Kjelleberg, S. Starvation in Bacteria (Springer, 1993).

Finkel, S. E. Long-term survival during stationary phase: evolution and the GASP phenotype. Nat. Rev. Microbiol. 4, 113–120 (2006).

Article 
CAS 
PubMed 

Google Scholar
 

Bernhardt, J., Weibezahn, J., Scharf, C. & Hecker, M. Bacillus subtilis during feast and famine: visualization of the overall regulation of protein synthesis during glucose starvation by proteome analysis. Genome Res. 13, 224–237 (2003).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Schofield, W. B., Zimmermann-Kogadeeva, M., Zimmermann, M., Barry, N. A. & Goodman, A. L. The stringent response determines the ability of a commensal bacterium to survive starvation and to persist in the gut. Cell Host Microbe 24, 120–132 (2018).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Townsend, G. E. et al. A master regulator of Bacteroides thetaiotaomicron gut colonization controls carbohydrate utilization and an alternative protein synthesis factor. mBio https://doi.org/10.1128/mbio.03221-19 (2020).

Ontai-Brenning, A., Hamchand, R., Crawford, J. M. & Goodman, A. L. Gut microbes modulate (p)ppGpp during a time-restricted feeding regimen. mBio 14, e0190723 (2023).

Article 
PubMed 

Google Scholar
 

Groisman, E. A., Han, W. & Krypotou, E. Advancing the fitness of gut commensal bacteria. Science 382, 766–768 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Han, W. et al. Gut colonization by Bacteroides requires translation by an EF-G paralog lacking GTPase activity. EMBO J. 42, e112372 (2023).

Article 
CAS 
PubMed 

Google Scholar
 

Liu, B. et al. Starvation responses impact interaction dynamics of human gut bacteria Bacteroides thetaiotaomicron and Roseburia intestinalis. ISME J. 17, 1940–1952 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Watson, S. P., Clements, M. O. & Foster, S. J. Characterization of the starvation-survival response of Staphylococcus aureus. J. Bacteriol. 180, 1750–1758 (1998).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Berney, M. & Cook, G. M. Unique flexibility in energy metabolism allows mycobacteria to combat starvation and hypoxia. PLoS ONE 5, e8614 (2010).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Zeng, X. et al. Gut bacterial nutrient preferences quantified in vivo. Cell 185, 3441–3456 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Zarrinpar, A., Chaix, A., Yooseph, S. & Panda, S. Diet and feeding pattern affect the diurnal dynamics of the gut microbiome. Cell Metab. 20, 1006–1017 (2014).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

David, L. A. et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505, 559–563 (2014).

Article 
CAS 
PubMed 

Google Scholar
 

Koropatkin, N. M., Cameron, E. A. & Martens, E. C. How glycan metabolism shapes the human gut microbiota. Nat. Rev. Microbiol. 10, 323–335 (2012).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Monod, J. The growth of bacterial cultures. Annu. Rev. Microbiol. https://doi.org/10.1146/annurev.mi.03.100149.002103 (1949).

Dworkin, J. & Harwood, C. S. Metabolic reprogramming and longevity in quiescence. Annu. Rev. Microbiol. 76, 91–111 (2022).

Article 
CAS 
PubMed 

Google Scholar
 

Kramer, J., Özkaya, Ö & Kümmerli, R. Bacterial siderophores in community and host interactions. Nat. Rev. Microbiol. 18, 152–163 (2020).

Article 
CAS 
PubMed 

Google Scholar
 

Lennon, J. T. & Jones, S. E. Microbial seed banks: the ecological and evolutionary implications of dormancy. Nat. Rev. Microbiol. 9, 119–130 (2011).

Article 
CAS 
PubMed 

Google Scholar
 

Avrani, S., Katz, S. & Hershberg, R. Adaptations accumulated under prolonged resource exhaustion are highly transient. mSphere https://doi.org/10.1128/msphere.00388-20 (2020).

Shoemaker, W. R. et al. Microbial population dynamics and evolutionary outcomes under extreme energy limitation. Proc. Natl Acad. Sci. USA 118, e2101691118 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Katz, S. et al. Dynamics of adaptation during three years of evolution under long-term stationary phase. Mol. Biol. Evol.38, 2778–2790 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Ratib, N. R., Seidl, F., Ehrenreich, I. M. & Finkel, S. E. Evolution in long-term stationary-phase batch culture: emergence of divergent Escherichia coli lineages over 1,200 days. mBio https://doi.org/10.1128/mbio.03337-20 (2021).

