Silhavy, T. J., Kahne, D. & Walker, S. The bacterial cell envelope. Cold Spring Harb. Perspect. Biol. 2, a000414 (2010).
Albers, S.-V. & Meyer, B. H. The archaeal cell envelope. Nat. Rev. Microbiol. 9, 414–426 (2011).
Sleytr, U. B., Schuster, B., Egelseer, E. & Pum, D. S-layers: principles and applications. FEMS Microbiol. Rev. 38, 823–864 (2014).
Johnston, E., Isbilir, B., Alva, V., Bharat, T. A. M. & Doye, J. P. K. Punctuated and continuous structural diversity of S-layers across the prokaryotic tree of life. Preprint at bioRxiv https://doi.org/10.1101/2024.05.28.596244 (2024).
Sivabalasarma, S., van Wolferen, M., Albers, S.-V. & Charles-Orszag, A. Biogenesis, function and evolution of the archaeal S-layer. Curr. Opin. Cell Biol. 95, 102534 (2025). This review is a comprehensive up-to-date overview of all aspects of archaeal S-layers.
Bharat, T. A. M., von Kügelgen, A. & Alva, V. Molecular logic of prokaryotic surface layer structures. Trends Microbiol. 29, 405–415 (2021). This review summarizes the sequence and structural diversity of archaeal and bacterial S-layers by highlighting evolutionary relationships and common architectural motifs.
Lau, J. H. Y., Nomellini, J. F. & Smit, J. Analysis of high-level S-layer protein secretion in Caulobacter crescentus. Can. J. Microbiol. 56, 501–514 (2010).
Sleytr, U. B. & Pum, D. S-layers: from a serendipitous discovery to a toolkit for nanobiotechnology. Q. Rev. Biophys. 58, e4 (2025).
Grill-Walcher, S. & Schäffer, C. A new age in structural S-layer biology – experimental and in silico milestones. J. Biol. Chem. 301, 110205 (2025).
Fagan, R. P. & Fairweather, N. F. Biogenesis and functions of bacterial S-layers. Nat. Rev. Microbiol. 12, 211–222 (2014).
Sára, M. & Sleytr, U. B. S-layer proteins. J. Bacteriol. 182, 859–868 (2000).
Boot, H. J., Kolen, C. P., Andreadaki, F. J., Leer, R. J. & Pouwels, P. H. The Lactobacillus acidophilus S-layer protein gene expression site comprises two consensus promoter sequences, one of which directs transcription of stable mRNA. J. Bacteriol. 178, 5388–5394 (1996).
Chu, S., Gustafson, C. E., Feutrier, J., Cavaignac, S. & Trust, T. J. Transcriptional analysis of the Aeromonas salmonicida S-layer protein gene vapA. J. Bacteriol. 175, 7968–7975 (1993).
Kahala, M., Savijoki, K. & Palva, A. In vivo expression of the Lactobacillus brevis S-layer gene. J. Bacteriol. 179, 284–286 (1997).
Rodrigues-Oliveira, T., Belmok, A., Vasconcellos, D., Schuster, B. & Kyaw, C. M. Archaeal S-Layers: overview and current state of the art. Front. Microbiol. 8, 2597 (2017).
Irihimovitch, V. & Eichler, J. Post-translational secretion of fusion proteins in the halophilic archaea Haloferax volcanii. J. Biol. Chem. 278, 12881–12887 (2003).
Ravi, J. & Fioravanti, A. S-layers: the proteinaceous multifunctional armors of Gram-positive pathogens. Front. Microbiol. 12, 663468 (2021).
Hynönen, U. & Palva, A. Lactobacillus surface layer proteins: structure, function and applications. Appl. Microbiol. Biotechnol. 97, 5225–5243 (2013).
Fagan, R. P. & Fairweather, N. F. Clostridium difficile has two parallel and essential Sec secretion systems. J. Biol. Chem. 286, 27483–27493 (2011).
Nguyen-Mau, S.-M., Oh, S.-Y., Kern, V. J., Missiakas, D. M. & Schneewind, O. Secretion genes as determinants of Bacillus anthracis chain length. J. Bacteriol. 194, 3841–3850 (2012).
Green, E. R. & Mecsas, J. Bacterial secretion systems — an overview. Microbiol. Spectr. https://doi.org/10.1128/microbiolspec.VMBF-0012-2015 (2016).
Bingle, W. H., Nomellini, J. F. & Smit, J. Secretion of the Caulobacter crescentus S-layer protein: further localization of the C-terminal secretion signal and its use for secretion of recombinant proteins. J. Bacteriol. 182, 3298–3301 (2000).
von Kügelgen, A. et al. In situ structure of an intact lipopolysaccharide-bound bacterial surface layer. Cell 180, 348–358.e15 (2020). This paper shows how the C. crescentus SLP interacts with the O-antigen of LPS, providing a molecular framework for understanding S-layer anchoring in diderm bacteria.
Bharat, T. A. M. et al. Structure of the hexagonal surface layer on Caulobacter crescentus cells. Nat. Microbiol. 2, 17059 (2017).
Herrmann, J. et al. A bacterial surface layer protein exploits multistep crystallization for rapid self-assembly. Proc. Natl Acad. Sci. USA 117, 388–394 (2020).
Herrmann, J. et al. Environmental calcium controls alternate physical states of the Caulobacter surface layer. Biophys. J. 112, 1841–1851 (2017).
Gilchrist, A., Fisher, J. A. & Smit, J. Nucleotide sequence analysis of the gene encoding the Caulobacter crescentus paracrystalline surface layer protein. Can. J. Microbiol. 38, 193–202 (1992).
Awram, P. & Smit, J. The Caulobacter crescentus paracrystalline S-layer protein is secreted by an abc transporter (Type I) secretion apparatus. J. Bacteriol. 180, 3062–3069 (1998).
Gangola, P. & Rosen, B. P. Maintenance of intracellular calcium in Escherichia coli. J. Biol. Chem. 262, 12570–12574 (1987).
Chenal, A., Guijarro, J. I., Raynal, B., Delepierre, M. & Ladant, D. RTX calcium binding motifs are intrinsically disordered in the absence of calcium: implication for protein secretion. J. Biol. Chem. 284, 1781–1789 (2009).
Linhartová, I. et al. RTX proteins: a highly diverse family secreted by a common mechanism. FEMS Microbiol. Rev. 34, 1076–1112 (2010).
Bumba, L. et al. Calcium-driven folding of RTX domain β-rolls ratchets translocation of RTX proteins through type I secretion ducts. Mol. Cell 62, 47–62 (2016).
Herdman, M. et al. High-resolution mapping of metal ions reveals principles of surface layer assembly in Caulobacter crescentus cells. Structure 30, 215–228.e5 (2022).
Tomek, M. B. et al. The S-layer proteins of Tannerella forsythia are secreted via a type IX secretion system that is decoupled from protein O-glycosylation. Mol. Oral Microbiol. 29, 307–320 (2014).
de Diego, I. et al. The outer-membrane export signal of Porphyromonas gingivalis type IX secretion system (T9SS) is a conserved C-terminal β-sandwich domain. Sci. Rep. 6, 23123 (2016).
Lasica, A. M., Ksiazek, M., Madej, M. & Potempa, J. The type IX secretion system (T9SS): highlights and recent insights into its structure and function. Front. Cell. Infect. Microbiol. 7, 215 (2017).
Rodrigues-Oliveira, T. et al. Environmental factors influence the Haloferax volcanii S-layer protein structure. PLoS ONE 14, e0216863 (2019).
von Kügelgen, A., Alva, V. & Bharat, T. A. M. Complete atomic structure of a native archaeal cell surface. Cell Rep. 37, 110052 (2021). The first complete atomic structure of a native archaeal S-layer lattice, along with the structure of S-layer pentamers from the model archaeon H. volcanii.
Cohen, S., Shilo, M. & Kessel, M. Nature of the salt dependence of the envelope of a Dead Sea archaebacterium, Haloferax volcanii. Arch. Microbiol. 156, 198–203 (1991).
von Kügelgen, A. et al. Membraneless channels sieve cations in ammonia-oxidizing marine archaea. Nature 630, 230–236 (2024). This paper reports an S-layer-mediated mechanism for ammonium binding and channeling, revealing a novel functional role of S-layers in substrate capture and utilization at the cell surface.
Sogues, A. et al. Structure and function of the EA1 surface layer of Bacillus anthracis. Nat. Commun. 14, 7051 (2023). This study resolves the structure of the EA1 SLP from B. anthracis, the causative agent of anthrax, offering insights into its assembly and surface organization.
Babolmorad, G., Emtiazi, G. & Emamzadeh, R. Analysis of the Interaction between Bacillus coagulans and Bacillus thuringiensis S-layers and calcium Ions by XRD, light microscopy, and FTIR. Appl. Biochem. Biotechnol. 173, 103–115 (2014).
Baranova, E. et al. SbsB structure and lattice reconstruction unveil Ca2+ triggered S-layer assembly. Nature 487, 119–122 (2012).
von Kügelgen, A. et al. Interdigitated immunoglobulin arrays form the hyperstable surface layer of the extremophilic bacterium Deinococcus radiodurans. Proc. Natl Acad. Sci. USA 120, e2215808120 (2023).
Smith, O. E. R. & Bharat, T. A. M. Architectural dissection of adhesive bacterial cell surface appendages from a ‘molecular machines’ viewpoint. J. Bacteriol. 206, e0029024 (2024).
Stetter, K. O. et al. Methanothermus fervidus, sp. nov., a novel extremely thermophilic methanogen isolated from an Icelandic hot spring. Zentralbl. Bakteriol. Mikrobiol. Hyg. Abt. Orig. C 2, 166–178 (1981).
Arbing, M. A. et al. Structure of the surface layer of the methanogenic archaean Methanosarcina acetivorans. Proc. Natl Acad. Sci. USA 109, 11812–11817 (2012).
Wang, H. et al. Composition and in situ structure of the Methanospirillum hungatei cell envelope and surface layer. Sci. Adv. 10, eadr8596 (2024). In situ structural studies of the M. hungatei archaeal cell envelope and S-layer.
Gambelli, L. et al. Structure of the two-component S-layer of the archaeon Sulfolobus acidocaldarius. eLife 13, e84617 (2024). This paper describes the structure of two-component S-layer of the model archaeon S. acidocaldarius.
Foo, S., Caspy, I., Cezanne, A., Bharat, T. A. M. & Baum, B. A self-assembling surface layer flattens the cytokinetic furrow to aid cell division in an archaeon. Proc. Natl Acad. Sci. USA 122, e2501044122 (2025).
Gambelli, L. et al. Architecture and modular assembly of Sulfolobus S-layers revealed by electron cryotomography. Proc. Natl Acad. Sci. USA 116, 25278 (2019).
Peters, J. et al. Tetrabrachion: a filamentous archaebacterial surface protein assembly of unusual structure and extreme stability. J. Mol. Biol. 245, 385–401 (1995).
Abdul Halim, M. F. et al. Permuting the PGF signature motif blocks both archaeosortase-dependent C-terminal cleavage and prenyl lipid attachment for the Haloferax volcanii S-layer glycoprotein. J. Bacteriol. 198, 808–815 (2016).
Kandiba, L., Guan, Z. & Eichler, J. Lipid modification gives rise to two distinct Haloferax volcanii S-layer glycoprotein populations. Biochim. Biophys. Acta 1828, 938–943 (2013).
Abdul Halim, M. F., Rodriguez, R., Stoltzfus, J. D., Duggin, I. G. & Pohlschroder, M. Conserved residues are critical for Haloferax volcanii archaeosortase catalytic activity: implications for convergent evolution of the catalytic mechanisms of non-homologous sortases from archaea and bacteria. Mol. Microbiol. 108, 276–287 (2018).
Buhlheller, C. et al. SymProFold: structural prediction of symmetrical biological assemblies. Nat. Commun. 15, 8152 (2024).
Schäffer, C. & Messner, P. The structure of secondary cell wall polymers: how Gram-positive bacteria stick their cell walls together. Microbiology 151, 643–651 (2005).
Bönisch, E. et al. Lipoteichoic acid mediates binding of a Lactobacillus S-layer protein. Glycobiology 28, 148–158 (2018).
Sagmeister, T. et al. The molecular architecture of Lactobacillus S-layer: assembly and attachment to teichoic acids. Proc. Natl Acad. Sci. USA 121, e2401686121 (2024).
Sychantha, D. et al. Molecular basis for the attachment of S-layer proteins to the cell wall of Bacillus anthracis. Biochemistry 57, 1949–1953 (2018).
Legg, M. S. G. et al. The S-layer homology domains of Paenibacillus alvei surface protein SpaA bind to cell wall polysaccharide through the terminal monosaccharide residue. J. Biol. Chem. 298, 101745 (2022).
Kern, J. et al. Structure of surface layer homology (SLH) domains from Bacillus anthracis surface array protein. J. Biol. Chem. 286, 26042–26049 (2011).
Blackler, R. J. et al. Structural basis of cell wall anchoring by SLH domains in Paenibacillus alvei. Nat. Commun. 9, 3120 (2018). This study describes the crystal structure of the S-layer homology (SLH) domain of the P. alvei SLP, showing how it is anchored through cell wall polymers.
Lupas, A. et al. Domain structure of the Acetogenium kivui surface layer revealed by electron crystallography and sequence analysis. J. Bacteriol. 176, 1224–1233 (1994).
Zhao, G. et al. Different binding specificities of S-layer homology modules from Clostridium thermocellum AncA, Slp1, and Slp2. Biosci. Biotechnol. Biochem. 70, 1636–1641 (2006).
Ryzhkov, P. M., Ostermann, K. & Rödel, G. Isolation, gene structure, and comparative analysis of the S-layer gene sslA of Sporosarcina ureae ATCC 13881. Genetica 131, 255–265 (2007).
Lanzoni-Mangutchi, P. et al. Structure and assembly of the S-layer in. C. difficile. Nat. Commun. 13, 970 (2022). Structure of the S-layer from the human pathogen C. difficile using X-ray crystallography.
Usenik, A. et al. The CWB2 cell wall-anchoring module is revealed by the crystal structures of the Clostridium difficile cell wall proteins Cwp8 and Cwp6. Structure 25, 514–521 (2017).
Pavkov, T. et al. The structure and binding behavior of the bacterial cell surface layer protein SbsC. Structure 16, 1226–1237 (2008).
Mader, C., Huber, C., Moll, D., Sleytr, U. B. & Sára, M. Interaction of the crystalline bacterial cell surface layer protein SbsB and the secondary cell wall polymer of Geobacillus stearothermophilus PV72 assessed by real-time surface plasmon resonance biosensor technology. J. Bacteriol. 186, 1758–1768 (2004).
Zivanov, J. et al. A bayesian approach to single-particle electron cryo-tomography in RELION-4.0. eLife 11, e83724 (2022).
Comerci, C. J. et al. Topologically-guided continuous protein crystallization controls bacterial surface layer self-assembly. Nat. Commun. 10, 2731 (2019).
Chami, M. et al. Organization of the outer layers of the cell envelope of Corynebacterium glutamicum: a combined freeze-etch electron microscopy and biochemical study. Biol. Cell 83, 219–229 (1995).
Daffé, M. & Marrakchi, H. Unraveling the structure of the mycobacterial envelope. Microbiol. Spectr. https://doi.org/10.1128/microbiolspec.VMBF-0012-2015 (2019).
Isbilir, B., Yeates, A., Alva, V. & Bharat, T. A. M. Mapping the ultrastructural topology of the corynebacterial cell surface. PLoS Biol. 23, e3003130 (2025).
Sogues, A. et al. Cryo-EM structure and polar assembly of the PS2 S-layer of Corynebacterium glutamicum. Proc. Natl Acad. Sci. USA 122, e2426928122 (2025).
Bharat, T. A. M., Tocheva, E. I. & Alva, V. The cell envelope architecture of Deinococcus: HPI forms the S-layer and SlpA tethers the outer membrane to peptidoglycan. Proc. Natl Acad. Sci. USA 120, e2305338120 (2023).
Barwinska-Sendra, A., Salgado, P. S. & Sendra, K. M. Evolutionary plasticity of bacterial surface layer protein exoskeletons. Preprint at bioRxiv https://doi.org/10.1101/2025.04.02.646754 (2025).
Abdul-Halim, M. F. et al. Lipid anchoring of archaeosortase substrates and midcell growth in haloarchaea. mBio 11, e00349-20 (2020).
Oatley, P., Kirk, J. A., Ma, S., Jones, S. & Fagan, R. P. Spatial organization of Clostridium difficile S-layer biogenesis. Sci. Rep. 10, 14089 (2020).
Breitwieser, A., Gruber, K. & Sleytr, U. B. Evidence for an S-layer protein pool in the peptidoglycan of Bacillus stearothermophilus. J. Bacteriol. 174, 8008–8015 (1992).
Herdman, M. et al. Cell cycle dependent coordination of surface layer biogenesis in Caulobacter crescentus. Nat. Commun. 15, 3355 (2024).
Glaeser, R. et al. Electron Crystallography of Biological Macromolecules (Oxford Univ. Press, 2007).
Meier-Stauffer, K. et al. Description of Bacillus thermoaerophilus sp. nov., to include sugar beet isolates and Bacillus brevis ATCC 12990. Int. J. Syst. Evol. Microbiol. 46, 532–541 (1996).
Wang, S. et al. Revealing roles of S-layer protein (SlpA) in Clostridioides difficile pathogenicity by generating the first slpA gene deletion mutant. Microbiol. Spectr. 12, e04005-23 (2024).
Caspy, I., Wang, Z. & Bharat, T. A. M. Structural biology inside multicellular specimens using electron cryotomography. Q. Rev. Biophys. https://doi.org/10.1017/s0033583525000010 (2025).
McMullan, G. et al. Experimental observation of the improvement in MTF from backthinning a CMOS direct electron detector. Ultramicroscopy 109, 1144–1147 (2009).
Nakane, T. et al. Single-particle cryo-EM at atomic resolution. Nature 587, 152–156 (2020).
Burt, A. et al. An image processing pipeline for electron cryo-tomography in RELION-5. FEBS Open Bio 14, 1788–1804 (2024).
Jing, H. et al. Archaeal surface layer proteins contain β propeller, PKD, and β helix domains and are related to metazoan cell surface proteins. Structure 10, 1453–1464 (2002).
Duggin, I. G. et al. CetZ tubulin-like proteins control archaeal cell shape. Nature 519, 362–365 (2015).
Grogan, D. W. Organization and interactions of cell envelope proteins of the extreme thermoacidophile Sulfolobus acidocaldarius. Can. J. Microbiol. 42, 1163–1171 (1996).
Veith, A. et al. Acidianus, Sulfolobus and Metallosphaera surface layers: structure, composition and gene expression. Mol. Microbiol. 73, 58–72 (2009).
Mescher, M. F. & Strominger, J. L. Purification and characterization of a prokaryotic glycoprotein from the cell envelope of Halobacterium salinarium. J. Biol. Chem. 251, 2005–2014 (1976).
Vershinin, Z., Zaretsky, M. & Eichler, J. N-glycosylation in Archaea — expanding the process, components and roles of a universal post-translational modification. BBA Adv. 6, 100120 (2024).
Ristl, R. et al. The S-layer glycome — adding to the sugar coat of bacteria. Int. J. Microbiol. 2011, 127870 (2010).
Schuster, B. & Sleytr, U. B. Relevance of glycosylation of S-layer proteins for cell surface properties. Acta Biomater. 19, 149–157 (2015).
Guan, Z., Naparstek, S., Calo, D. & Eichler, J. Protein glycosylation as an adaptive response in Archaea: growth at different salt concentrations leads to alterations in Haloferax volcanii S-layer glycoprotein N-glycosylation. Environ. Microbiol. 14, 743–753 (2012).
van Wolferen, M. et al. Species-specific recognition of Sulfolobales mediated by UV-inducible pili and S-layer glycosylation patterns. mBio https://doi.org/10.1128/mbio.03014-19 (2020).
Shalev, Y., Turgeman-Grott, I., Tamir, A., Eichler, J. & Gophna, U. Cell surface glycosylation is required for efficient mating of Haloferax volcanii. Front. Microbiol. 8, 1253 (2017).
Mignot, T., Mesnage, S., Couture-Tosi, E., Mock, M. & Fouet, A. Developmental switch of S-layer protein synthesis in Bacillus anthracis. Mol. Microbiol. 43, 1615–1627 (2002).
Fioravanti, A. et al. Structure of S-layer protein Sap reveals a mechanism for therapeutic intervention in anthrax. Nat. Microbiol. 4, 1805–1814 (2019). This paper describes the structure of the Sap S-layer protein from B. anthracis using advanced structural biology methods.
Sogues, A. et al. Architecture of the Sap S-layer of Bacillus anthracis revealed by integrative structural biology. Proc. Natl Acad. Sci. USA 121, e2415351121 (2024).
Calabi, E. et al. Molecular characterization of the surface layer proteins from Clostridium difficile. Mol. Microbiol. 40, 1187–1199 (2001).
Willing, S. E. et al. Clostridium difficile surface proteins are anchored to the cell wall using CWB2 motifs that recognise the anionic polymer PSII. Mol. Microbiol. 96, 596–608 (2015).
Smit, J., Engelhardt, H., Volker, S., Smith, S. H. & Baumeister, W. The S-layer of Caulobacter crescentus: three-dimensional image reconstruction and structure analysis by electron microscopy. J. Bacteriol. 174, 6527–6538 (1992).
Amat, F. et al. Analysis of the Intact surface layer of Caulobacter crescentus by cryo-electron tomography. J. Bacteriol. 192, 5855–5865 (2010).
Ford, M. J., Nomellini, J. F. & Smit, J. S-layer anchoring and localization of an S-layer-associated protease in Caulobacter crescentus. J. Bacteriol. 189, 2226–2237 (2007).
Sexton, D. L., Burgold, S., Schertel, A. & Tocheva, E. I. Super-resolution confocal cryo-CLEM with cryo-FIB milling for in situ imaging of Deinococcus radiodurans. Curr. Res. Struct. Biol. 4, 1–9 (2022).
Eltsov, M. & Dubochet, J. Fine structure of the Deinococcus radiodurans nucleoid revealed by cryoelectron microscopy of vitreous sections. J. Bacteriol. 187, 8047–8054 (2005).
Baumeister, W. et al. The major cell envelope protein of Micrococcus radiodurans (R1). Eur. J. Biochem. 125, 535–544 (1982).
Hager-Mair, F. F., Bloch, S. & Schäffer, C. Glycolanguage of the oral microbiota. Mol. Oral. Microbiol. 39, 291–320 (2024).
Evans, R. et al. Protein complex prediction with AlphaFold-multimer. Preprint at bioRxiv https://doi.org/10.1101/2021.10.04.463034 (2022).
Baek, M. et al. Accurate prediction of protein structures and interactions using a three-track neural network. Science https://doi.org/10.1126/science.abj8754 (2021).
Zhang, C. et al. Cell structure changes in the hyperthermophilic crenarchaeon Sulfolobus islandicus lacking the S-Layer. mBio https://doi.org/10.1128/mbio.01589-19 (2019).
Fioravanti, A., Mathelie-Guinlet, M., Dufrêne, Y. F., Remaut, H. & Nelson, K. E. The Bacillus anthracis S-layer is an exoskeleton-like structure that imparts mechanical and osmotic stabilization to the cell wall. Proc. Natl Acad. Sci. USA Nexus 1, pgac121 (2022).
Pollmann, K., Raff, J., Merroun, M., Fahmy, K. & Selenska-Pobell, S. Metal binding by bacteria from uranium mining waste piles and its technological applications. Biotechnol. Adv. 24, 58–68 (2006).
Zink, I. A. et al. CRISPR-mediated gene silencing reveals involvement of the archaeal S-layer in cell division and virus infection. Nat. Commun. 10, 4797 (2019).
Uldahl, K. B. et al. Life cycle characterization of sulfolobus monocaudavirus 1, an extremophilic spindle-shaped virus with extracellular tail development. J. Virol. 90, 5693–5699 (2016).
Royer, A. L. M. et al. Clostridioides difficile S-layer protein A (SlpA) serves as a general phage receptor. Microbiol. Spectr. 11, e0389422 (2023).
Plaut, R. D. et al. Genetic evidence for the involvement of the S-layer protein gene Sap and the sporulation genes spo0A, spo0B, and spo0F in phage AP50c infection of Bacillus anthracis. J. Bacteriol. 196, 1143–1154 (2014).
Fischbach, M. et al. A phase-variable surface layer from the gut symbiont Bacteroides thetaiotaomicron. mBIO 6, e01339–15 (2015).
Porter, N. T. et al. Phase-variable capsular polysaccharides and lipoproteins modify bacteriophage susceptibility in Bacteroides thetaiotaomicron. Nat. Microbiol. 5, 1170–1181 (2020).
Fuentes, J. J. et al. Carbohydrates and the oxidative branch of the pentose phosphate pathway modify Bacteroides thetaiotaomicron phage resistance by phase-variable S-layers. J. Bacteriol. 207, e00178-25 (2025).
Ely, B., Gibbs, W., Diez, S. & Ash, K. The Caulobacter crescentus transducing phage Cr30 is a unique member of the T4-like family of myophages. Curr. Microbiol. 70, 854–858 (2015).
Edwards, P. & Smit, J. A transducing bacteriophage for Caulobacter crescentus uses the paracrystalline surface layer protein as a receptor. J. Bacteriol. 173, 5568–5572 (1991).
Betts, A., Gray, C., Zelek, M., MacLean, R. C. & King, K. C. High parasite diversity accelerates host adaptation and diversification. Science 360, 907–911 (2018).
Mursalin, M. H. et al. S-layer impacts the virulence of Bacillus in endophthalmitis. Invest. Ophthalmol. Vis. Sci. 60, 3727–3739 (2019).
Mursalin, M. H. et al. Bacillus S-layer-mediated innate interactions during endophthalmitis. Front. Immunol. 11, 215 (2020).
Ormsby, M. J. et al. An intact S-layer is advantageous to Clostridioides difficile within the host. PLoS Pathog. 19, e1011015 (2023).
Chinthamani, S., Settem, R. P., Honma, K., Kay, J. G. & Sharma, A. Macrophage inducible C-type lectin (Mincle) recognizes glycosylated surface (S)-layer of the periodontal pathogen Tannerella forsythia. PLoS ONE 12, e0173394 (2017).
Malamud, M. et al. S-layer glycoprotein from Lactobacillus kefiri exerts its immunostimulatory activity through glycan recognition by mincle. Front. Immunol. 10, 1422 (2019).
Decout, A. et al. Lactobacillus crispatus S-layer proteins modulate innate immune response and inflammation in the lower female reproductive tract. Nat. Commun. 15, 10879 (2024).
Hamm, J. N. et al. The parasitic lifestyle of an archaeal symbiont. Nat. Commun. 15, 6449 (2024).
Rados, T. et al. Tissue-like multicellular development triggered by mechanical compression in archaea. Science 388, 109–115 (2025). This paper explores the emergence of multicellularity in S-layer-containing H. volcanii archaea on exposure to mechanical compression.
Lyons, N. A. & Kolter, R. On the evolution of bacterial multicellularity. Curr. Opin. Microbiol. 24, 21–28 (2015).
Böhning, J., Tarafder, A. K. & Bharat, T. A. M. The role of filamentous matrix molecules in shaping the architecture and emergent properties of bacterial biofilms. Biochem. J. 481, 245–263 (2024).
Wong, L. L. et al. Surface-layer protein is a public-good matrix exopolymer for microbial community organisation in environmental anammox biofilms. ISME J. 17, 803–812 (2023).
Bloch, S., Thurnheer, T., Murakami, Y., Belibasakis, G. N. & Schäffer, C. Biofilm behavior of Tannerella forsythia strains and S-layer glycosylation mutants. J. Oral Microbiol. 9, 1325190 (2017).
Krause, S. et al. The importance of biofilm formation for cultivation of a micrarchaeon and its interactions with its Thermoplasmatales host. Nat. Commun. 13, 1735 (2022).
Imachi, H. et al. Isolation of an archaeon at the prokaryote–eukaryote interface. Nature 577, 519–525 (2020).
Wade, W. G. The oral microbiome in health and disease. Pharmacol. Res. 69, 137–143 (2013).
Borisy, G. G. & Valm, A. M. Spatial scale in analysis of the dental plaque microbiome. Periodontology 86, 97–112 (2021).
Charrier, M. et al. Engineering the S-layer of Caulobacter crescentus as a foundation for stable, high-density, 2D living materials. ACS Synth. Biol. https://doi.org/10.1021/acssynbio.8b00448 (2018).
Ben-Sasson, A. J. et al. Design of biologically active binary protein 2D materials. Nature 589, 468–473 (2021).
Bradshaw, W. J., Kirby, J. M., Roberts, A. K., Shone, C. C. & Acharya, K. R. Cwp2 from Clostridium difficile exhibits an extended three domain fold and cell adhesion in vitro. FEBS J. 284, 2886–2898 (2017).
Dietrich, H. M. et al. Membrane-anchored HDCR nanowires drive hydrogen-powered CO2 fixation. Nature 607, 823–830 (2022).