Theriot, C. M. et al. Antibiotic-induced shifts in the mouse gut microbiome and metabolome increase susceptibility to Clostridium difficile infection. Nat. Commun. 5, 3114 (2014).

Article 
PubMed 

Google Scholar
 

Dubois, T. et al. A microbiota-generated bile salt induces biofilm formation in Clostridium difficile. npj Biofilms Microbiomes 5, 1–12 (2019).

Article 

Google Scholar
 

VanInsberghe, D. et al. Diarrhoeal events can trigger long-term Clostridium difficile colonization with recurrent blooms. Nat. Microbiol. 5, 642–650 (2020).

Article 
CAS 
PubMed 

Google Scholar
 

Smits, W. K., Lyras, D., Lacy, D. B., Wilcox, M. H. & Kuijper, E. J. Clostridium difficile infection. Nat. Rev. Dis. Primers 2, 16020 (2016).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Bloom, P. P. & Young, V. B. Microbiome therapeutics for the treatment of recurrent Clostridioides difficile infection. Expert Opin. Biol. Ther. 23, 89–101 (2023).

Article 
CAS 
PubMed 

Google Scholar
 

McDonald, L. C. et al. Clinical practice guidelines for Clostridium difficile infection in adults and children: 2017 update by the Infectious Diseases Society of America (IDSA) and Society for Healthcare Epidemiology of America (SHEA). Clin. Infect. Dis. 66, e1–e48 (2018).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Carter, G. P. et al. Defining the roles of TcdA and TcdB in localized gastrointestinal disease, systemic organ damage, and the host response during Clostridium difficile infections. mBio 6, e00551-15 (2015).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Chen, P. et al. Structural basis for recognition of frizzled proteins by Clostridium difficile toxin B. Science 360, 664–669 (2018).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Chen, P. et al. Structural basis for CSPG4 as a receptor for TcdB and a therapeutic target in Clostridioides difficile infection. Nat. Commun. 12, 3748 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Kordus, S. L., Thomas, A. K. & Lacy, D. B. Clostridioides difficile toxins: mechanisms of action and antitoxin therapeutics. Nat. Rev. Microbiol. 20, 285–298 (2022).

Article 
CAS 
PubMed 

Google Scholar
 

Chen, P. et al. Structure of the full-length Clostridium difficile toxin B. Nat. Struct. Mol. Biol. 26, 712–719 (2019).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Kinsolving, J. et al. Structural and functional insight into the interaction of Clostridioides difficile toxin B and FZD7. Cell Rep. 43, 113727 (2024).

Article 
CAS 
PubMed 

Google Scholar
 

Tam, J. et al. Small molecule inhibitors of Clostridium difficile toxin B-induced cellular damage. Chem. Biol. 22, 175–185 (2015).

Article 
CAS 
PubMed 

Google Scholar
 

Ridlon, J. M. & Gaskins, H. R. Another renaissance for bile acid gastrointestinal microbiology. Nat. Rev. Gastroenterol. Hepatol. https://doi.org/10.1038/s41575-024-00896-2 (2024).

Monte, M. J., Marin, J. J., Antelo, A. & Vazquez-Tato, J. Bile acids: chemistry, physiology, and pathophysiology. World J. Gastroenterol. 15, 804–816 (2009).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Hofmann, A. F. The enterohepatic circulation of bile acids in mammals: form and functions. Front. Biosci. 14, 2584–2598 (2009).

Article 
CAS 

Google Scholar
 

Tam, J. et al. Intestinal bile acids directly modulate the structure and function of C. difficile TcdB toxin. Proc. Natl Acad. Sci. USA 117, 6792–6800 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Chandrasekaran, R. & Lacy, D. B. The role of toxins in Clostridium difficile infection. FEMS Microbiol. Rev. 41, 723–750 (2017).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Zhou, Y. et al. Structural dynamics of the CROPs domain control stability and toxicity of Paeniclostridium sordellii lethal toxin. Nat. Commun. 14, 8426 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Yang, X., Stein, K. R. & Hang, H. C. Anti-infective bile acids bind and inactivate a Salmonella virulence regulator. Nat. Chem. Biol. 19, 91–100 (2023).

Article 
CAS 
PubMed 

Google Scholar
 

Aminzadeh, A., Larsen, C. E., Boesen, T. & Jørgensen, R. High-resolution structure of native toxin A from Clostridioides difficile. EMBO Rep. 23, e53597 (2022).

Article 
CAS 
PubMed 

Google Scholar
 

Stoltz, K. L. et al. Synthesis and biological evaluation of bile acid analogues inhibitory to Clostridium difficile spore germination. J. Med. Chem. 60, 3451–3471 (2017).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Nakhi, A. et al. Structural modifications that increase gut restriction of bile acid derivatives. RSC Med. Chem. 12, 394–405 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Winston, J. A., Thanissery, R., Montgomery, S. A. & Theriot, C. M. Cefoperazone-treated mouse model of clinically-relevant Clostridium difficile strain R20291. J. Vis. Exp. https://doi.org/10.3791/54850 (2016).

Madhurima, K., Nandi, B. & Sekhar, A. Metamorphic proteins: the Janus proteins of structural biology. Open Biol. 11, 210012 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Zhou, R. et al. Molecular basis of TMPRSS2 recognition by Paeniclostridium sordellii hemorrhagic toxin. Nat. Commun. 15, 1976 (2024).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

von Eichel-Streiber, C., Sauerborn, M. & Kuramitsu, H. K. Evidence for a modular structure of the homologous repetitive C-terminal carbohydrate-binding sites of Clostridium difficile toxins and Streptococcus mutans glucosyltransferases. J. Bacteriol. 174, 6707–6710 (1992).

Article 

Google Scholar
 

Shen, A. et al. Defining an allosteric circuit in the cysteine protease domain of Clostridium difficile toxins. Nat. Struct. Mol. Biol. 18, 364–371 (2011).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Icho, S. et al. Intestinal bile acids provide a surmountable barrier against C. difficile TcdB-induced disease pathogenesis. Proc. Natl Acad. Sci. USA 120, e2301252120 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Poley, J. R. & Hofmann, A. F. Role of fat maldigestion in pathogenesis of steatorrhea in ileal resection. Fat digestion after two sequential test meals with and without cholestyramine. Gastroenterology 71, 38–44 (1976).

Article 
CAS 
PubMed 

Google Scholar
 

Hamilton, J. P. et al. Human cecal bile acids: concentration and spectrum. Am. J. Physiol. Gastrointest. Liver Physiol. 293, G256–G263 (2007).

Article 
CAS 
PubMed 

Google Scholar
 

Wahlström, A., Sayin, S. I., Marschall, H.-U. & Bäckhed, F. Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism. Cell Metab. 24, 41–50 (2016).

Article 
PubMed 

Google Scholar
 

Fiorucci, S., Biagioli, M., Zampella, A. & Distrutti, E. Bile acids activated receptors regulate innate immunity. Front Immunol. 9, 1853 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Biagioli, M. et al. The bile acid receptor GPBAR1 regulates the M1/M2 phenotype of intestinal macrophages and activation of GPBAR1 rescues mice from murine colitis. J. Immunol. 199, 718–733 (2017).

Article 
CAS 
PubMed 

Google Scholar
 

Džunková, M. et al. The monoclonal antitoxin antibodies (actoxumab–bezlotoxumab) treatment facilitates normalization of the gut microbiota of mice with Clostridium difficile infection. Front. Cell. Infect. Microbiol. 6, 119 (2016).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Thanissery, R., Winston, J. A. & Theriot, C. M. Inhibition of spore germination, growth, and toxin activity of clinically relevant C. difficile strains by gut microbiota derived secondary bile acids. Anaerobe 45, 86–100 (2017).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Kisthardt, S. C., Thanissery, R., Pike, C. M., Foley, M. H. & Theriot, C. M. The microbial-derived bile acid lithocholate and its epimers inhibit Clostridioides difficile growth and pathogenicity while sparing members of the gut microbiota. J. Bacteriol. 205, e00180-23 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Tang, G. et al. EMAN2: an extensible image processing suite for electron microscopy. J. Struct. Biol. 157, 38–46 (2007).

Article 
CAS 
PubMed 

Google Scholar
 

Scheres, S. H. W. RELION: implementation of a Bayesian approach to cryo-EM structure determination. J. Struct. Biol. 180, 519–530 (2012).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).

Article 
CAS 
PubMed 

Google Scholar
 

Marr, C. R., Benlekbir, S. & Rubinstein, J. L. Fabrication of carbon films with ∼500 nm holes for cryo-EM with a direct detector device. J. Struct. Biol. 185, 42–47 (2014).

Article 
CAS 
PubMed 

Google Scholar
 

Bepler, T. et al. Positive-unlabeled convolutional neural networks for particle picking in cryo-electron micrographs. Nat. Methods 16, 1153 (2019).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Punjani, A., Zhang, H. & Fleet, D. J. Non-uniform refinement: adaptive regularization improves single-particle cryo-EM reconstruction. Nat. Methods 17, 1214–1221 (2020).

Article 
CAS 
PubMed 

Google Scholar
 

Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

Article 
CAS 
PubMed 

Google Scholar
 

Meng, E.C. et al. UCSF ChimeraX: tools for structure building and analysis. Prot. Sci. https://doi.org/10.1002/pro.4792 (2023).

Varadi, M. et al. AlphaFold Protein Structure Database in 2024: providing structure coverage for over 214 million protein sequences. Nucleic Acids Res. 52, D368–D375 (2024).

Article 
CAS 
PubMed 

Google Scholar
 

Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D. 60, 2126–2132 (2004).

Article 
PubMed 

Google Scholar
 

Croll, T. I. ISOLDE: a physically realistic environment for model building into low-resolution electron-density maps. Acta Crystallogr. D. 74, 519–530 (2018).

Article 
CAS 

Google Scholar
 

Afonine, P. V. et al. Real-space refinement in PHENIX for cryo-EM and crystallography. Acta Crystallogr. D. 74, 531–544 (2018).

Article 
CAS 

Google Scholar
 

Sorg, J. A. & Sonenshein, A. L. Chenodeoxycholate is an inhibitor of Clostridium difficile spore germination. J. Bacteriol. 191, 1115–1117 (2009).

Article 
CAS 
PubMed 

Google Scholar
 

Sorg, J. A. & Sonenshein, A. L. Bile salts and glycine as cogerminants for Clostridium difficile spores. J. Bacteriol. 190, 2505–2512 (2008).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Theriot, C. M., Bowman, A. A. & Young, V. B. Antibiotic-induced alterations of the gut microbiota alter secondary bile acid production and allow for Clostridium difficile spore germination and outgrowth in the large intestine. mSphere 1, e00045-15 (2016).

Article 
PubMed 
PubMed Central 

Google Scholar
Â