Boutte, C. C. & Crosson, S. Bacterial lifestyle shapes stringent response activation. Trends Microbiol. 21, 174–180 (2013).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Irving, S. E., Choudhury, N. R. & Corrigan, R. M. The stringent response and physiological roles of (pp)pGpp in bacteria. Nat. Rev. Microbiol. 19, 256–271 (2021).

Article 
CAS 
PubMed 

Google Scholar
 

Battesti, A., Majdalani, N. & Gottesman, S. The RpoS-mediated general stress response in Escherichia coli. Annu. Rev. Microbiol. 65, 189–213 (2011).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Boutte, C. C. & Crosson, S. The complex logic of stringent response regulation in Caulobacter crescentus: starvation signalling in an oligotrophic environment. Mol. Microbiol. 80, 695–714 (2011).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Hallgren, J., et al. Phosphate starvation decouples cell differentiation from DNA replication control in the dimorphic bacterium Caulobacter crescentus. PLoS Genet. 19, e1010882 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Krypotou, E. et al. Bacteria require phase separation for fitness in the mammalian gut. Science 379, 1149–1156 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Browne, H. P., et al. Host adaptation in gut Firmicutes is associated with sporulation loss and altered transmission cycle. Genome Biol. 22, 204 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Egan, M., Dempsey, E., Ryan, C. A., Ross, R. P. & Stanton, C. The sporobiota of the human gut. Gut Microbes 13, 1863134 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Lawley, T. D. et al. Antibiotic treatment of Clostridium difficile carrier mice triggers a supershedder state, spore-mediated transmission, and severe disease in immunocompromised hosts. Infect. Immun. 77, 3661–3669 (2009).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Browne, H. P. et al. Culturing of ‘unculturable’ human microbiota reveals novel taxa and extensive sporulation. Nature 533, 543–546 (2016).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Cesar, S., Willis, L. & Huang, K. C. Bacterial respiration during stationary phase induces intracellular damage that leads to delayed regrowth. iScience 25, 103765 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Şimşek, E. & Kim, M. Power-law tail in lag time distribution underlies bacterial persistence. Proc. Natl Acad. Sci. USA 116, 17635–17640 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Kaplan, Y. et al. Observation of universal ageing dynamics in antibiotic persistence. Nature 600, 290–294 (2021).

Article 
CAS 
PubMed 

Google Scholar
 

Moreno-Gámez, S. et al. Wide lag time distributions break a trade-off between reproduction and survival in bacteria. Proc. Natl Acad. Sci. USA 117, 18729–18736 (2020).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Schink, S. J. et al. MetA is a “thermal fuse” that inhibits growth and protects Escherichia coli at elevated temperatures. Cell Rep. 40, 111290 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Brauer, A. M., Shi, H., Levin, P. A. & Huang, K. C. Physiological and regulatory convergence between osmotic and nutrient stress responses in microbes. Curr. Opin. Cell Biol. 81, 102170 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Zimmerman, C. A. et al. A gut-to-brain signal of fluid osmolarity controls thirst satiation. Nature 568, 98–102 (2019).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Tagkopoulos, I., Liu, Y.-C. & Tavazoie, S. Predictive behavior within microbial genetic networks. Science 320, 1313–1317 (2008).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Schwartz, D. A., Shoemaker, W. R., Măgălie, A., Weitz, J. S. & Lennon, J. T. Bacteria–phage coevolution with a seed bank. ISME J. 17, 1315–1325 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Murdoch, C. C. & Skaar, E. P. Nutritional immunity: the battle for nutrient metals at the host–pathogen interface. Nat. Rev. Microbiol. 20, 657–670 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Liang, Q. et al. Sialic acid plays a pivotal role in licensing Citrobacter rodentium’s transition from the intestinal lumen to a mucosal adherent niche. Proc. Natl Acad. Sci. USA 120, e2301115120 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Pal, R. R. et al. Pathogenic E. coli extracts nutrients from infected host cells utilizing injectisome components. Cell 177, 683–696 (2019).

Article 
CAS 
PubMed 

Google Scholar
 

van der Meer-Janssen, Y. P., van Galen, J., Batenburg, J. J. & Helms, J. B. Lipids in host–pathogen interactions: pathogens exploit the complexity of the host cell lipidome. Prog. Lipid Res. 49, 1–26 (2010).

