Silhavy, T. J., Kahne, D. & Walker, S. The bacterial cell envelope. Cold Spring Harb. Perspect. Biol. 2, a000414 (2010).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Albers, S.-V. & Meyer, B. H. The archaeal cell envelope. Nat. Rev. Microbiol. 9, 414–426 (2011).

Article 
CAS 
PubMed 

Google Scholar
 

Sleytr, U. B., Schuster, B., Egelseer, E. & Pum, D. S-layers: principles and applications. FEMS Microbiol. Rev. 38, 823–864 (2014).

Article 
CAS 
PubMed 

Google Scholar
 

Johnston, E., Isbilir, B., Alva, V., Bharat, T. A. M. & Doye, J. P. K. Punctuated and continuous structural diversity of S-layers across the prokaryotic tree of life. Preprint at bioRxiv https://doi.org/10.1101/2024.05.28.596244 (2024).

Sivabalasarma, S., van Wolferen, M., Albers, S.-V. & Charles-Orszag, A. Biogenesis, function and evolution of the archaeal S-layer. Curr. Opin. Cell Biol. 95, 102534 (2025). This review is a comprehensive up-to-date overview of all aspects of archaeal S-layers.

Article 
CAS 
PubMed 

Google Scholar
 

Bharat, T. A. M., von Kügelgen, A. & Alva, V. Molecular logic of prokaryotic surface layer structures. Trends Microbiol. 29, 405–415 (2021). This review summarizes the sequence and structural diversity of archaeal and bacterial S-layers by highlighting evolutionary relationships and common architectural motifs.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Lau, J. H. Y., Nomellini, J. F. & Smit, J. Analysis of high-level S-layer protein secretion in Caulobacter crescentus. Can. J. Microbiol. 56, 501–514 (2010).

Article 
CAS 
PubMed 

Google Scholar
 

Sleytr, U. B. & Pum, D. S-layers: from a serendipitous discovery to a toolkit for nanobiotechnology. Q. Rev. Biophys. 58, e4 (2025).

Article 
CAS 
PubMed 

Google Scholar
 

Grill-Walcher, S. & Schäffer, C. A new age in structural S-layer biology – experimental and in silico milestones. J. Biol. Chem. 301, 110205 (2025).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Fagan, R. P. & Fairweather, N. F. Biogenesis and functions of bacterial S-layers. Nat. Rev. Microbiol. 12, 211–222 (2014).

Article 
CAS 
PubMed 

Google Scholar
 

Sára, M. & Sleytr, U. B. S-layer proteins. J. Bacteriol. 182, 859–868 (2000).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Boot, H. J., Kolen, C. P., Andreadaki, F. J., Leer, R. J. & Pouwels, P. H. The Lactobacillus acidophilus S-layer protein gene expression site comprises two consensus promoter sequences, one of which directs transcription of stable mRNA. J. Bacteriol. 178, 5388–5394 (1996).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Chu, S., Gustafson, C. E., Feutrier, J., Cavaignac, S. & Trust, T. J. Transcriptional analysis of the Aeromonas salmonicida S-layer protein gene vapA. J. Bacteriol. 175, 7968–7975 (1993).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Kahala, M., Savijoki, K. & Palva, A. In vivo expression of the Lactobacillus brevis S-layer gene. J. Bacteriol. 179, 284–286 (1997).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Rodrigues-Oliveira, T., Belmok, A., Vasconcellos, D., Schuster, B. & Kyaw, C. M. Archaeal S-Layers: overview and current state of the art. Front. Microbiol. 8, 2597 (2017).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Irihimovitch, V. & Eichler, J. Post-translational secretion of fusion proteins in the halophilic archaea Haloferax volcanii. J. Biol. Chem. 278, 12881–12887 (2003).

