaz, G., Rodriguez-Verdugo, A., Gaut, B. S. & Tenaillon, O. The reproducibility of adaptation in the light of experimental evolution with whole genome sequencing. Adv. Exp. Med. Biol. 781, 211–231 (2014).

PubMed 

Google Scholar
 

Bergelson, J., Kreitman, M., Petrov, D. A., Sanchez, A. & Tikhonov, M. Functional biology in its natural context: a search for emergent simplicity. eLife 10, e67646 (2021).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Lässig, M., Mustonen, V. & Walczak, A. M. Predicting evolution. Nat. Ecol. Evol. 1, 0077 (2017).


Google Scholar
 

Wright, S. Evolution in mendelian populations. Genetics 16, 97–159 (1931).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Fisher, R. The Genetical Theory of Natural Selection (1930).

Wiser, M. J., Ribeck, N. & Lenski, R. E. Long-term dynamics of adaptation in asexual populations. Science 342, 1364–1367 (2013). This paper provided the first comprehensive analysis of fitness trajectories over 50,000 generations of the LTEE, revealing that fitness gains are largely parallel across replicate populations.

CAS 
PubMed 

Google Scholar
 

Láruson, Á. J., Yeaman, S. & Lotterhos, K. E. The importance of genetic redundancy in evolution. Trends Ecol. Evol. 35, 809–822 (2020).

PubMed 

Google Scholar
 

Favate, J. S., Liang, S., Cope, A. L., Yadavalli, S. S. & Shah, P. The landscape of transcriptional and translational changes over 22 years of bacterial adaptation. eLife 11, e81979 (2022). This study used high-throughput sequencing to measure changes in transcription and translation in E. coli LTEE populations, revealing widespread parallelism across populations.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Grant, N. A., Abdel Magid, A., Franklin, J., Dufour, Y. & Lenski, R. E. Changes in cell size and shape during 50,000 generations of experimental evolution with Escherichia coli. J. Bacteriol. 203, e00469–20 (2021).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Card, K. J., Thomas, M. D., Graves, J. L., Barrick, J. E. & Lenski, R. E. Genomic evolution of antibiotic resistance is contingent on genetic background following a long-term experiment with Escherichia coli. Proc. Natl Acad. Sci. USA 118, e2016886118 (2021).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Favate, J. S. et al. Linking genotypic and phenotypic changes in the E. coli long-term evolution experiment using metabolomics. eLife 12, RP87039 (2023).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Lukačišinová, M., Fernando, B. & Bollenbach, T. Highly parallel lab evolution reveals that epistasis can curb the evolution of antibiotic resistance. Nat. Commun. 11, 3105 (2020).

PubMed 
PubMed Central 

Google Scholar
 

Reddy, G. & Desai, M. M. Global epistasis emerges from a generic model of a complex trait. eLife 10, e64740 (2021). This theoretical work developed a simple statistical model showing how genetic variants on the same background interact to influence trait values, demonstrating that diminishing returns and increasing costs epistasis naturally emerge from this model.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Blount, Z. D., Borland, C. Z. & Lenski, R. E. Historical contingency and the evolution of a key innovation in an experimental population of Escherichia coli. Proc. Natl Acad. Sci. USA 105, 7899–7906 (2008). This landmark study documented the evolution of citrate use in the E. coli LTEE, demonstrating how historical contingency can influence the emergence of evolutionary innovations.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Frenkel, E. M. et al. Crowded growth leads to the spontaneous evolution of semistable coexistence in laboratory yeast populations. Proc. Natl Acad. Sci. USA 112, 11306–11311 (2015).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Kinnersley, M. A., Holben, W. E. & Rosenzweig, F. E unibus plurum: genomic analysis of an experimentally evolved polymorphism in Escherichia coli. PLoS Genet. 5, e1000713 (2009).

PubMed 
PubMed Central 

Google Scholar
 

D’Souza, G. & Kost, C. Experimental evolution of metabolic dependency in bacteria. PLoS Genet. 12, e1006364 (2016).

PubMed 
PubMed Central 

Google Scholar
 

Ascensao, J. A. et al. Rediversification following ecotype isolation reveals hidden adaptive potential. Curr. Biol. 34, 855–867.e6 (2024).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Rainey, P. B. & Travisano, M. Adaptive radiation in a heterogeneous environment. Nature 394, 69–72 (1998).