Article 
PubMed 

Google Scholar
 

Kuhn, H. W., et al. BB0562 is a nutritional virulence determinant with lipase activity important for Borrelia burgdorferi infection and survival in fatty acid deficient environments. PLoS Pathog. 17, e1009869 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Abu Kwaik, Y. & Bumann, D. Microbial quest for food in vivo: ‘nutritional virulence’ as an emerging paradigm. Cell. Microbiol. 15, 882–890 (2013).

Article 
CAS 
PubMed 

Google Scholar
 

Kaiser, J. C. & Heinrichs, D. E. Branching out: alterations in bacterial physiology and virulence due to branched-chain amino acid deprivation. mBio https://doi.org/10.1128/mbio.01188-18 (2018).

Caballero-Flores, G., Pickard, J. M. & Núñez, G. Microbiota-mediated colonization resistance: mechanisms and regulation. Nat. Rev. Microbiol. 21, 347–360 (2023).

Article 
CAS 
PubMed 

Google Scholar
 

Aranda-Díaz, A. et al. Establishment and characterization of stable, diverse, fecal-derived in vitro microbial communities that model the intestinal microbiota. Cell Host Microbe 30, 260–272 (2022).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Spragge, F. et al. Microbiome diversity protects against pathogens by nutrient blocking. Science 382, eadj3502 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Ho, P.-Y., Nguyen, T. H., Sanchez, J. M., DeFelice, B. C. & Huang, K. C. Resource competition predicts assembly of gut bacterial communities in vitro. Nat. Microbiol. 9, 1036–1048 (2024).

Article 
CAS 
PubMed 

Google Scholar
 

Hammarlund, S. P., Chacón, J. M. & Harcombe, W. R. A shared limiting resource leads to competitive exclusion in a cross-feeding system. Environ. Microbiol. 21, 759–771 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Olsen, L., Thum, E. & Rohner, N. Lipid metabolism in adaptation to extreme nutritional challenges. Dev. Cell 56, 1417–1429 (2021).

Article 
CAS 
PubMed 

Google Scholar
 

Carey, H. V., Walters, W. A. & Knight, R. Seasonal restructuring of the ground squirrel gut microbiota over the annual hibernation cycle. Am. J. Physiol. Regul. Integr. Comp. Physiol. 304, R33–R42 (2013).

Article 
CAS 
PubMed 

Google Scholar
 

Dill-McFarland, K. A. et al. Hibernation alters the diversity and composition of mucosa-associated bacteria while enhancing antimicrobial defence in the gut of 13-lined ground squirrels. Mol. Ecol. 23, 4658–4669 (2014).

Article 
CAS 
PubMed 

Google Scholar
 

Sonoyama, K. et al. Response of gut microbiota to fasting and hibernation in Syrian hamsters. Appl. Environ. Microbiol. 75, 6451–6456 (2009).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Sommer, F. et al. The gut microbiota modulates energy metabolism in the hibernating brown bear Ursus arctos. Cell Rep. 14, 1655–1661 (2016).

Article 
CAS 
PubMed 

Google Scholar
 

Ho, P.-Y., Good, B. H. & Huang, K. C. Competition for fluctuating resources reproduces statistics of species abundance over time across wide-ranging microbiotas. eLife 11, e75168 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Costello, E. K., Gordon, J. I., Secor, S. M. & Knight, R. Postprandial remodeling of the gut microbiota in Burmese pythons. ISME J. 4, 1375–1385 (2010).

Article 
CAS 
PubMed 

Google Scholar
 

Di Francesco, A., Di Germanio, C., Bernier, M. & De Cabo, R. A time to fast. Science 362, 770–775 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Maifeld, A. et al. Fasting alters the gut microbiome reducing blood pressure and body weight in metabolic syndrome patients. Nat. Commun. 12, 1970 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Mesnage, R., Grundler, F., Schwiertz, A., Le Maho, Y. & de Toledo, F. W. Changes in human gut microbiota composition are linked to the energy metabolic switch during 10 d of Buchinger fasting. J. Nutr. Sci. 8, e36 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Paukkonen, I., Törrönen, E.-N., Lok, J., Schwab, U. & El-Nezami, H. The impact of intermittent fasting on gut microbiota: a systematic review of human studies. Front. Nutr. 11, 1342787 (2024).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Li, G. et al. Intermittent fasting promotes white adipose browning and decreases obesity by shaping the gut microbiota. Cell Metab. 26, 672–685 (2017).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

von Schwartzenberg, R. J. et al. Caloric restriction disrupts the microbiota and colonization resistance. Nature 595, 272–277 (2021).