Article 
CAS 
PubMed 

Google Scholar
 

Ravi, J. & Fioravanti, A. S-layers: the proteinaceous multifunctional armors of Gram-positive pathogens. Front. Microbiol. 12, 663468 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Hynönen, U. & Palva, A. Lactobacillus surface layer proteins: structure, function and applications. Appl. Microbiol. Biotechnol. 97, 5225–5243 (2013).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Fagan, R. P. & Fairweather, N. F. Clostridium difficile has two parallel and essential Sec secretion systems. J. Biol. Chem. 286, 27483–27493 (2011).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Nguyen-Mau, S.-M., Oh, S.-Y., Kern, V. J., Missiakas, D. M. & Schneewind, O. Secretion genes as determinants of Bacillus anthracis chain length. J. Bacteriol. 194, 3841–3850 (2012).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Green, E. R. & Mecsas, J. Bacterial secretion systems — an overview. Microbiol. Spectr. https://doi.org/10.1128/microbiolspec.VMBF-0012-2015 (2016).

Bingle, W. H., Nomellini, J. F. & Smit, J. Secretion of the Caulobacter crescentus S-layer protein: further localization of the C-terminal secretion signal and its use for secretion of recombinant proteins. J. Bacteriol. 182, 3298–3301 (2000).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

von Kügelgen, A. et al. In situ structure of an intact lipopolysaccharide-bound bacterial surface layer. Cell 180, 348–358.e15 (2020). This paper shows how the C. crescentus SLP interacts with the O-antigen of LPS, providing a molecular framework for understanding S-layer anchoring in diderm bacteria.

Article 

Google Scholar
 

Bharat, T. A. M. et al. Structure of the hexagonal surface layer on Caulobacter crescentus cells. Nat. Microbiol. 2, 17059 (2017).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Herrmann, J. et al. A bacterial surface layer protein exploits multistep crystallization for rapid self-assembly. Proc. Natl Acad. Sci. USA 117, 388–394 (2020).

Article 
CAS 
PubMed 

Google Scholar
 

Herrmann, J. et al. Environmental calcium controls alternate physical states of the Caulobacter surface layer. Biophys. J. 112, 1841–1851 (2017).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Gilchrist, A., Fisher, J. A. & Smit, J. Nucleotide sequence analysis of the gene encoding the Caulobacter crescentus paracrystalline surface layer protein. Can. J. Microbiol. 38, 193–202 (1992).

Article 
CAS 
PubMed 

Google Scholar
 

Awram, P. & Smit, J. The Caulobacter crescentus paracrystalline S-layer protein is secreted by an abc transporter (Type I) secretion apparatus. J. Bacteriol. 180, 3062–3069 (1998).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Gangola, P. & Rosen, B. P. Maintenance of intracellular calcium in Escherichia coli. J. Biol. Chem. 262, 12570–12574 (1987).

Article 
CAS 
PubMed 

Google Scholar
 

Chenal, A., Guijarro, J. I., Raynal, B., Delepierre, M. & Ladant, D. RTX calcium binding motifs are intrinsically disordered in the absence of calcium: implication for protein secretion. J. Biol. Chem. 284, 1781–1789 (2009).

Article 
CAS 
PubMed 

Google Scholar
 

Linhartová, I. et al. RTX proteins: a highly diverse family secreted by a common mechanism. FEMS Microbiol. Rev. 34, 1076–1112 (2010).

Article 
PubMed 

Google Scholar
 

Bumba, L. et al. Calcium-driven folding of RTX domain β-rolls ratchets translocation of RTX proteins through type I secretion ducts. Mol. Cell 62, 47–62 (2016).

Article 
CAS 
PubMed 

Google Scholar
 

Herdman, M. et al. High-resolution mapping of metal ions reveals principles of surface layer assembly in Caulobacter crescentus cells. Structure 30, 215–228.e5 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Tomek, M. B. et al. The S-layer proteins of Tannerella forsythia are secreted via a type IX secretion system that is decoupled from protein O-glycosylation. Mol. Oral Microbiol. 29, 307–320 (2014).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

de Diego, I. et al. The outer-membrane export signal of Porphyromonas gingivalis type IX secretion system (T9SS) is a conserved C-terminal β-sandwich domain. Sci. Rep. 6, 23123 (2016).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Lasica, A. M., Ksiazek, M., Madej, M. & Potempa, J. The type IX secretion system (T9SS): highlights and recent insights into its structure and function. Front. Cell. Infect. Microbiol. 7, 215 (2017).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Rodrigues-Oliveira, T. et al. Environmental factors influence the Haloferax volcanii S-layer protein structure. PLoS ONE 14, e0216863 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar
 

von Kügelgen, A., Alva, V. & Bharat, T. A. M. Complete atomic structure of a native archaeal cell surface. Cell Rep. 37, 110052 (2021). The first complete atomic structure of a native archaeal S-layer lattice, along with the structure of S-layer pentamers from the model archaeon H. volcanii.

