Visscher, P. M. et al. 10 years of GWAS discovery: biology, function, and translation. Am. J. Hum. Genet. 101, 5–22 (2017).

CAS 

Google Scholar
 

Uffelmann, E. et al. Genome-wide association studies. Nat. Rev. Methods Primers 1, 59 (2021).

CAS 

Google Scholar
 

Sollis, E. et al. The NHGRI-EBI GWAS Catalog: knowledgebase and deposition resource. Nucleic Acids Res. 51, D977–D985 (2023).

CAS 

Google Scholar
 

Loos, R. J. F. 15 years of genome-wide association studies and no signs of slowing down. Nat. Commun. 11, 5900 (2020).

CAS 

Google Scholar
 

Wall, J. D. & Pritchard, J. K. Haplotype blocks and linkage disequilibrium in the human genome. Nat. Rev. Genet. 4, 587–597 (2003).

CAS 

Google Scholar
 

Spain, S. L. & Barrett, J. C. Strategies for fine-mapping complex traits. Hum. Mol. Genet. 24, R111–R119 (2015).

CAS 

Google Scholar
 

Schaid, D. J., Chen, W. & Larson, N. B. From genome-wide associations to candidate causal variants by statistical fine-mapping. Nat. Rev. Genet. 19, 491–504 (2018).

CAS 

Google Scholar
 

Broekema, R. V., Bakker, O. B. & Jonkers, I. H. A practical view of fine-mapping and gene prioritization in the post-genome-wide association era. Open Biol. 10, 190221 (2020).

CAS 

Google Scholar
 

Hutchinson, A., Asimit, J. & Wallace, C. Fine-mapping genetic associations. Hum. Mol. Genet. 29, R81–R88 (2020).


Google Scholar
 

Wang, Q. S. & Huang, H. Methods for statistical fine-mapping and their applications to auto-immune diseases. Semin. Immunopathol. 44, 101–113 (2022).

CAS 

Google Scholar
 

Gao, B. & Zhou, X. MESuSiE enables scalable and powerful multi-ancestry fine-mapping of causal variants in genome-wide association studies. Nat. Genet. 56, 170–179 (2024). This paper proposes a multi-ancestry fine-mapping framework that explicitly models both shared and ancestry-specific causal variants, leading to improved accuracy and resolution of fine-mapping.

CAS 

Google Scholar
 

Yuan, K. et al. Fine-mapping across diverse ancestries drives the discovery of putative causal variants underlying human complex traits and diseases. Nat. Genet. 56, 1841–1850 (2024).

CAS 

Google Scholar
 

Kichaev, G. et al. Improved methods for multi-trait fine mapping of pleiotropic risk loci. Bioinformatics 33, 248–255 (2017).

CAS 

Google Scholar
 

Zou, Y., Carbonetto, P., Xie, D., Wang, G. & Stephens, M. Fast and flexible joint fine-mapping of multiple traits via the sum of single effects model. Preprint at bioRxiv https://doi.org/10.1101/2023.04.14.536893 (2024).

Kachuri, L. et al. Principles and methods for transferring polygenic risk scores across global populations. Nat. Rev. Genet. 25, 8–25 (2024).

CAS 

Google Scholar
 

Wellcome Trust Case Control Consortium et al. Bayesian refinement of association signals for 14 loci in 3 common diseases. Nat. Genet. 44, 1294–1301 (2012).


Google Scholar
 

Hormozdiari, F., Kostem, E., Kang, E. Y., Pasaniuc, B. & Eskin, E. Identifying causal variants at loci with multiple signals of association. Genetics 198, 497–508 (2014).

CAS 

Google Scholar
 

van de Bunt, M. et al. Evaluating the performance of fine-mapping strategies at common variant GWAS loci. PLoS Genet. 11, e1005535 (2015).


Google Scholar
 

Wang, G., Sarkar, A., Carbonetto, P. & Stephens, M. A simple new approach to variable selection in regression, with application to genetic fine mapping. J. R. Stat. Soc. B 82, 1273–1300 (2020). This paper proposes a seminal statistical framework — the ‘sum of single effects’ model, called SuSiE — for fine-mapping that benefits both accuracy and computational efficiency.