Article 

Google Scholar
 

Depommier, C. et al. Supplementation with Akkermansia muciniphila in overweight and obese human volunteers: a proof-of-concept exploratory study. Nat. Med. 25, 1096–1103 (2019).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Sonnenburg, J. L. et al. Glycan foraging in vivo by an intestine-adapted bacterial symbiont. Science 307, 1955–1959 (2005).

Article 
CAS 
PubMed 

Google Scholar
 

Kohl, K. D., Amaya, J., Passement, C. A., Dearing, M. D. & McCue, M. D. Unique and shared responses of the gut microbiota to prolonged fasting: a comparative study across five classes of vertebrate hosts. FEMS Microbiol. Ecol. 90, 883–894 (2014).

Article 
CAS 
PubMed 

Google Scholar
 

Leeming, E. R., Johnson, A. J., Spector, T. D. & Le Roy, C. I. Effect of diet on the gut microbiota: rethinking intervention duration. Nutrients 11, 2862 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Smits, S. A. et al. Seasonal cycling in the gut microbiome of the Hadza hunter–gatherers of Tanzania. Science 357, 802–806 (2017).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Desai, M. S. et al. A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility. Cell 167, 1339–1353 (2016).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Sonnenburg, E. D. et al. Diet-induced extinctions in the gut microbiota compound over generations. Nature 529, 212–215 (2016).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Shin, N.-R., Whon, T. W. & Bae, J.-W. Proteobacteria: microbial signature of dysbiosis in gut microbiota. Trends Biotechnol. 33, 496–503 (2015).

Article 
CAS 
PubMed 

Google Scholar
 

Fusco, W. et al. Short-chain fatty-acid-producing bacteria: key components of the human gut microbiota. Nutrients 15, 2211 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Sonnenburg, E. D. & Sonnenburg, J. L. Starving our microbial self: the deleterious consequences of a diet deficient in microbiota-accessible carbohydrates. Cell Metab. 20, 779–786 (2014).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Windey, K., De Preter, V. & Verbeke, K. Relevance of protein fermentation to gut health. Mol. Nutr. Food Res. 56, 184–196 (2012).

Article 
CAS 
PubMed 

Google Scholar
 

Atkinson, C., Frankenfeld, C. L. & Lampe, J. W. Gut bacterial metabolism of the soy isoflavone daidzein: exploring the relevance to human health. Exp. Biol. Med. 230, 155–170 (2005).

Article 
CAS 

Google Scholar
 

Beam, A., Clinger, E. & Hao, L. Effect of diet and dietary components on the composition of the gut microbiota. Nutrients 13, 2795 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Martin-Gallausiaux, C., Marinelli, L., Blottière, H. M., Larraufie, P. & Lapaque, N. SCFA: mechanisms and functional importance in the gut. Proc. Nutr. Soc. 80, 37–49 (2021).

Article 
CAS 
PubMed 

Google Scholar
 

Armstrong, H. K. et al. Unfermented β-fructan fibers fuel inflammation in select inflammatory bowel disease patients. Gastroenterology 164, 228–240 (2023).

Article 
CAS 
PubMed 

Google Scholar
 

McNulty, N. P., et al. Effects of diet on resource utilization by a model human gut microbiota containing Bacteroides cellulosilyticus WH2, a symbiont with an extensive glycobiome. PLoS Biol. 11, e1001637 (2013).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Dapa, T. et al. Within-host evolution of the gut microbiome. Curr. Opin. Microbiol. 71, 102258 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Dapa, T., Ramiro, R. S., Pedro, M. F., Gordo, I. & Xavier, K. B. Diet leaves a genetic signature in a keystone member of the gut microbiota. Cell Host Microbe 30, 183–199 (2022).

Article 
CAS 
PubMed 

Google Scholar
 

Devkota, S. et al. Dietary-fat-induced taurocholic acid promotes pathobiont expansion and colitis in Il10−/− mice. Nature 487, 104–108 (2012).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Singh, P. et al. Taurine deficiency as a driver of aging. Science 380, eabn9257 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Aranda-Díaz, A., et al. Assembly of stool-derived bacterial communities follows “early-bird” resource utilization dynamics. Cell Syst. 16, 101240 (2025).