Article 

Google Scholar
 

Cohen, S., Shilo, M. & Kessel, M. Nature of the salt dependence of the envelope of a Dead Sea archaebacterium, Haloferax volcanii. Arch. Microbiol. 156, 198–203 (1991).

Article 
CAS 

Google Scholar
 

von Kügelgen, A. et al. Membraneless channels sieve cations in ammonia-oxidizing marine archaea. Nature 630, 230–236 (2024). This paper reports an S-layer-mediated mechanism for ammonium binding and channeling, revealing a novel functional role of S-layers in substrate capture and utilization at the cell surface.

Article 

Google Scholar
 

Sogues, A. et al. Structure and function of the EA1 surface layer of Bacillus anthracis. Nat. Commun. 14, 7051 (2023). This study resolves the structure of the EA1 SLP from B. anthracis, the causative agent of anthrax, offering insights into its assembly and surface organization.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Babolmorad, G., Emtiazi, G. & Emamzadeh, R. Analysis of the Interaction between Bacillus coagulans and Bacillus thuringiensis S-layers and calcium Ions by XRD, light microscopy, and FTIR. Appl. Biochem. Biotechnol. 173, 103–115 (2014).

Article 
CAS 
PubMed 

Google Scholar
 

Baranova, E. et al. SbsB structure and lattice reconstruction unveil Ca2+ triggered S-layer assembly. Nature 487, 119–122 (2012).

Article 
CAS 
PubMed 

Google Scholar
 

von Kügelgen, A. et al. Interdigitated immunoglobulin arrays form the hyperstable surface layer of the extremophilic bacterium Deinococcus radiodurans. Proc. Natl Acad. Sci. USA 120, e2215808120 (2023).

Article 

Google Scholar
 

Smith, O. E. R. & Bharat, T. A. M. Architectural dissection of adhesive bacterial cell surface appendages from a ‘molecular machines’ viewpoint. J. Bacteriol. 206, e0029024 (2024).

Article 
PubMed 

Google Scholar
 

Stetter, K. O. et al. Methanothermus fervidus, sp. nov., a novel extremely thermophilic methanogen isolated from an Icelandic hot spring. Zentralbl. Bakteriol. Mikrobiol. Hyg. Abt. Orig. C 2, 166–178 (1981).

CAS 

Google Scholar
 

Arbing, M. A. et al. Structure of the surface layer of the methanogenic archaean Methanosarcina acetivorans. Proc. Natl Acad. Sci. USA 109, 11812–11817 (2012).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Wang, H. et al. Composition and in situ structure of the Methanospirillum hungatei cell envelope and surface layer. Sci. Adv. 10, eadr8596 (2024). In situ structural studies of the M. hungatei archaeal cell envelope and S-layer.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Gambelli, L. et al. Structure of the two-component S-layer of the archaeon Sulfolobus acidocaldarius. eLife 13, e84617 (2024). This paper describes the structure of two-component S-layer of the model archaeon S. acidocaldarius.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Foo, S., Caspy, I., Cezanne, A., Bharat, T. A. M. & Baum, B. A self-assembling surface layer flattens the cytokinetic furrow to aid cell division in an archaeon. Proc. Natl Acad. Sci. USA 122, e2501044122 (2025).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Gambelli, L. et al. Architecture and modular assembly of Sulfolobus S-layers revealed by electron cryotomography. Proc. Natl Acad. Sci. USA 116, 25278 (2019).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Peters, J. et al. Tetrabrachion: a filamentous archaebacterial surface protein assembly of unusual structure and extreme stability. J. Mol. Biol. 245, 385–401 (1995).

