Chen, E. et al. Rates and classification of variants of uncertain significance in hereditary disease genetic testing. JAMA Netw. Open 6, e2339571 (2023).

PubMed 
PubMed Central 

Google Scholar
 

Rehm, H. L. et al. The landscape of reported VUS in multi-gene panel and genomic testing: time for a change. Genet. Med. 25, 100947 (2023).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

LaDuca, H. et al. A clinical guide to hereditary cancer panel testing: evaluation of gene-specific cancer associations and sensitivity of genetic testing criteria in a cohort of 165,000 high-risk patients. Genet. Med. 22, 407–415 (2020).

CAS 
PubMed 

Google Scholar
 

Ndugga-Kabuye, M. K. & Issaka, R. B. Inequities in multi-gene hereditary cancer testing: lower diagnostic yield and higher VUS rate in individuals who identify as Hispanic, African or Asian and Pacific Islander as compared to European. Fam. Cancer 18, 465–469 (2019).

PubMed 
PubMed Central 

Google Scholar
 

Roberts, M. E. et al. Ancestry-specific hereditary cancer panel yields: moving toward more personalized risk assessment. J. Genet. Couns. 29, 598–606 (2020).

PubMed 

Google Scholar
 

Kwon, D. H.-M., Borno, H. T., Cheng, H. H., Zhou, A. Y. & Small, E. J. Ethnic disparities among men with prostate cancer undergoing germline testing. Urol. Oncol. 38, 80.e1–80.e7 (2020).

CAS 
PubMed 

Google Scholar
 

Richards, S. et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 17, 405–424 (2015). This paper established the now widely adopted five-tier classification system (pathogenic, likely pathogenic, uncertain significance, likely benign, and benign) and a standardized evidence-based framework for interpreting sequence variants in Mendelian disorders, promoting consistency and reliability in clinical genetic testing.

PubMed 
PubMed Central 

Google Scholar
 

Fowler, D. M. et al. An atlas of variant effects to understand the genome at nucleotide resolution. Genome Biol. 24, 147 (2023).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Gelman, H. et al. Recommendations for the collection and use of multiplexed functional data for clinical variant interpretation. Genome Med. 11, 85 (2019). This paper provides consensus recommendations to ensure rigorous generation, reporting and clinical integration of multiplexed functional assay data, enabling these data sets to be reliably incorporated as evidence within the ACMG/AMP variant interpretation framework.

PubMed 
PubMed Central 

Google Scholar
 

Brnich, S. E. et al. Recommendations for application of the functional evidence PS3/BS3 criterion using the ACMG/AMP sequence variant interpretation framework. Genome Med. 12, 3 (2019). This paper provides a structured, evidence-based framework for evaluating and applying functional assay data (PS3/BS3 criteria) in clinical variant interpretation, addressing previous ambiguity and inconsistency in the use of functional evidence.

PubMed 
PubMed Central 

Google Scholar
 

Criteria Specification Registry. https://cspec.genome.network/cspec/ui/svi/.

Findlay, G. M. Linking genome variants to disease: scalable approaches to test the functional impact of human mutations. Hum. Mol. Genet. 30, R187–R197 (2021).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Weile, J. & Roth, F. P. Multiplexed assays of variant effects contribute to a growing genotype–phenotype atlas. Hum. Genet. 137, 665–678 (2018).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Tabet, D., Parikh, V., Mali, P., Roth, F. P. & Claussnitzer, M. Scalable functional assays for the interpretation of human genetic variation. Annu. Rev. Genet. 56, 441–465 (2022).

CAS 
PubMed 

Google Scholar
 

Geck, R. C., Boyle, G., Amorosi, C. J., Fowler, D. M. & Dunham, M. J. Measuring pharmacogene variant function at scale using multiplexed assays. Annu. Rev. Pharmacol. Toxicol. 62, 531–550 (2022).

CAS 
PubMed 

Google Scholar
 

Fowler, D. M. et al. High-resolution mapping of protein sequence–function relationships. Nat. Methods 7, 741–746 (2010).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Ernst, A. et al. Coevolution of PDZ domain–ligand interactions analyzed by high-throughput phage display and deep sequencing. Mol. Biosyst. 6, 1782–1790 (2010).

CAS 
PubMed 

Google Scholar
 

Starita, L. M. et al. Activity-enhancing mutations in an E3 ubiquitin ligase identified by high-throughput mutagenesis. Proc. Natl Acad. Sci. USA 110, E1263–E1272 (2013).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Adkar, B. V. et al. Protein model discrimination using mutational sensitivity derived from deep sequencing. Structure 20, 371–381 (2012).