CAS 
PubMed 

Google Scholar
 

Flohr, R. C. E., Blom, C. J., Rainey, Paul, B. & Beaumont, H. J. E. Founder niche constrains evolutionary adaptive radiation. Proc. Natl Acad. Sci. USA 110, 20663–20668 (2013).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Lenski, R. E. Experimental evolution and the dynamics of adaptation and genome evolution in microbial populations. ISME J. 11, 2181–2194 (2017).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Johnson, M. S. et al. Phenotypic and molecular evolution across 10,000 generations in laboratory budding yeast populations. eLife 10, e63910 (2021).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Turner, C. B., Blount, Z. D. & Lenski, R. E. Replaying evolution to test the cause of extinction of one ecotype in an experimentally evolved population. PLoS ONE 10, e0142050 (2015).

PubMed 
PubMed Central 

Google Scholar
 

Großkopf, T. et al. Metabolic modelling in a dynamic evolutionary framework predicts adaptive diversification of bacteria in a long-term evolution experiment. BMC Evol. Biol. 16, 163 (2016).

PubMed 
PubMed Central 

Google Scholar
 

Rozen, D. E., Schneider, D. & Lenski, R. E. Long-term experimental evolution in Escherichia coli. XIII. Phylogenetic history of a balanced polymorphism. J. Mol. Evol. 61, 171–180 (2005).

CAS 
PubMed 

Google Scholar
 

Le Gac, M., Plucain, J., Hindré, T., Lenski, R. E. & Schneider, D. Ecological and evolutionary dynamics of coexisting lineages during a long-term experiment with Escherichia coli. Proc. Natl Acad. Sci. USA 109, 9487–9492 (2012).

PubMed 
PubMed Central 

Google Scholar
 

Plucain, J. et al. Epistasis and allele specificity in the emergence of a stable polymorphism in Escherichia coli. Science 343, 1366–1369 (2014).

CAS 
PubMed 

Google Scholar
 

Maddamsetti, R., Lenski, R. E. & Barrick, J. E. Adaptation, clonal interference, and frequency-dependent interactions in a long-term evolution experiment with Escherichia coli. Genetics 200, 619–631 (2015).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Zhao, S. et al. Adaptive evolution within gut microbiomes of healthy people. Cell Host Microbe 25, 656–667.e8 (2019).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Sousa, A. et al. Recurrent reverse evolution maintains polymorphism after strong bottlenecks in commensal gut bacteria. Mol. Biol. Evol. 34, 2879–2892 (2017).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Friedman, J., Higgins, L. M. & Gore, J. Community structure follows simple assembly rules in microbial microcosms. Nat. Ecol. Evol. 1, 0109 (2017).


Google Scholar
 

Goldford, J. E. et al. Emergent simplicity in microbial community assembly. Science 361, 469–474 (2018).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Louca, S. et al. High taxonomic variability despite stable functional structure across microbial communities. Nat. Ecol. Evol. 1, 0015 (2016).


Google Scholar
 

Louca, S. et al. Functional structure of the bromeliad tank microbiome is strongly shaped by local geochemical conditions. Environ. Microbiol. 19, 3132–3151 (2017).

CAS 
PubMed 

Google Scholar
 

Marsland, R. et al. Available energy fluxes drive a transition in the diversity, stability, and functional structure of microbial communities. PLoS Comput. Biol. 15, e1006793 (2019).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Ruiz, J. et al. Predictability of the community‐function landscape in wine yeast ecosystems. Mol. Syst. Biol. 19, e11613 (2023).

PubMed 
PubMed Central 

Google Scholar
 

Diaz-Colunga, J., Skwara, A., Vila, J. C. C., Bajic, D. & Sanchez, A. Global epistasis and the emergence of function in microbial consortia. Cell 187, 3108–3119.e30 (2024).

CAS 
PubMed 

Google Scholar
 

Lopes, W., Amor, D. R. & Gore, J. Cooperative growth in microbial communities is a driver of multistability. Nat. Commun. 15, 4709 (2024).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Hu, J., Amor, D. R., Barbier, M., Bunin, G. & Gore, J. Emergent phases of ecological diversity and dynamics mapped in microcosms. Science 378, 85–89 (2022).

CAS 
PubMed 

Google Scholar
 

Lee, H., Bloxham, B. & Gore, J. Resource competition can explain simplicity in microbial community assembly. Proc. Natl Acad. Sci. USA 120, e2212113120 (2023).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Meroz, N., Tovi, N., Sorokin, Y. & Friedman, J. Community composition of microbial microcosms follows simple assembly rules at evolutionary timescales. Nat. Commun. 12, 2891 (2021).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Meroz, N. et al. Evolution in microbial microcosms is highly parallel, regardless of the presence of interacting species. Cell Syst. 15, 930–940.e5 (2024).

CAS 
PubMed 

Google Scholar
 

Barrick, J. E. & Lenski, R. E. Genome dynamics during experimental evolution. Nat. Rev. Genet. 14, 827–839 (2013).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Gerrish, P. & Lenski, R. The fate of competing beneficial mutations in an asexual population. Genetica 102, 127–144 (1998).

PubMed 

Google Scholar
 

Miralles, R., Gerrish, P. J., Moya, A. & Elena, S. F. Clonal interference and the evolution of RNA viruses. Science 285, 1745–1747 (1999).

CAS 
PubMed 

Google Scholar
 

Pepin, K. M. & Wichman, H. A. Experimental evolution and genome sequencing reveal variation in levels of clonal interference in large populations of bacteriophage phiX174. BMC Evol. Biol. 8, 85 (2008).

PubMed 
PubMed Central 

Google Scholar
 

Kvitek, D. J. & Sherlock, G. Whole genome, whole population sequencing reveals that loss of signaling networks is the major adaptive strategy in a constant environment. PLoS Genet. 9, e1003972 (2013).

PubMed 
PubMed Central 

Google Scholar
 

Desai, M. M., Fisher, D. S. & Murray, A. W. The speed of evolution and maintenance of variation in asexual populations. Curr. Biol. 17, 385–394 (2007).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Wilson, B. A., Garud, N. R., Feder, A. F., Assaf, Z. J. & Pennings, P. S. The population genetics of drug resistance evolution in natural populations of viral, bacterial and eukaryotic pathogens. Mol. Ecol. 25, 42–66 (2016).

CAS 
PubMed 

Google Scholar
 

Eldholm, V. et al. Evolution of extensively drug-resistant Mycobacterium tuberculosis from a susceptible ancestor in a single patient. Genome Biol. 15, 490 (2014).

PubMed 
PubMed Central 

Google Scholar
 

Strelkowa, N. & Lässig, M. Clonal interference in the evolution of influenza. Genetics 192, 671–682 (2012).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Kent, A. G., Vill, A. C., Shi, Q., Satlin, M. J. & Brito, I. L. Widespread transfer of mobile antibiotic resistance genes within individual gut microbiomes revealed through bacterial Hi-C. Nat. Commun. 11, 4379 (2020).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Smillie, C. S. et al. Ecology drives a global network of gene exchange connecting the human microbiome. Nature 480, 241–244 (2011).

CAS 
PubMed 

Google Scholar
 

Groussin, M. et al. Elevated rates of horizontal gene transfer in the industrialized human microbiome. Cell 184, 2053–2067.e18 (2021).

CAS 
PubMed 

Google Scholar
 

Frazão, N., Sousa, A., Lässig, M. & Gordo, I. Horizontal gene transfer overrides mutation in Escherichia coli colonizing the mammalian gut. Proc. Natl Acad. Sci. USA 116, 17906–17915 (2019).

PubMed 
PubMed Central 

Google Scholar
 

Muller, H. J. Some genetic aspects of sex. Am. Nat. 66, 118–138 (1932).


Google Scholar
 

Hill, W. G. & Robertson, A. The effect of linkage on limits to artificial selection. Genet. Res. 8, 269–294 (1966).

CAS 
PubMed 

Google Scholar
 

Liu, Z. & Good, B. H. Dynamics of bacterial recombination in the human gut microbiome. PLoS Biol. 22, e3002472 (2024).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Garud, N. R., Good, B. H., Hallatschek, O. & Pollard, K. S. Evolutionary dynamics of bacteria in the gut microbiome within and across hosts. PLoS Biol. 17, e3000102 (2019).

PubMed 
PubMed Central 

Google Scholar
 

Ghalayini, M. et al. Evolution of a dominant natural isolate of Escherichia coli in the human gut over the course of a year suggests a neutral evolution with reduced effective population size. Appl. Environ. Microbiol. 84, e02377–17 (2018).

PubMed 
PubMed Central 

Google Scholar
 

Kersten, K., de Visser, K. E., van Miltenburg, M. H. & Jonkers, J. Genetically engineered mouse models in oncology research and cancer medicine. EMBO Mol. Med. 9, 137–153 (2017).

CAS 
PubMed 

Google Scholar
 

AACR Project GENIE Consortium. AACR project GENIE: powering precision medicine through an international consortium. Cancer Discov. 7, 818–831 (2017).


Google Scholar
 

Collisson, E. A. et al. Comprehensive molecular profiling of lung adenocarcinoma. Nature 511, 543–550 (2014).

CAS 

Google Scholar
 

Gerstung, M. et al. The evolutionary history of 2,658 cancers. Nature 578, 122–128 (2020).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Shibata, H. et al. Rapid colorectal adenoma formation initiated by conditional targeting of the Apc gene. Science 278, 120–123 (1997).

CAS 
PubMed 

Google Scholar
 

Sun, J. et al. Clonal dynamics of native haematopoiesis. Nature 514, 322–327 (2014).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Xue, W. et al. CRISPR-mediated direct mutation of cancer genes in the mouse liver. Nature 514, 380–384 (2014).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Platt, R. J. et al. CRISPR–Cas9 knockin mice for genome editing and cancer modeling. Cell 159, 440–455 (2014).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

McFadden, D. G. et al. Genetic and clonal dissection of murine small cell lung carcinoma progression by genome sequencing. Cell 156, 1298–1311 (2014).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Sánchez-Rivera, F. J. et al. Rapid modelling of cooperating genetic events in cancer through somatic genome editing. Nature 516, 428–431 (2014).

PubMed 
PubMed Central 

Google Scholar
 

Nguyen, L. V. et al. Barcoding reveals complex clonal dynamics of de novo transformed human mammary cells. Nature 528, 267–271 (2015).

CAS 
PubMed 

Google Scholar
 

Bhang, H. C. et al. Studying clonal dynamics in response to cancer therapy using high-complexity barcoding. Nat. Med. 21, 440–448 (2015).

CAS 
PubMed 

Google Scholar
 

Rogers, Z. N. et al. A quantitative and multiplexed approach to uncover the fitness landscape of tumor suppression in vivo. Nat. Methods 14, 737–742 (2017). This work pioneered Tuba-seq, enabling systematic quantification of tumour suppressor gene function in vivo and transforming our ability to study cancer evolution directly in living organisms.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Winters, I. P. et al. Multiplexed in vivo homology-directed repair and tumor barcoding enables parallel quantification of Kras variant oncogenicity. Nat. Commun. 8, 2053 (2017).

PubMed 
PubMed Central 

Google Scholar
 

Cai, H. et al. A functional taxonomy of tumor suppression in oncogenic KRAS-driven lung cancer. Cancer Discov. 11, 1754–1773 (2021).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Foggetti, G. et al. Genetic determinants of EGFR-driven lung cancer growth and therapeutic response in vivo. Cancer Discov. 11, 1736–1753 (2021).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Hebert, J. D. et al. Combinatorial in vivo genome editing identifies widespread epistasis and an accessible fitness landscape during lung tumorigenesis. Mol. Biol. Evol. 42, msaf023 (2025).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Rogers, Z. N. et al. Mapping the in vivo fitness landscape of lung adenocarcinoma tumor suppression in mice. Nat. Genet. 50, 483–486 (2018).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Martino, M. E. et al. Bacterial adaptation to the host’s diet is a key evolutionary force shaping drosophila-lactobacillus symbiosis. Cell Host Microbe 24, 109 (2018).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Lebov, J. F., Schlomann, B. H., Robinson, C. D. & Bohannan, B. J. M. Phenotypic parallelism during experimental adaptation of a free-living bacterium to the zebrafish gut. mBio 11, e01519–e01520 (2020).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Robinson, C. D. et al. Experimental bacterial adaptation to the zebrafish gut reveals a primary role for immigration. PLoS Biol. 16, e2006893 (2018).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Ekroth, A. K. E., Gerth, M., Stevens, E. J., Ford, S. A. & King, K. C. Host genotype and genetic diversity shape the evolution of a novel bacterial infection. ISME J. 15, 2146–2157 (2021).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Barlow, J. T., Bogatyrev, S. R. & Ismagilov, R. F. A quantitative sequencing framework for absolute abundance measurements of mucosal and lumenal microbial communities. Nat. Commun. 11, 2590 (2020).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Giraud, A. et al. Costs and benefits of high mutation rates: adaptive evolution of bacteria in the mouse gut. Science 291, 2606–2608 (2001).

CAS 
PubMed 

Google Scholar
 

Yilmaz, B. et al. Long-term evolution and short-term adaptation of microbiota strains and sub-strains in mice. Cell Host Microbe 29, 650–663.e9 (2021).

CAS 
PubMed 

Google Scholar
 

Barroso-Batista, J. et al. The first steps of adaptation of Escherichia coli to the gut are dominated by soft sweeps. PLoS Genet. 10, e1004182 (2014).