Article 
CAS 
PubMed 

Google Scholar
 

Abdul Halim, M. F. et al. Permuting the PGF signature motif blocks both archaeosortase-dependent C-terminal cleavage and prenyl lipid attachment for the Haloferax volcanii S-layer glycoprotein. J. Bacteriol. 198, 808–815 (2016).

Article 
CAS 
PubMed Central 

Google Scholar
 

Kandiba, L., Guan, Z. & Eichler, J. Lipid modification gives rise to two distinct Haloferax volcanii S-layer glycoprotein populations. Biochim. Biophys. Acta 1828, 938–943 (2013).

Article 
CAS 
PubMed 

Google Scholar
 

Abdul Halim, M. F., Rodriguez, R., Stoltzfus, J. D., Duggin, I. G. & Pohlschroder, M. Conserved residues are critical for Haloferax volcanii archaeosortase catalytic activity: implications for convergent evolution of the catalytic mechanisms of non-homologous sortases from archaea and bacteria. Mol. Microbiol. 108, 276–287 (2018).

Article 
CAS 
PubMed 

Google Scholar
 

Buhlheller, C. et al. SymProFold: structural prediction of symmetrical biological assemblies. Nat. Commun. 15, 8152 (2024).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Schäffer, C. & Messner, P. The structure of secondary cell wall polymers: how Gram-positive bacteria stick their cell walls together. Microbiology 151, 643–651 (2005).

Article 
PubMed 

Google Scholar
 

Bönisch, E. et al. Lipoteichoic acid mediates binding of a Lactobacillus S-layer protein. Glycobiology 28, 148–158 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Sagmeister, T. et al. The molecular architecture of Lactobacillus S-layer: assembly and attachment to teichoic acids. Proc. Natl Acad. Sci. USA 121, e2401686121 (2024).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Sychantha, D. et al. Molecular basis for the attachment of S-layer proteins to the cell wall of Bacillus anthracis. Biochemistry 57, 1949–1953 (2018).

Article 
CAS 
PubMed 

Google Scholar
 

Legg, M. S. G. et al. The S-layer homology domains of Paenibacillus alvei surface protein SpaA bind to cell wall polysaccharide through the terminal monosaccharide residue. J. Biol. Chem. 298, 101745 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Kern, J. et al. Structure of surface layer homology (SLH) domains from Bacillus anthracis surface array protein. J. Biol. Chem. 286, 26042–26049 (2011).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Blackler, R. J. et al. Structural basis of cell wall anchoring by SLH domains in Paenibacillus alvei. Nat. Commun. 9, 3120 (2018). This study describes the crystal structure of the S-layer homology (SLH) domain of the P. alvei SLP, showing how it is anchored through cell wall polymers.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Lupas, A. et al. Domain structure of the Acetogenium kivui surface layer revealed by electron crystallography and sequence analysis. J. Bacteriol. 176, 1224–1233 (1994).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Zhao, G. et al. Different binding specificities of S-layer homology modules from Clostridium thermocellum AncA, Slp1, and Slp2. Biosci. Biotechnol. Biochem. 70, 1636–1641 (2006).

Article 
CAS 
PubMed 

Google Scholar
 

Ryzhkov, P. M., Ostermann, K. & Rödel, G. Isolation, gene structure, and comparative analysis of the S-layer gene sslA of Sporosarcina ureae ATCC 13881. Genetica 131, 255–265 (2007).

Article 
CAS 
PubMed 

Google Scholar
 

Lanzoni-Mangutchi, P. et al. Structure and assembly of the S-layer in. C. difficile. Nat. Commun. 13, 970 (2022). Structure of the S-layer from the human pathogen C. difficile using X-ray crystallography.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Usenik, A. et al. The CWB2 cell wall-anchoring module is revealed by the crystal structures of the Clostridium difficile cell wall proteins Cwp8 and Cwp6. Structure 25, 514–521 (2017).

Article 
CAS 
PubMed 

Google Scholar
 

Pavkov, T. et al. The structure and binding behavior of the bacterial cell surface layer protein SbsC. Structure 16, 1226–1237 (2008).

Article 
CAS 
PubMed 

Google Scholar
 

Mader, C., Huber, C., Moll, D., Sleytr, U. B. & Sára, M. Interaction of the crystalline bacterial cell surface layer protein SbsB and the secondary cell wall polymer of Geobacillus stearothermophilus PV72 assessed by real-time surface plasmon resonance biosensor technology. J. Bacteriol. 186, 1758–1768 (2004).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Zivanov, J. et al. A bayesian approach to single-particle electron cryo-tomography in RELION-4.0. eLife 11, e83724 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Comerci, C. J. et al. Topologically-guided continuous protein crystallization controls bacterial surface layer self-assembly. Nat. Commun. 10, 2731 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Chami, M. et al. Organization of the outer layers of the cell envelope of Corynebacterium glutamicum: a combined freeze-etch electron microscopy and biochemical study. Biol. Cell 83, 219–229 (1995).

Article 
CAS 
PubMed 

Google Scholar
 

Daffé, M. & Marrakchi, H. Unraveling the structure of the mycobacterial envelope. Microbiol. Spectr. https://doi.org/10.1128/microbiolspec.VMBF-0012-2015 (2019).

Isbilir, B., Yeates, A., Alva, V. & Bharat, T. A. M. Mapping the ultrastructural topology of the corynebacterial cell surface. PLoS Biol. 23, e3003130 (2025).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Sogues, A. et al. Cryo-EM structure and polar assembly of the PS2 S-layer of Corynebacterium glutamicum. Proc. Natl Acad. Sci. USA 122, e2426928122 (2025).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Bharat, T. A. M., Tocheva, E. I. & Alva, V. The cell envelope architecture of Deinococcus: HPI forms the S-layer and SlpA tethers the outer membrane to peptidoglycan. Proc. Natl Acad. Sci. USA 120, e2305338120 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Barwinska-Sendra, A., Salgado, P. S. & Sendra, K. M. Evolutionary plasticity of bacterial surface layer protein exoskeletons. Preprint at bioRxiv https://doi.org/10.1101/2025.04.02.646754 (2025).

Abdul-Halim, M. F. et al. Lipid anchoring of archaeosortase substrates and midcell growth in haloarchaea. mBio 11, e00349-20 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Oatley, P., Kirk, J. A., Ma, S., Jones, S. & Fagan, R. P. Spatial organization of Clostridium difficile S-layer biogenesis. Sci. Rep. 10, 14089 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Breitwieser, A., Gruber, K. & Sleytr, U. B. Evidence for an S-layer protein pool in the peptidoglycan of Bacillus stearothermophilus. J. Bacteriol. 174, 8008–8015 (1992).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Herdman, M. et al. Cell cycle dependent coordination of surface layer biogenesis in Caulobacter crescentus. Nat. Commun. 15, 3355 (2024).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Glaeser, R. et al. Electron Crystallography of Biological Macromolecules (Oxford Univ. Press, 2007).

Meier-Stauffer, K. et al. Description of Bacillus thermoaerophilus sp. nov., to include sugar beet isolates and Bacillus brevis ATCC 12990. Int. J. Syst. Evol. Microbiol. 46, 532–541 (1996).

CAS 

Google Scholar
 

Wang, S. et al. Revealing roles of S-layer protein (SlpA) in Clostridioides difficile pathogenicity by generating the first slpA gene deletion mutant. Microbiol. Spectr. 12, e04005-23 (2024).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Caspy, I., Wang, Z. & Bharat, T. A. M. Structural biology inside multicellular specimens using electron cryotomography. Q. Rev. Biophys. https://doi.org/10.1017/s0033583525000010 (2025).

McMullan, G. et al. Experimental observation of the improvement in MTF from backthinning a CMOS direct electron detector. Ultramicroscopy 109, 1144–1147 (2009).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Nakane, T. et al. Single-particle cryo-EM at atomic resolution. Nature 587, 152–156 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Burt, A. et al. An image processing pipeline for electron cryo-tomography in RELION-5. FEBS Open Bio 14, 1788–1804 (2024).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Jing, H. et al. Archaeal surface layer proteins contain β propeller, PKD, and β helix domains and are related to metazoan cell surface proteins. Structure 10, 1453–1464 (2002).

Article 
CAS 
PubMed 

Google Scholar
 

Duggin, I. G. et al. CetZ tubulin-like proteins control archaeal cell shape. Nature 519, 362–365 (2015).

Article 
CAS 
PubMed 

Google Scholar
 

Grogan, D. W. Organization and interactions of cell envelope proteins of the extreme thermoacidophile Sulfolobus acidocaldarius. Can. J. Microbiol. 42, 1163–1171 (1996).

Article 
CAS 

Google Scholar
 

Veith, A. et al. Acidianus, Sulfolobus and Metallosphaera surface layers: structure, composition and gene expression. Mol. Microbiol. 73, 58–72 (2009).

Article 
CAS 
PubMed 

Google Scholar
 

Mescher, M. F. & Strominger, J. L. Purification and characterization of a prokaryotic glycoprotein from the cell envelope of Halobacterium salinarium. J. Biol. Chem. 251, 2005–2014 (1976).

Article 
CAS 
PubMed 

Google Scholar
 

Vershinin, Z., Zaretsky, M. & Eichler, J. N-glycosylation in Archaea — expanding the process, components and roles of a universal post-translational modification. BBA Adv. 6, 100120 (2024).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Ristl, R. et al. The S-layer glycome — adding to the sugar coat of bacteria. Int. J. Microbiol. 2011, 127870 (2010).

PubMed 
PubMed Central 

Google Scholar
 

Schuster, B. & Sleytr, U. B. Relevance of glycosylation of S-layer proteins for cell surface properties. Acta Biomater. 19, 149–157 (2015).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Guan, Z., Naparstek, S., Calo, D. & Eichler, J. Protein glycosylation as an adaptive response in Archaea: growth at different salt concentrations leads to alterations in Haloferax volcanii S-layer glycoprotein N-glycosylation. Environ. Microbiol. 14, 743–753 (2012).

Article 
CAS 
PubMed 

Google Scholar
 

van Wolferen, M. et al. Species-specific recognition of Sulfolobales mediated by UV-inducible pili and S-layer glycosylation patterns. mBio https://doi.org/10.1128/mbio.03014-19 (2020).

Shalev, Y., Turgeman-Grott, I., Tamir, A., Eichler, J. & Gophna, U. Cell surface glycosylation is required for efficient mating of Haloferax volcanii. Front. Microbiol. 8, 1253 (2017).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Mignot, T., Mesnage, S., Couture-Tosi, E., Mock, M. & Fouet, A. Developmental switch of S-layer protein synthesis in Bacillus anthracis. Mol. Microbiol. 43, 1615–1627 (2002).

Article 
CAS 
PubMed 

Google Scholar
 

Fioravanti, A. et al. Structure of S-layer protein Sap reveals a mechanism for therapeutic intervention in anthrax. Nat. Microbiol. 4, 1805–1814 (2019). This paper describes the structure of the Sap S-layer protein from B. anthracis using advanced structural biology methods.

Article 
CAS 
PubMed 

Google Scholar
 

Sogues, A. et al. Architecture of the Sap S-layer of Bacillus anthracis revealed by integrative structural biology. Proc. Natl Acad. Sci. USA 121, e2415351121 (2024).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Calabi, E. et al. Molecular characterization of the surface layer proteins from Clostridium difficile. Mol. Microbiol. 40, 1187–1199 (2001).

Article 
CAS 
PubMed 

Google Scholar
 

Willing, S. E. et al. Clostridium difficile surface proteins are anchored to the cell wall using CWB2 motifs that recognise the anionic polymer PSII. Mol. Microbiol. 96, 596–608 (2015).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Smit, J., Engelhardt, H., Volker, S., Smith, S. H. & Baumeister, W. The S-layer of Caulobacter crescentus: three-dimensional image reconstruction and structure analysis by electron microscopy. J. Bacteriol. 174, 6527–6538 (1992).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Amat, F. et al. Analysis of the Intact surface layer of Caulobacter crescentus by cryo-electron tomography. J. Bacteriol. 192, 5855–5865 (2010).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Ford, M. J., Nomellini, J. F. & Smit, J. S-layer anchoring and localization of an S-layer-associated protease in Caulobacter crescentus. J. Bacteriol. 189, 2226–2237 (2007).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Sexton, D. L., Burgold, S., Schertel, A. & Tocheva, E. I. Super-resolution confocal cryo-CLEM with cryo-FIB milling for in situ imaging of Deinococcus radiodurans. Curr. Res. Struct. Biol. 4, 1–9 (2022).

Article 
CAS 
PubMed 

Google Scholar
 

Eltsov, M. & Dubochet, J. Fine structure of the Deinococcus radiodurans nucleoid revealed by cryoelectron microscopy of vitreous sections. J. Bacteriol. 187, 8047–8054 (2005).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Baumeister, W. et al. The major cell envelope protein of Micrococcus radiodurans (R1). Eur. J. Biochem. 125, 535–544 (1982).

Article 
CAS 
PubMed 

Google Scholar
 

Hager-Mair, F. F., Bloch, S. & Schäffer, C. Glycolanguage of the oral microbiota. Mol. Oral. Microbiol. 39, 291–320 (2024).

Article 
CAS 
PubMed 

Google Scholar
 

Evans, R. et al. Protein complex prediction with AlphaFold-multimer. Preprint at bioRxiv https://doi.org/10.1101/2021.10.04.463034 (2022).

Baek, M. et al. Accurate prediction of protein structures and interactions using a three-track neural network. Science https://doi.org/10.1126/science.abj8754 (2021).

Zhang, C. et al. Cell structure changes in the hyperthermophilic crenarchaeon Sulfolobus islandicus lacking the S-Layer. mBio https://doi.org/10.1128/mbio.01589-19 (2019).

Fioravanti, A., Mathelie-Guinlet, M., Dufrêne, Y. F., Remaut, H. & Nelson, K. E. The Bacillus anthracis S-layer is an exoskeleton-like structure that imparts mechanical and osmotic stabilization to the cell wall. Proc. Natl Acad. Sci. USA Nexus 1, pgac121 (2022).


Google Scholar
 

Pollmann, K., Raff, J., Merroun, M., Fahmy, K. & Selenska-Pobell, S. Metal binding by bacteria from uranium mining waste piles and its technological applications. Biotechnol. Adv. 24, 58–68 (2006).

Article 
CAS 
PubMed 

Google Scholar
 

Zink, I. A. et al. CRISPR-mediated gene silencing reveals involvement of the archaeal S-layer in cell division and virus infection. Nat. Commun. 10, 4797 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Uldahl, K. B. et al. Life cycle characterization of sulfolobus monocaudavirus 1, an extremophilic spindle-shaped virus with extracellular tail development. J. Virol. 90, 5693–5699 (2016).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Royer, A. L. M. et al. Clostridioides difficile S-layer protein A (SlpA) serves as a general phage receptor. Microbiol. Spectr. 11, e0389422 (2023).

Article 
PubMed 

Google Scholar
 

Plaut, R. D. et al. Genetic evidence for the involvement of the S-layer protein gene Sap and the sporulation genes spo0A, spo0B, and spo0F in phage AP50c infection of Bacillus anthracis. J. Bacteriol. 196, 1143–1154 (2014).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Fischbach, M. et al. A phase-variable surface layer from the gut symbiont Bacteroides thetaiotaomicron. mBIO 6, e01339–15 (2015).

PubMed 
PubMed Central 

Google Scholar
 

Porter, N. T. et al. Phase-variable capsular polysaccharides and lipoproteins modify bacteriophage susceptibility in Bacteroides thetaiotaomicron. Nat. Microbiol. 5, 1170–1181 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Fuentes, J. J. et al. Carbohydrates and the oxidative branch of the pentose phosphate pathway modify Bacteroides thetaiotaomicron phage resistance by phase-variable S-layers. J. Bacteriol. 207, e00178-25 (2025).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Ely, B., Gibbs, W., Diez, S. & Ash, K. The Caulobacter crescentus transducing phage Cr30 is a unique member of the T4-like family of myophages. Curr. Microbiol. 70, 854–858 (2015).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Edwards, P. & Smit, J. A transducing bacteriophage for Caulobacter crescentus uses the paracrystalline surface layer protein as a receptor. J. Bacteriol. 173, 5568–5572 (1991).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Betts, A., Gray, C., Zelek, M., MacLean, R. C. & King, K. C. High parasite diversity accelerates host adaptation and diversification. Science 360, 907–911 (2018).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Mursalin, M. H. et al. S-layer impacts the virulence of Bacillus in endophthalmitis. Invest. Ophthalmol. Vis. Sci. 60, 3727–3739 (2019).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Mursalin, M. H. et al. Bacillus S-layer-mediated innate interactions during endophthalmitis. Front. Immunol. 11, 215 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Ormsby, M. J. et al. An intact S-layer is advantageous to Clostridioides difficile within the host. PLoS Pathog. 19, e1011015 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Chinthamani, S., Settem, R. P., Honma, K., Kay, J. G. & Sharma, A. Macrophage inducible C-type lectin (Mincle) recognizes glycosylated surface (S)-layer of the periodontal pathogen Tannerella forsythia. PLoS ONE 12, e0173394 (2017).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Malamud, M. et al. S-layer glycoprotein from Lactobacillus kefiri exerts its immunostimulatory activity through glycan recognition by mincle. Front. Immunol. 10, 1422 (2019).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Decout, A. et al. Lactobacillus crispatus S-layer proteins modulate innate immune response and inflammation in the lower female reproductive tract. Nat. Commun. 15, 10879 (2024).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Hamm, J. N. et al. The parasitic lifestyle of an archaeal symbiont. Nat. Commun. 15, 6449 (2024).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Rados, T. et al. Tissue-like multicellular development triggered by mechanical compression in archaea. Science 388, 109–115 (2025). This paper explores the emergence of multicellularity in S-layer-containing H. volcanii archaea on exposure to mechanical compression.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Lyons, N. A. & Kolter, R. On the evolution of bacterial multicellularity. Curr. Opin. Microbiol. 24, 21–28 (2015).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Böhning, J., Tarafder, A. K. & Bharat, T. A. M. The role of filamentous matrix molecules in shaping the architecture and emergent properties of bacterial biofilms. Biochem. J. 481, 245–263 (2024).

Article 
PubMed 

Google Scholar
 

Wong, L. L. et al. Surface-layer protein is a public-good matrix exopolymer for microbial community organisation in environmental anammox biofilms. ISME J. 17, 803–812 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Bloch, S., Thurnheer, T., Murakami, Y., Belibasakis, G. N. & Schäffer, C. Biofilm behavior of Tannerella forsythia strains and S-layer glycosylation mutants. J. Oral Microbiol. 9, 1325190 (2017).

Article 
PubMed Central 

Google Scholar
 

Krause, S. et al. The importance of biofilm formation for cultivation of a micrarchaeon and its interactions with its Thermoplasmatales host. Nat. Commun. 13, 1735 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Imachi, H. et al. Isolation of an archaeon at the prokaryote–eukaryote interface. Nature 577, 519–525 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Wade, W. G. The oral microbiome in health and disease. Pharmacol. Res. 69, 137–143 (2013).

Article 
CAS 
PubMed 

Google Scholar
 

Borisy, G. G. & Valm, A. M. Spatial scale in analysis of the dental plaque microbiome. Periodontology 86, 97–112 (2021).

Article 

Google Scholar
 

Charrier, M. et al. Engineering the S-layer of Caulobacter crescentus as a foundation for stable, high-density, 2D living materials. ACS Synth. Biol. https://doi.org/10.1021/acssynbio.8b00448 (2018).

Ben-Sasson, A. J. et al. Design of biologically active binary protein 2D materials. Nature 589, 468–473 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Bradshaw, W. J., Kirby, J. M., Roberts, A. K., Shone, C. C. & Acharya, K. R. Cwp2 from Clostridium difficile exhibits an extended three domain fold and cell adhesion in vitro. FEBS J. 284, 2886–2898 (2017).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Dietrich, H. M. et al. Membrane-anchored HDCR nanowires drive hydrogen-powered CO2 fixation. Nature 607, 823–830 (2022).

Article 
CAS 
PubMed 

Google Scholar
Â