Article 
PubMed 

Google Scholar
 

Kolb, H., et al. Ketone bodies: from enemy to friend and guardian angel. BMC Med. 19, 313 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Regan, M. D. et al. Nitrogen recycling via gut symbionts increases in ground squirrels over the hibernation season. Science 375, 460–463 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Start, C. C., Anderson, C. M. H., Gatehouse, A. M. R. & Edwards, M. G. Dynamic response of essential amino acid biosynthesis in Buchnera aphidicola to supplement sub-optimal host nutrition. J. Insect Physiol. 158, 104683 (2024).

Article 
CAS 
PubMed 

Google Scholar
 

Akman Gündüz, E. & Douglas, A. Symbiotic bacteria enable insect to use a nutritionally inadequate diet. Proc. R. Soc. B Biol. Sci. 276, 987–991 (2009).

Article 

Google Scholar
 

Lum, G. R., et al. Ketogenic diet therapy for pediatric epilepsy is associated with alterations in the human gut microbiome that confer seizure resistance in mice. Cell Rep. 42, 113521 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Gehrig, J. L. et al. Effects of microbiota-directed foods in gnotobiotic animals and undernourished children. Science 365, eaau4732 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Chen, R. Y. et al. A microbiota-directed food intervention for undernourished children. N. Engl. J. Med. 384, 1517–1528 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Musat, N., Foster, R., Vagner, T., Adam, B. & Kuypers, M. M. Detecting metabolic activities in single cells, with emphasis on nanoSIMS. FEMS Microbiol. Rev. 36, 486–511 (2012).

Article 
CAS 
PubMed 

Google Scholar
 

Stevenson, T. J., Duddleston, K. N. & Buck, C. L. Effects of season and host physiological state on the diversity, density, and activity of the arctic ground squirrel cecal microbiota. Appl. Environ. Microbiol. 80, 5611–5622 (2014).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Shi, H. et al. Highly multiplexed spatial mapping of microbial communities. Nature 588, 676–681 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Villa, M. M. et al. Interindividual variation in dietary carbohydrate metabolism by gut bacteria revealed with droplet microfluidic culture. mSystems https://doi.org/10.1128/msystems.00864-19 (2020).

Wang, B. et al. Single-cell massively-parallel multiplexed microbial sequencing (M3-seq) identifies rare bacterial populations and profiles phage infection. Nat. Microbiol. 8, 1846–1862 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Chia, H. E., Marsh, E. N. G. & Biteen, J. S. Extending fluorescence microscopy into anaerobic environments. Curr. Opin. Chem. Biol. 51, 98–104 (2019).

Article 
CAS 
PubMed 

Google Scholar
 

Müller, A. L. et al. Bacterial interactions during sequential degradation of cyanobacterial necromass in a sulfidic arctic marine sediment. Environ. Microbiol. 20, 2927–2940 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Geesink, P., et al. Bacterial necromass is rapidly metabolized by heterotrophic bacteria and supports multiple trophic levels of the groundwater microbiome. Microbiol. Spectr. 10, e0043722 (2022).

Article 
PubMed 

Google Scholar
 

Coyne, M. J. & Comstock, L. E. Type VI secretion systems and the gut microbiota. Microbiol. Spectr. https://doi.org/10.1128/microbiolspec.psib-0009-2018 (2019).

Troselj, V., Treuner-Lange, A., Søgaard-Andersen, L. & Wall, D. Physiological heterogeneity triggers sibling conflict mediated by the type VI secretion system in an aggregative multicellular bacterium. mBio https://doi.org/10.1128/mbio.01645-17 (2018).

Mashruwala, A. A., Qin, B. & Bassler, B. L. Quorum-sensing- and type VI secretion-mediated spatiotemporal cell death drives genetic diversity in Vibrio cholerae. Cell 185, 3966–3979 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Folz, J. et al. Human metabolome variation along the upper intestinal tract. Nat. Metab. 5, 777–788 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Shalon, D. et al. Profiling the human intestinal environment under physiological conditions. Nature 617, 581–591 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Baker, J. L. et al. Klebsiella and Providencia emerge as lone survivors following long-term starvation of oral microbiota. Proc. Natl Acad. Sci. USA 116, 8499–8504 (2019).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Cheng, A. G. et al. Design, construction, and in vivo augmentation of a complex gut microbiome. Cell 185, 3617–3636 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar