Ng, S. B. et al. Exome sequencing identifies the cause of a Mendelian disorder. Nat. Genet. 42, 30–35 (2010).

CAS 
PubMed 

Google Scholar
 

Zhang, F. & Lupski, J. R. Non-coding genetic variants in human disease. Hum. Mol. Genet. 24, R102–R110 (2015).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Zoghbi, H. Y. & Beaudet, A. L. Epigenetics and human disease. Cold Spring Harb. Perspect. Biol. 8, a019497 (2016).


Google Scholar
 

Malik, I., Kelley, C. P., Wang, E. T. & Todd, P. K. Molecular mechanisms underlying nucleotide repeat expansion disorders. Nat. Rev. Mol. Cell Biol. 22, 589–607 (2021).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Eggermann, T. et al. Imprinting disorders. Nat. Rev. Dis. Primers 9, 33 (2023).

PubMed 

Google Scholar
 

Tabolacci, E. & Chiurazzi, P. Epigenetics, fragile X syndrome and transcriptional therapy. Am. J. Med. Genet. A 161A, 2797–2808 (2013).

PubMed 

Google Scholar
 

Hagerman, R. J. et al. Fragile X syndrome. Nat. Rev. Dis. Primers 3, 17065 (2017).

PubMed 

Google Scholar
 

Coffee, B. et al. Incidence of fragile X syndrome by newborn screening for methylated FMR1 DNA. Am. J. Hum. Genet. 85, 503–514 (2009).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Richter, J. D. & Zhao, X. The molecular biology of FMRP: new insights into fragile X syndrome. Nat. Rev. Neurosci. 22, 209–222 (2021).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Dahlhaus, R. Of men and mice: modeling the fragile X syndrome. Front. Mol. Neurosci. 11, 41 (2018).

PubMed 
PubMed Central 

Google Scholar
 

Vershkov, D. & Benvenisty, N. Human pluripotent stem cells in modeling human disorders: the case of fragile X syndrome. Regen. Med. 12, 53–68 (2017).

CAS 
PubMed 

Google Scholar
 

Kumari, D. et al. Identification of fragile X syndrome-specific molecular markers in human fibroblasts: a useful model to test the efficacy of therapeutic drugs. Hum. Mutat. 35, 1485–1494 (2014).

CAS 
PubMed 

Google Scholar
 

Brasa, S. et al. Reciprocal changes in DNA methylation and hydroxymethylation and a broad repressive epigenetic switch characterize FMR1 transcriptional silencing in fragile X syndrome. Clin. Epigenetics 8, 15 (2016).

PubMed 
PubMed Central 

Google Scholar
 

Schwartz, P. H. et al. Neural progenitor cells from an adult patient with fragile X syndrome. BMC Med. Genet. 6, 2 (2005).

PubMed 
PubMed Central 

Google Scholar
 

Bhattacharyya, A. et al. Normal neurogenesis but abnormal gene expression in human fragile X cortical progenitor cells. Stem Cells Dev. 17, 107–117 (2008).

CAS 

Google Scholar
 

Castrén, M. et al. Altered differentiation of neural stem cells in fragile X syndrome. Proc. Natl Acad. Sci. USA 102, 17834–17839 (2005).

PubMed 
PubMed Central 

Google Scholar
 

Obernier, K. & Alvarez-Buylla, A. Neural stem cells: origin, heterogeneity and regulation in the adult mammalian brain. Development 146, dev156059 (2019).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Bar, S. & Benvenisty, N. Human pluripotent stem cells: derivation and applications. Nat. Rev. Mol. Cell Biol. https://doi.org/10.1038/S41580-020-00309-7 (2020).

Bhattacharyya, A. & Zhao, X. Human pluripotent stem cell models of fragile X syndrome. Mol. Cell. Neurosci. 73, 43–51 (2015).

PubMed 
PubMed Central 

Google Scholar
 

Mor-Shaked, H. & Eiges, R. Modeling fragile X syndrome using human pluripotent stem cells. Genes 7, 77 (2016).

PubMed 
PubMed Central 

Google Scholar
 

Vershkov, D., Ben-Hur, T. & Benvenisty, N. in Fragile X Syndrome: from Genetics to Targeted Treatment (eds Willemsen, R. & Kooy, R. F.) 103–121 (Academic, 2017).

Burton, A. & Torres-Padilla, M. E. Epigenome dynamics in early mammalian embryogenesis. Nat. Rev. Genet. https://doi.org/10.1038/s41576-025-00831-4 (2025).

Eiges, R. et al. Developmental study of fragile X syndrome using human embryonic stem cells derived from preimplantation genetically diagnosed embryos. Cell Stem Cell 1, 568–577 (2007).