Google Scholar
 

Liu, L. et al. Conditional transcriptome-wide association study for fine-mapping candidate causal genes. Nat. Genet. 56, 348–356 (2024). This paper proposes a frequentist TWAS fine-mapping method that leverages the relatively small number of genes within each locus to systematically fine-map causal genes by conditioning on all other genes in the region.

CAS 

Google Scholar
 

Yang, J. et al. Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits. Nat. Genet. 44, 369–375 (2012).

CAS 

Google Scholar
 

Keaton, J. M. et al. Genome-wide analysis in over 1 million individuals of European ancestry yields improved polygenic risk scores for blood pressure traits. Nat. Genet. 56, 778–791 (2024).

CAS 

Google Scholar
 

Weng, L. C. et al. The impact of common and rare genetic variants on bradyarrhythmia development. Nat. Genet. 57, 53–64 (2025).

CAS 

Google Scholar
 

Chen, W. et al. Fine mapping causal variants with an approximate Bayesian method using marginal test statistics. Genetics 200, 719–736 (2015).


Google Scholar
 

Benner, C. et al. FINEMAP: efficient variable selection using summary data from genome-wide association studies. Bioinformatics 32, 1493–1501 (2016). This paper proposes a shotgun stochastic search algorithm for fine-mapping that substantially improves computational efficiency, enabling the exploration of configurations with more than a few causal variants.

CAS 

Google Scholar
 

Wen, X., Lee, Y., Luca, F. & Pique-Regi, R. Efficient integrative multi-SNP association analysis via deterministic approximation of posteriors. Am. J. Hum. Genet. 98, 1114–1129 (2016). This paper proposes a deterministic approximation of posteriors algorithm for fine-mapping that enables highly scalable and accurate identification of causal variants.

CAS 

Google Scholar
 

Stephens, M. & Balding, D. J. Bayesian statistical methods for genetic association studies. Nat. Rev. Genet. 10, 681–690 (2009).

CAS 

Google Scholar
 

Weissbrod, O. et al. Functionally informed fine-mapping and polygenic localization of complex trait heritability. Nat. Genet. 52, 1355–1363 (2020). This paper proposes a statistical framework that leverages genome-wide functional annotations by coupling an extended version of stratified LD score regression with existing fine-mapping methods, leading to substantially improved fine-mapping power.

CAS 

Google Scholar
 

Yang, Z. K. et al. CARMA is a new Bayesian model for fine-mapping in genome-wide association meta-analyses. Nat. Genet. 55, 1057–1065 (2023).

CAS 

Google Scholar
 

Zou, Y., Carbonetto, P., Wang, G. & Stephens, M. Fine-mapping from summary data with the “Sum of Single Effects” model. PLoS Genet. 18, e1010299 (2022). This paper systematically investigates summary statistics-based fine-mapping, presenting a generic strategy for extending methods to summary data, diagnostic tools for identifying inconsistencies and approaches for improving summary data consistency.

CAS 

Google Scholar
 

Wu, T. T., Chen, Y. F., Hastie, T., Sobel, E. & Lange, K. Genome-wide association analysis by lasso penalized logistic regression. Bioinformatics 25, 714–721 (2009).

CAS 

Google Scholar
 

Fisher, V., Sebastiani, P., Cupples, L. A. & Liu, C. T. ANNORE: genetic fine-mapping with functional annotation. Hum. Mol. Genet. 31, 32–40 (2022).

CAS 

Google Scholar
 

Chen, W. et al. Improved analyses of GWAS summary statistics by reducing data heterogeneity and errors. Nat. Commun. 12, 7117 (2021).

CAS 

Google Scholar
 

Kanai, M. et al. Meta-analysis fine-mapping is often miscalibrated at single-variant resolution. Cell Genom. 2, 100210 (2022). This paper demonstrates that the inter-cohort heterogeneity from multiple sources can impair the calibration of fine-mapping when using summary statistics from GWAS meta-analyses, and proposes a quality control method — SLALOM — to mitigate this issue.

CAS 

Google Scholar
 

Kichaev, G. et al. Integrating functional data to prioritize causal variants in statistical fine-mapping studies. PLoS Genet. 10, e1004722 (2014).


Google Scholar
 

LaPierre, N. et al. Identifying causal variants by fine mapping across multiple studies. PLoS Genet. 17, e1009733 (2021).

CAS 

Google Scholar
 

Li, A. et al. mBAT-combo: a more powerful test to detect gene-trait associations from GWAS data. Am. J. Hum. Genet. 110, 30–43 (2023).

CAS 

Google Scholar
 

Pirinen, M., Donnelly, P. & Spencer, C. C. A. Efficient computation with a linear mixed model on large-scale data sets with applications to genetic studies. Ann. Appl. Stat. 7, 369–390 (2013).


Google Scholar
 

Zhang, H., He, K., Li, Z., Tsoi, L. C. & Zhou, X. FABIO: TWAS fine-mapping to prioritize causal genes for binary traits. PLoS Genet. 20, e1011503 (2024).

CAS 

Google Scholar
 

Zhou, W. et al. Efficiently controlling for case-control imbalance and sample relatedness in large-scale genetic association studies. Nat. Genet. 50, 1335–1341 (2018).

CAS 

Google Scholar
 

Guan, Y. T. & Stephens, M. Bayesian variable selection regression for genome-wide association studies and other large-scale problems. Ann. Appl. Stat. 5, 1780–1815 (2011). This paper represents one of the earliest work that applies the Bayesian variable selection regression for fine-mapping and underlies many of the following developments.


Google Scholar
 

Newcombe, P. J., Conti, D. V. & Richardson, S. JAM: a scalable Bayesian framework for joint analysis of marginal SNP effects. Genet. Epidemiol. 40, 188–201 (2016).


Google Scholar
 

Wallace, C. et al. Dissection of a complex disease susceptibility region using a Bayesian stochastic search approach to fine mapping. PLoS Genet. 11, e1005272 (2015).


Google Scholar
 

Li, X., Sham, P. C. & Zhang, Y. D. A Bayesian fine-mapping model using a continuous global-local shrinkage prior with applications in prostate cancer analysis. Am. J. Hum. Genet. 111, 213–226 (2024).

CAS 

Google Scholar
 

Karhunen, V., Launonen, I., Jarvelin, M. R., Sebert, S. & Sillanpaa, M. J. Genetic fine-mapping from summary data using a nonlocal prior improves the detection of multiple causal variants. Bioinformatics 39, btad396 (2023).

CAS 

Google Scholar
 

Wakefield, J. Bayes factors for genome-wide association studies: comparison with P-values. Genet. Epidemiol. 33, 79–86 (2009).


Google Scholar
 

Lee, Y., Luca, F., Pique-Regi, R. & Wen, X. Bayesian multi-SNP genetic association analysis: control of FDR and use of summary statistics. Preprint at bioRxiv https://doi.org/10.1101/316471 (2018).

Flutre, T., Wen, X. Q., Pritchard, J. & Stephens, M. A statistical framework for joint eQTL analysis in multiple tissues. PLoS Genet. 9, e1003486 (2013).

CAS 

Google Scholar
 

Cui, R. et al. Improving fine-mapping by modeling infinitesimal effects. Nat. Genet. 56, 162–169 (2024). This paper proposes a fine-mapping method that relies on a SuSiE-based variational algorithm to fit BSLMM, which models both infinitesimal effects of all SNPs and large effects of a small subset of SNPs, to substantially reduce replication failure rate in real data.

CAS 

Google Scholar
 

Zhang, W., Najafabadi, H. & Li, Y. SparsePro: an efficient fine-mapping method integrating summary statistics and functional annotations. PLoS Genet. 19, e1011104 (2023).


Google Scholar
 

Lu, Z. et al. Improved multi-ancestry fine-mapping identifies cis-regulatory variants underlying molecular traits and disease risk. Preprint at medRxiv https://doi.org/10.1101/2024.04.15.24305836 (2024).

Rossen, J. et al. MultiSuSiE improves multi-ancestry fine-mapping in all of us whole-genome sequencing data. Preprint at medRxiv https://doi.org/10.1101/2024.05.13.24307291 (2024).

Zhang, X., Jiang, W. & Zhao, H. Integration of expression QTLs with fine mapping via SuSiE. PLoS Genet. 20, e1010929 (2024).

CAS 

Google Scholar
 

Zhao, S. et al. Adjusting for genetic confounders in transcriptome-wide association studies improves discovery of risk genes of complex traits. Nat. Genet. 56, 336–347 (2024). This paper proposes a TWAS fine-mapping method that adapts SuSiE to fine-map genetically regulated expression of genes while controlling for horizontal pleiotropic effects of SNPs.

CAS 

Google Scholar
 

Strober, B. J., Zhang, M. J., Amariuta, T., Rossen, J. & Price, A. L. Fine-mapping causal tissues and genes at disease-associated loci. Nat. Genet. 57, 42–52 (2025).

CAS 

Google Scholar
 

Akdeniz, B. C. et al. Finemap-MiXeR: a variational Bayesian approach for genetic finemapping. PLoS Genet. 20, e1011372 (2024).

CAS 

Google Scholar
 

Cai, M. et al. XMAP: cross-population fine-mapping by leveraging genetic diversity and accounting for confounding bias. Nat. Commun. 14, 6870 (2023).

CAS 

Google Scholar
 

Blei, D. M., Kucukelbir, A. & McAuliffe, J. D. Variational inference: a review for statisticians. J. Am. Stat. Assoc. 112, 859–877 (2017).

CAS 

Google Scholar
 

Carbonetto, P. & Stephens, M. Scalable variational inference for Bayesian variable selection in regression, and its accuracy in genetic association studies. Bayesian Anal. 7, 73–107 (2012).


Google Scholar
 

Servin, B. & Stephens, M. Imputation-based analysis of association studies: candidate regions and quantitative traits. PLoS Genet. 3, e114 (2007).


Google Scholar
 

Ma, Y. & Zhou, X. Genetic prediction of complex traits with polygenic scores: a statistical review. Trends Genet. 37, 995–1011 (2021).

CAS 

Google Scholar
 

Zhou, X., Carbonetto, P. & Stephens, M. Polygenic modeling with Bayesian sparse linear mixed models. PLoS Genet. 9, e1003264 (2013). This paper proposes BSLMM, a model that bridges the gap between sparse and infinitesimal genetic architectures to enable fine-mapping in the presence of a polygenic background, laying the groundwork for later methods such as SuSiE-inf and XMAP.

CAS 

Google Scholar
 

Zheng, Z. et al. Leveraging functional genomic annotations and genome coverage to improve polygenic prediction of complex traits within and between ancestries. Nat. Genet. 56, 767–777 (2024).

CAS 

Google Scholar
 

Wu, Y. et al. Genome-wide fine-mapping improves identification of causal variants. Preprint at medRxiv https://doi.org/10.1101/2024.07.18.24310667 (2024).

Gjoka, A. & Cordell, H. J. Fine-mapping the results from genome-wide association studies of primary biliary cholangitis using SuSiE and h2-D2. Genet. Epidemiol. 49, e22592 (2025).

CAS 

Google Scholar
 

The 1000 Genomes Project Consortium. A global reference for human genetic variation. Nature 526, 68–74 (2015).


Google Scholar
 

The ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012).


Google Scholar
 

Roadmap Epigenomics Consortium et al. Integrative analysis of 111 reference human epigenomes. Nature 518, 317–330 (2015).


Google Scholar
 

Kircher, M. et al. A general framework for estimating the relative pathogenicity of human genetic variants. Nat. Genet. 46, 310–315 (2014).

CAS 

Google Scholar
 

McLaren, W. et al. The Ensembl Variant Effect Predictor. Genome Biol. 17, 122 (2016).


Google Scholar
 

Wang, K., Li, M. & Hakonarson, H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 38, e164 (2010).


Google Scholar
 

Gazal, S. et al. Functional architecture of low-frequency variants highlights strength of negative selection across coding and non-coding annotations. Nat. Genet. 50, 1600–1607 (2018).

CAS 

Google Scholar
 

Gazal, S. et al. Linkage disequilibrium-dependent architecture of human complex traits shows action of negative selection. Nat. Genet. 49, 1421–1427 (2017).

CAS 

Google Scholar
 

Pickrell, J. K. Joint analysis of functional genomic data and genome-wide association studies of 18 human traits. Am. J. Hum. Genet. 94, 559–573 (2014).

CAS 

Google Scholar
 

Alenazi, A. A., Cox, A., Juarez, M., Lin, W. Y. & Walters, K. Bayesian variable selection using partially observed categorical prior information in fine-mapping association studies. Genet. Epidemiol. 43, 690–703 (2019).


Google Scholar
 

Jiang, J. et al. Functional annotation and Bayesian fine-mapping reveals candidate genes for important agronomic traits in Holstein bulls. Commun. Biol. 2, 212 (2019).


Google Scholar
 

Wang, Q. S. et al. Leveraging supervised learning for functionally informed fine-mapping of cis-eQTLs identifies an additional 20,913 putative causal eQTLs. Nat. Commun. 12, 3394 (2021).

CAS 

Google Scholar
 

Yang, J., Fritsche, L. G., Zhou, X., Abecasis, G. & International Age-Related Macular Degeneration Genomics Consortium. A scalable Bayesian method for integrating functional information in genome-wide association studies. Am. J. Hum. Genet. 101, 404–416 (2017).

CAS 

Google Scholar
 

Do, C. B. & Batzoglou, S. What is the expectation maximization algorithm? Nat. Biotechnol. 26, 897–899 (2008).

CAS 

Google Scholar
 

Kim, A. et al. Inferring causal cell types of human diseases and risk variants from candidate regulatory elements. Preprint at medRxiv https://doi.org/10.1101/2024.05.17.24307556 (2024).

Finucane, H. K. et al. Partitioning heritability by functional annotation using genome-wide association summary statistics. Nat. Genet. 47, 1228–1235 (2015).

CAS 

Google Scholar
 

Albert, F. W. & Kruglyak, L. The role of regulatory variation in complex traits and disease. Nat. Rev. Genet. 16, 197–212 (2015).

CAS 

Google Scholar
 

Bush, W. S., Oetjens, M. T. & Crawford, D. C. Unravelling the human genome-phenome relationship using phenome-wide association studies. Nat. Rev. Genet. 17, 129–145 (2016).

CAS 

Google Scholar
 

van Rheenen, W., Peyrot, W. J., Schork, A. J., Lee, S. H. & Wray, N. R. Genetic correlations of polygenic disease traits: from theory to practice. Nat. Rev. Genet. 20, 567–581 (2019).


Google Scholar
 

Asimit, J. L. et al. Stochastic search and joint fine-mapping increases accuracy and identifies previously unreported associations in immune-mediated diseases. Nat. Commun. 10, 3216 (2019).


Google Scholar
 

Hernandez, N. et al. The flashfm approach for fine-mapping multiple quantitative traits. Nat. Commun. 12, 6147 (2021).

CAS 

Google Scholar
 

Arvanitis, M., Tayeb, K., Strober, B. J. & Battle, A. Redefining tissue specificity of genetic regulation of gene expression in the presence of allelic heterogeneity. Am. J. Hum. Genet. 109, 223–239 (2022).

CAS 

Google Scholar
 

Xu, C., Ganesh, S. K. & Zhou, X. mtPGS: leverage multiple correlated traits for accurate polygenic score construction. Am. J. Hum. Genet. 110, 1673–1689 (2023).

CAS 

Google Scholar
 

Giambartolomei, C. et al. Bayesian test for colocalisation between pairs of genetic association studies using summary statistics. PLoS Genet. 10, e1004383 (2014).


Google Scholar
 

Hormozdiari, F. et al. Colocalization of GWAS and eQTL signals detects target genes. Am. J. Hum. Genet. 99, 1245–1260 (2016).

CAS 

Google Scholar
 

Wallace, C. A more accurate method for colocalisation analysis allowing for multiple causal variants. PLoS Genet. 17, e1009440 (2021).

CAS 

Google Scholar
 

Bick, A. G. et al. Genomic data in the all of us research program. Nature 627, 340–346 (2024).


Google Scholar
 

Nagai, A. et al. Overview of the BioBank Japan Project: study design and profile. J. Epidemiol. 27, S2–S8 (2017).


Google Scholar
 

Bycroft, C. et al. The UK Biobank resource with deep phenotyping and genomic data. Nature 562, 203–209 (2018).

CAS 

Google Scholar
 

Zaitlen, N., Pasaniuc, B., Gur, T., Ziv, E. & Halperin, E. Leveraging genetic variability across populations for the identification of causal variants. Am. J. Hum. Genet. 86, 23–33 (2010).

CAS 

Google Scholar
 

Shi, H. et al. Localizing components of shared transethnic genetic architecture of complex traits from GWAS summary data. Am. J. Hum. Genet. 106, 805–817 (2020).

CAS 

Google Scholar
 

Kichaev, G. & Pasaniuc, B. Leveraging functional-annotation data in trans-ethnic fine-mapping studies. Am. J. Hum. Genet. 97, 260–271 (2015).

CAS 

Google Scholar
 

Wen, X., Luca, F. & Pique-Regi, R. Cross-population joint analysis of eQTLs: fine mapping and functional annotation. PLoS Genet. 11, e1005176 (2015).


Google Scholar
 

Zhou, F. et al. Leveraging information between multiple population groups and traits improves fine-mapping resolution. Nat. Commun. 14, 7279 (2023).

CAS 

Google Scholar
 

The GTEx Consortium. The GTEx Consortium atlas of genetic regulatory effects across human tissues. Science 369, 1318–1330 (2020).


Google Scholar
 

Sun, B. B. et al. Genomic atlas of the human plasma proteome. Nature 558, 73–79 (2018).

CAS 

Google Scholar
 

McVicker, G. et al. Identification of genetic variants that affect histone modifications in human cells. Science 342, 747–749 (2013).

CAS 

Google Scholar
 

Shi, H. et al. Population-specific causal disease effect sizes in functionally important regions impacted by selection. Nat. Commun. 12, 1098 (2021).

CAS 

Google Scholar
 

Gamazon, E. R. et al. A gene-based association method for mapping traits using reference transcriptome data. Nat. Genet. 47, 1091–1098 (2015).

CAS 

Google Scholar
 

Gusev, A. et al. Integrative approaches for large-scale transcriptome-wide association studies. Nat. Genet. 48, 245–252 (2016).

CAS 

Google Scholar
 

Li, Z., Gao, B. & Zhou, X. An alternative framework for transcriptome-wide association studies to detect and decipher gene-trait associations. Preprint at bioRxiv https://doi.org/10.1101/2025.03.14.643391 (2025).

Wainberg, M. et al. Opportunities and challenges for transcriptome-wide association studies. Nat. Genet. 51, 592–599 (2019).

CAS 

Google Scholar
 

Mancuso, N. et al. Probabilistic fine-mapping of transcriptome-wide association studies. Nat. Genet. 51, 675–682 (2019).

CAS 

Google Scholar
 

Lu, Z. et al. Multi-ancestry fine-mapping improves precision to identify causal genes in transcriptome-wide association studies. Am. J. Hum. Genet. 109, 1388–1404 (2022).

CAS 

Google Scholar
 

Hill, W. G., Goddard, M. E. & Visscher, P. M. Data and theory point to mainly additive genetic variance for complex traits. PLoS Genet. 4, e1000008 (2008).


Google Scholar
 

Hivert, V. et al. Estimation of non-additive genetic variance in human complex traits from a large sample of unrelated individuals. Am. J. Hum. Genet. 108, 962 (2021).

CAS 

Google Scholar
 

Lenz, T. L. et al. Widespread non-additive and interaction effects within HLA loci modulate the risk of autoimmune diseases. Nat. Genet. 47, 1085–1090 (2015).

CAS 

Google Scholar
 

Goyette, P. et al. High-density mapping of the MHC identifies a shared role for HLA-DRB1*01:03 in inflammatory bowel diseases and heterozygous advantage in ulcerative colitis. Nat. Genet. 47, 172–179 (2015).

CAS 

Google Scholar
 

Conomos, M. P., Miller, M. B. & Thornton, T. A. Robust inference of population structure for ancestry prediction and correction of stratification in the presence of relatedness. Genet. Epidemiol. 39, 276–293 (2015).


Google Scholar
 

Zhou, X. & Stephens, M. Genome-wide efficient mixed-model analysis for association studies. Nat. Genet. 44, 821–824 (2012).

CAS 

Google Scholar
 

Yang, Z. et al. Fine-mapping in admixed populations using CARMA-X, with applications to Latin American studies. Am. J. Hum. Genet. 112, 1215–1232 (2025).

CAS 

Google Scholar
 

Benner, C. et al. Prospects of fine-mapping trait-associated genomic regions by using summary statistics from genome-wide association studies. Am. J. Hum. Genet. 101, 539–551 (2017).

CAS 

Google Scholar
 

Zhang, W., Lu, T., Sladek, R., Dupuis, J. & Lettre, G. Robust fine-mapping in the presence of linkage disequilibrium mismatch. Preprint at bioRxiv https://doi.org/10.1101/2024.10.29.620968 (2024).

Marouli, E. et al. Rare and low-frequency coding variants alter human adult height. Nature 542, 186–190 (2017).

CAS 

Google Scholar
 

Hawkes, G. et al. Whole-genome sequencing analysis identifies rare, large-effect noncoding variants and regulatory regions associated with circulating protein levels. Nat. Genet. 57, 626–634 (2025).

CAS 

Google Scholar
 

Tennessen, J. A. et al. Evolution and functional impact of rare coding variation from deep sequencing of human exomes. Science 337, 64–69 (2012).

CAS 

Google Scholar
 

Barton, A. R., Sherman, M. A., Mukamel, R. E. & Loh, P. R. Whole-exome imputation within UK Biobank powers rare coding variant association and fine-mapping analyses. Nat. Genet. 53, 1260–1269 (2021).

CAS 

Google Scholar
 

Li, B. & Leal, S. M. Methods for detecting associations with rare variants for common diseases: application to analysis of sequence data. Am. J. Hum. Genet. 83, 311–321 (2008).

CAS 

Google Scholar
 

Wu, M. C. et al. Rare-variant association testing for sequencing data with the sequence kernel association test. Am. J. Hum. Genet. 89, 82–93 (2011).

CAS 

Google Scholar
 

Sanderson, E. et al. Mendelian randomization. Nat. Rev. Methods Primers 2, 6 (2022).

CAS 

Google Scholar
 

Yuan, Z. et al. Likelihood-based Mendelian randomization analysis with automated instrument selection and horizontal pleiotropic modeling. Sci. Adv. 8, eabl5744 (2022).

CAS 

Google Scholar
 

Hou, K. et al. Causal effects on complex traits are similar for common variants across segments of different continental ancestries within admixed individuals. Nat. Genet. 55, 549–558 (2023).

CAS 

Google Scholar
 

Ding, Y. et al. Polygenic scoring accuracy varies across the genetic ancestry continuum. Nature 618, 774–781 (2023).

CAS 

Google Scholar
 

Hou, K. et al. Calibrated prediction intervals for polygenic scores across diverse contexts. Nat. Genet. 56, 1386–1396 (2024).

CAS 

Google Scholar
 

Herrera-Luis, E., Benke, K., Volk, H., Ladd-Acosta, C. & Wojcik, G. L. Gene–environment interactions in human health. Nat. Rev. Genet. 25, 768–784 (2024).

CAS 

Google Scholar
 

Benegas, G., Ye, C., Albors, C., Li, J. C. & Song, Y. S. Genomic language models: opportunities and challenges. Trends Genet. 41, 286–302 (2025).

CAS 

Google Scholar
 

Klein, J. C. et al. A systematic evaluation of the design and context dependencies of massively parallel reporter assays. Nat. Methods 17, 1083–1091 (2020).

CAS 

Google Scholar
 

Porto, E. M., Komor, A. C., Slaymaker, I. M. & Yeo, G. W. Base editing: advances and therapeutic opportunities. Nat. Rev. Drug Discov. 19, 839–859 (2020).

CAS 

Google Scholar
 

Finucane, H. K. et al. Heritability enrichment of specifically expressed genes identifies disease-relevant tissues and cell types. Nat. Genet. 50, 621–629 (2018).

CAS 

Google Scholar
 

Zhou, X. A unified framework for variance component estimation with summary statistics in genome-wide association studies. Ann. Appl. Stat. 11, 2027–2051 (2017).


Google Scholar
 

Kanai, M. et al. Insights from complex trait fine-mapping across diverse populations. Preprint at medRxiv https://doi.org/10.1101/2021.09.03.21262975 (2021).

Morris, J. A. et al. Discovery of target genes and pathways at GWAS loci by pooled single-cell CRISPR screens. Science 380, eadh7699 (2023).

CAS 

Google Scholar
 

Lee, S. et al. Massively parallel reporter assay investigates shared genetic variants of eight psychiatric disorders. Cell 188, 1409–1424.e21 (2025).

CAS 

Google Scholar