PubMed 
PubMed Central 

Google Scholar
 

Barroso-Batista, J., Demengeot, J. & Gordo, I. Adaptive immunity increases the pace and predictability of evolutionary change in commensal gut bacteria. Nat. Commun. 6, 8945 (2015).

CAS 
PubMed 

Google Scholar
 

Barreto, H. C., Sousa, A. & Gordo, I. The landscape of adaptive evolution of a gut commensal bacteria in aging mice. Curr. Biol. 30, 1102–1109.e5 (2020).

CAS 
PubMed 

Google Scholar
 

Lescat, M. et al. Using long-term experimental evolution to uncover the patterns and determinants of molecular evolution of an Escherichia coli natural isolate in the streptomycin-treated mouse gut. Mol. Ecol. 26, 1802–1817 (2017).

CAS 
PubMed 

Google Scholar
 

Lam, L. H. & Monack, D. M. Intraspecies competition for niches in the distal gut dictate transmission during persistent salmonella infection. PLoS Pathog. 10, e1004527 (2014).

PubMed 
PubMed Central 

Google Scholar
 

Vasquez, K. S. et al. High-resolution lineage tracking of within-host evolution and strain transmission in a human gut symbiont across ecological scales. Preprint at bioRxiv https://doi.org/10.1101/2024.02.17.580834 (2024).

Vasquez, K. S. et al. Quantifying rapid bacterial evolution and transmission within the mouse intestine. Cell Host Microbe 29, 1454–1468.e4 (2021).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Wong, D. P. G. H. & Good, B. H. Quantifying the adaptive landscape of commensal gut bacteria using high-resolution lineage tracking. Nat. Commun. 15, 1605 (2024).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Grubaugh, N. D. et al. Tracking virus outbreaks in the twenty-first century. Nat. Microbiol. 4, 10–19 (2019).

CAS 
PubMed 

Google Scholar
 

Hadfield, J. et al. Nextstrain: real-time tracking of pathogen evolution. Bioinformatics 34, 4121–4123 (2018).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Maurano, M. T. et al. Sequencing identifies multiple early introductions of SARS-CoV-2 to the New York city region. Genome Res. 30, 1781–1788 (2020).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Feder, A. F. et al. More effective drugs lead to harder selective sweeps in the evolution of drug resistance in HIV-1. eLife 5, e10670 (2016).

PubMed 
PubMed Central 

Google Scholar
 

Roark, R. S. et al. Recapitulation of HIV-1 Env-antibody coevolution in macaques leading to neutralization breadth. Science 371, eabd2638 (2021).

CAS 
PubMed 

Google Scholar
 

Dapa, T. et al. Within-host evolution of the gut microbiome. Curr. Opin. Microbiol. 71, 102258 (2023).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Good, B. H. & Rosenfeld, L. B. Eco-evolutionary feedbacks in the human gut microbiome. Nat. Commun. 14, 7146 (2023).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Rego-Costa, A., Huang, I. T., Desai, M. M. & Gombert, A. K. Yeast population dynamics in Brazilian bioethanol production. G3 13, jkad104 (2023).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Large, C. R. L. et al. Genomic stability and adaptation of beer brewing yeasts during serial repitching in the brewery. Preprint at bioRxiv https://doi.org/10.1101/2020.06.26.166157 (2020).

Garge, R. K. et al. Systematic profiling of ale yeast protein dynamics across fermentation and repitching. G3 14, jkad293 (2024).

CAS 
PubMed 

Google Scholar
 

Bitter, M. C. et al. Continuously fluctuating selection reveals fine granularity of adaptation. Nature 634, 389–396 (2024).

CAS 
PubMed 

Google Scholar
 

Rudman, S. M. et al. Direct observation of adaptive tracking on ecological time scales in Drosophila. Science 375, eabj7484 (2022).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Bitter, M. C. et al. Pervasive fitness trade-offs revealed by rapid adaptation in large experimental populations of Drosophila melanogaster. Preprint at bioRxiv https://doi.org/10.1101/2024.10.28.620721 (2024).

Biller, S. J., Berube, P. M., Lindell, D. & Chisholm, S. W. Prochlorococcus: the structure and function of collective diversity. Nat. Rev. Microbiol. 13, 13–27 (2015).

CAS 
PubMed 

Google Scholar
 

Kinsler, G., Geiler-Samerotte, K. & Petrov, D. A. Fitness variation across subtle environmental perturbations reveals local modularity and global pleiotropy of adaptation. eLife 9, e61271 (2020).

CAS 
PubMed 
PubMed Central 

Google Scholar