CAS 
PubMed 

Google Scholar
 

Urbach, A., Bar-Nur, O., Daley, G. Q. & Benvenisty, N. Differential modeling of fragile X syndrome by human embryonic stem cells and induced pluripotent stem cells. Cell Stem Cell 6, 407–411 (2010).

CAS 

Google Scholar
 

Bar-Nur, O., Russ, H. A., Efrat, S. & Benvenisty, N. Epigenetic memory and preferential lineage-specific differentiation in induced pluripotent stem cells derived from human pancreatic islet beta cells. Cell Stem Cell 9, 17–23 (2011).

CAS 
PubMed 

Google Scholar
 

Hu, B. Y. et al. Neural differentiation of human induced pluripotent stem cells follows developmental principles but with variable potency. Proc. Natl Acad. Sci. USA 107, 4335–4340 (2010).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Halevy, T., Czech, C. & Benvenisty, N. Molecular mechanisms regulating the defects in fragile X syndrome neurons derived from human pluripotent stem cells. Stem Cell Reports 4, 37–46 (2015).

CAS 
PubMed 

Google Scholar
 

Kang, Y. et al. A human forebrain organoid model of fragile X syndrome exhibits altered neurogenesis and highlights new treatment strategies. Nat. Neurosci. 24, 1377–1391 (2021).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Lee, A., Xu, J., Wen, Z. & Jin, P. Across dimensions: developing 2D and 3D human iPSC-based models of fragile X syndrome. Cells 11, 1725 (2022).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Gunapala, K. M. et al. Ascorbic acid ameliorates molecular and developmental defects in human-induced pluripotent stem cell and cerebral organoid models of fragile X syndrome. Int. J. Mol. Sci. 25, 12718 (2024).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Huang, Y. et al. Research progress, challenges, and breakthroughs of organoids as disease models. Front. Cell Dev. Biol. 9, 740574 (2021).

PubMed 
PubMed Central 

Google Scholar
 

Shivram, H., Cress, B. F., Knott, G. J. & Doudna, J. A. Controlling and enhancing CRISPR systems. Nat. Chem. Biol. 17, 10–19 (2020).

PubMed 
PubMed Central 

Google Scholar
 

Park, C. Y. et al. Reversion of FMR1 methylation and silencing by editing the triplet repeats in fragile X iPSC-derived neurons. Cell Rep. 13, 234–241 (2015).

CAS 
PubMed 

Google Scholar
 

Xie, N. et al. Reactivation of FMR1 by CRISPR/Cas9-mediated deletion of the expanded CGG-repeat of the fragile X chromosome. PLoS ONE 11, e0165499 (2016).

PubMed 
PubMed Central 

Google Scholar
 

Fischer, L. A., Khan, S. A. & Theunissen, T. W. Induction of human naïve pluripotency using 5i/L/A medium. Methods Mol. Biol. 2416, 13–28 (2022).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Lee, H. G. et al. Site-specific R-loops induce CGG repeat contraction and fragile X gene reactivation. Cell 186, 2593–2609 (2023).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Williams, K., Christensen, J. & Helin, K. DNA methylation: TET proteins—guardians of CpG islands? EMBO Rep. 13, 28–35 (2012).

CAS 

Google Scholar
 

Groh, M. & Gromak, N. Out of balance: R-loops in human disease. PLoS Genet. 10, e1004630 (2014).

PubMed 
PubMed Central 

Google Scholar
 

Smeets, H. J. M. et al. Normal phenotype in two brothers with a full FMR1 mutation. Hum. Mol. Genet. 4, 2103–2108 (1995).

CAS 
PubMed 

Google Scholar
 

Liu, X. S. et al. Rescue of fragile X syndrome neurons by DNA methylation editing of the FMR1 gene. Cell 172, 979–992 (2018).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Haenfler, J. M. et al. Targeted reactivation of FMR1 transcription in fragile X syndrome embryonic stem cells. Front. Mol. Neurosci. 11, 282 (2018).

PubMed 
PubMed Central 

Google Scholar
 

Tseng, E., Tang, H. T., AlOlaby, R. R., Hickey, L. & Tassone, F. Altered expression of the FMR1 splicing variants landscape in premutation carriers. Biochim Biophys. Acta Gene Regul. Mech. 1860, 1117–1126 (2017).

CAS 
PubMed 

Google Scholar
 

Shah, S. et al. Antisense oligonucleotide rescue of CGG expansion dependent FMR1 mis-splicing in fragile X syndrome restores FMRP. Proc. Natl Acad. Sci. USA 120, e2302534120 (2023).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Colak, D. et al. Promoter-bound trinucleotide repeat mRNA drives epigenetic silencing in fragile X syndrome. Science 343, 1002–1005 (2014).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Paluszkiewicz, S. M., Martin, B. S. & Huntsman, M. M. Fragile X syndrome: the GABAergic system and circuit dysfunction. Dev. Neurosci. 33, 349–364 (2011).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Berry-Kravis, E. et al. Mavoglurant in fragile X syndrome: results of two randomized, double-blind, placebo-controlled trials. Sci. Transl. Med. 8, 321ra325 (2016).


Google Scholar
 

Grabb, M. C. & Potter, W. Z. CNS trial failures: using the fragile X syndrome-mGluR5 drug target to highlight the complexities of translating preclinical discoveries into human trials. J. Clin. Psychopharmacol. 42, 234–237 (2022).

PubMed 
PubMed Central 

Google Scholar
 

Kurosaki, T. et al. Loss of the fragile X syndrome protein FMRP results in misregulation of nonsense-mediated mRNA decay. Nat. Cell Biol. 23, 40–48 (2021).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Kumari, D. et al. High-throughput screening to identify compounds that increase fragile X mental retardation protein expression in neural stem cells differentiated from fragile X syndrome patient-derived induced pluripotent stem cells. Stem Cells Transl. Med. 4, 800–808 (2015).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Vershkov, D. et al. FMR1 reactivating treatments in fragile X iPSC-derived neural progenitors in vitro and in vivo. Cell Rep. 26, 2531–2539 (2019).

CAS 
PubMed 

Google Scholar
 

Hunt, J. F. V. et al. High throughput small molecule screen for reactivation of FMR1 in fragile X syndrome human neural cells. Cells 11, 69 (2022).

CAS 

Google Scholar
 

Hagemann, S., Heil, O., Lyko, F. & Brueckner, B. Azacytidine and decitabine induce gene-specific and non-random DNA demethylation in human cancer cell lines. PLoS ONE 6, e17388 (2011).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Thota, S., Oganesian, A., Azab, M. & Griffiths, E. A. Role of cedazuridine/decitabine in the management of myelodysplastic syndrome and chronic myelomonocytic leukemia. Future Oncol. 17, 2077–2087 (2021).

CAS 
PubMed 

Google Scholar
 

Vershkov, D., Yilmaz, A., Yanuka, O., Nielsen, A. L. & Benvenisty, N. Genome-wide screening for genes involved in the epigenetic basis of fragile X syndrome. Stem Cell Reports 17, 1048–1058 (2022).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Mulley, J. C. et al. FRAXE and mental retardation. J. Med. Genet. 32, 162–169 (1995).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Gecz, J., Gedeon, A. K., Sutherland, G. R. & Mulley, J. C. Identification of the gene FMR2, associated with FRAXE mental retardation. Nat. Genet. 13, 105–108 (1996).

CAS 
PubMed 

Google Scholar
 

Youings, S. A. et al. FRAXA and FRAXE: the results of a five-year survey. J. Med. Genet. 37, 415–421 (2000).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Schulz, J. B. et al. Diagnosis and treatment of Friedreich ataxia: a European perspective. Nat. Rev. Neurol. 5, 222–234 (2009).

PubMed 

Google Scholar
 

Mosbach, V. & Puccio, H. A multiple animal and cellular models approach to study frataxin deficiency in Friedreich ataxia. Biochim. Biophys. Acta Mol. Cell Res. 1871, 119809 (2024).

CAS 
PubMed 

Google Scholar
 

Schreiber, A. M., Li, Y., Chen, Y. H., Napierala, J. S. & Napierala, M. Selected histone deacetylase inhibitors reverse the Frataxin transcriptional defect in a novel Friedreich’s ataxia induced pluripotent stem cell-derived neuronal reporter system. Front. Neurosci. 16, 836476 (2022).

PubMed 
PubMed Central 

Google Scholar
 

Lyst, M. J. & Bird, A. Rett syndrome: a complex disorder with simple roots. Nat. Rev. Genet. 16, 261–274 (2015).

CAS 
PubMed 

Google Scholar
 

Gold, W. A. et al. Rett syndrome. Nat. Rev. Dis. Primers 10, 84 (2024).

PubMed 

Google Scholar
 

Qian, J. et al. Multiplex epigenome editing of MECP2 to rescue Rett syndrome neurons. Sci. Transl. Med. 15, eadd4666 (2023).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Pescatore, A., Esposito, E., Draber, P., Walczak, H. & Ursini, M. V. NEMO regulates a cell death switch in TNF signaling by inhibiting recruitment of RIPK3 to the cell death-inducing complex II. Cell Death Dis. 7, e2346 (2016).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Parrish, J. E., Scheuerle, A. E., Lewis, R. A., Levy, M. L. & Nelson, D. L. Selection against mutant alleles in blood leukocytes is a consistent feature in incontinentia pigmenti type 2. Hum. Mol. Genet. 5, 1777–1783 (1996).

CAS 
PubMed 

Google Scholar
 

Kenwrick, S. et al. Survival of male patients with incontinentia pigmenti carrying a lethal mutation can be explained by somatic mosaicism or Klinefelter syndrome. Am. J. Hum. Genet. 69, 1210–1217 (2001).

CAS 
PubMed 

Google Scholar
 

Fusco, F., Fimiani, G., Tadini, G., Michele, D. & Ursini, M. V. Clinical diagnosis of incontinentia pigmenti in a cohort of male patients. J. Am. Acad. Dermatol. 56, 264–267 (2007).

PubMed 

Google Scholar
 

Reik, W. & Walter, J. Genomic imprinting: parental influence on the genome. Nat. Rev. Genet. 2, 21–32 (2001).

CAS 
PubMed 

Google Scholar
 

Buiting, K., Williams, C. & Horsthemke, B. Angelman syndrome — insights into a rare neurogenetic disorder. Nat. Rev. Neurol. 12, 584–593 (2016).

CAS 
PubMed 

Google Scholar
 

Wakeling, E. L. Silver–Russell syndrome. Arch. Dis. Child. 96, 1156–1161 (2011).

PubMed 

Google Scholar
 

Cassidy, S. B., Schwartz, S., Miller, J. L. & Driscoll, D. J. Prader–Willi syndrome. Genet. Med. 14, 10–26 (2012).

CAS 
PubMed 

Google Scholar
 

Docherty, L. E. et al. Clinical presentation of 6q24 transient neonatal diabetes mellitus (6q24 TNDM) and genotype–phenotype correlation in an international cohort of patients. Diabetologia 56, 758–762 (2013).

CAS 
PubMed 

Google Scholar
 

Choufani, S., Shuman, C. & Weksberg, R. Beckwith–Wiedemann syndrome. Am. J. Med. Genet. C Semin. Med. Genet. 154C, 343–354 (2010).

CAS 
PubMed 

Google Scholar
 

Huang, H. S. et al. Topoisomerase inhibitors unsilence the dormant allele of Ube3a in neurons. Nature 481, 185–191 (2011).

PubMed 
PubMed Central 

Google Scholar
 

Vihma, H. et al. Ube3a unsilencer for the potential treatment of Angelman syndrome. Nat. Commun. 15, 5558 (2024).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Wolter, J. M. et al. Cas9 gene therapy for Angelman syndrome traps Ube3a-ATS long non-coding RNA. Nature 587, 281–284 (2020).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Schmid, R. S. et al. CRISPR/Cas9 directed to the Ube3a antisense transcript improves Angelman syndrome phenotype in mice. J. Clin. Invest. 131, e142574 (2021).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Rohm, D. et al. Activation of the imprinted Prader–Willi syndrome locus by CRISPR-based epigenome editing. Cell Genom. 5, 100770 (2025).

CAS 

Google Scholar
 

Wang, S. E. & Jiang, Y.-H. Novel epigenetic molecular therapies for imprinting disorders. Mol. Psychiatry 28, 3182–3193 (2023).

PubMed 
PubMed Central 

Google Scholar
 

Garber, K. B., Visootsak, J. & Warren, S. T. Fragile X syndrome. Eur. J. Hum. Genet. 16, 666–672 (2008).

CAS 
PubMed 

Google Scholar
 

Rodriguez-Revenga, L. et al. Penetrance of FMR1 premutation associated pathologies in fragile X syndrome families. Eur. J. Hum. Genet. 17, 1359–1362 (2009).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Tassone, F. et al. Elevated levels of FMR1 mRNA carrier males: a new mechanism of involvement in the fragile-X syndrome. Am. J. Hum. Genet. 66, 6–15 (2000).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Tassone, F. et al. Elevated FMR1 mRNA in premutation carriers is due to increased transcription. RNA 13, 555–562 (2007).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Kraan, C. M., Godler, D. E. & Amor, D. J. Epigenetics of fragile X syndrome and fragile X-related disorders. Dev. Med. Child Neurol. 61, 121–127 (2019).

PubMed 

Google Scholar
 

Landy, S. J. & Donnai, D. Incontinentia pigmenti (Bloch–Sulzberger syndrome). J. Med. Genet. 30, 53–59 (1993).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Vaghani, U. P. et al. Bloch–Sulzberger syndrome: a rare X-linked dominant genetic disorder in a newborn. Cureus 15, e48823 (2023).

PubMed 
PubMed Central 

Google Scholar
 

Prasasya, R., Grotheer, K. V., Siracusa, L. D. & Bartolomei, M. S. Temple syndrome and Kagami–Ogata syndrome: clinical presentations, genotypes, models and mechanisms. Hum. Mol. Genet. 29, R107–R116 (2020).

PubMed 
PubMed Central 

Google Scholar
 

Baena, N. et al. Novel 14q32.2 paternal deletion encompassing the whole DLK1 gene associated with Temple syndrome. Clin. Epigenetics 16, 62 (2024).

CAS 
PubMed 
PubMed Central 

Google Scholar