CAS 
PubMed 

Google Scholar
 

Jacquier, H. et al. Capturing the mutational landscape of the beta-lactamase TEM-1. Proc. Natl Acad. Sci. USA 110, 13067–13072 (2013).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Firnberg, E., Labonte, J. W., Gray, J. J. & Ostermeier, M. A comprehensive, high-resolution map of a gene’s fitness landscape. Mol. Biol. Evol. 31, 1581–1592 (2014).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Hietpas, R. T., Jensen, J. D. & Bolon, D. N. A. Experimental illumination of a fitness landscape. Proc. Natl Acad. Sci. USA 108, 7896–7901 (2011).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Dutta, S. et al. Determinants of BH3 binding specificity for Mcl-1 versus Bcl-xL. J. Mol. Biol. 398, 747–762 (2010).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Traxlmayr, M. W. et al. Construction of a stability landscape of the CH3 domain of human IgG1 by combining directed evolution with high throughput sequencing. J. Mol. Biol. 423, 397–412 (2012).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Bloom, J. D. An experimentally determined evolutionary model dramatically improves phylogenetic fit. Mol. Biol. Evol. 31, 1956–1978 (2014).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Melnikov, A. et al. Systematic dissection and optimization of inducible enhancers in human cells using a massively parallel reporter assay. Nat. Biotechnol. 30, 271–277 (2012).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Wagenaar, T. R. et al. Resistance to vemurafenib resulting from a novel mutation in the BRAFV600E kinase domain. Pigment Cell Melanoma Res. 27, 124–133 (2014).

CAS 
PubMed 

Google Scholar
 

Chan, K. K. et al. Engineering human ACE2 to optimize binding to the spike protein of SARS coronavirus 2. Science 369, 1261–1265 (2020).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Weile, J. et al. A framework for exhaustively mapping functional missense variants. Mol. Syst. Biol. 13, 957 (2017). This study integrated deep mutational scanning with yeast-complementation assays to systematically assess the impact of every possible missense variant in six human genes within a single experimental framework.

PubMed 
PubMed Central 

Google Scholar
 

Kotler, E. et al. A systematic p53 mutation library links differential functional impact to cancer mutation pattern and evolutionary conservation. Mol. Cell 71, 178–190.e8 (2018).

CAS 
PubMed 

Google Scholar
 

Giacomelli, A. O. et al. Mutational processes shape the landscape of TP53 mutations in human cancer. Nat. Genet. 50, 1381–1387 (2018).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Matreyek, K. A. et al. Multiplex assessment of protein variant abundance by massively parallel sequencing. Nat. Genet. 50, 874–882 (2018). This study was the first use of variant abundance by massively parallel sequencing, a generalizable, high-throughput method that directly quantifies the intracellular abundance of thousands of protein variants in parallel using massively parallel sequencing.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Mighell, T. L., Evans-Dutson, S. & O’Roak, B. J. A saturation mutagenesis approach to understanding PTEN lipid phosphatase activity and genotype–phenotype relationships. Am. J. Hum. Genet. 102, 943–955 (2018).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821 (2012).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823 (2013).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Hsu, P. D., Lander, E. S. & Zhang, F. Development and applications of CRISPR–Cas9 for genome engineering. Cell 157, 1262–1278 (2014).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Findlay, G. M., Boyle, E. A., Hause, R. J., Klein, J. C. & Shendure, J. Saturation editing of genomic regions by multiplex homology-directed repair. Nature 513, 120–123 (2014). This paper introduces saturation genome editing, CRISPR–Cas9-mediated double-stranded breaks coupled with multiplex homology-directed repair using a complex library of donor plasmid DNAs, enabling the introduction of all possible single-nucleotide variants or small sequence changes directly into endogenous loci of human cells.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Komor, A. C., Kim, Y. B., Packer, M. S., Zuris, J. A. & Liu, D. R. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420–424 (2016).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Anzalone, A. V. et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576, 149–157 (2019).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Gasperini, M., Starita, L. & Shendure, J. The power of multiplexed functional analysis of genetic variants. Nat. Protoc. 11, 1782–1787 (2016).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Patwardhan, R. P. et al. High-resolution analysis of DNA regulatory elements by synthetic saturation mutagenesis. Nat. Biotechnol. 27, 1173–1175 (2009).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Ozturk, K. et al. Interface-guided phenotyping of coding variants in the transcription factor RUNX1. Cell Rep. 43, 114436 (2024).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Ursu, O. et al. Massively parallel phenotyping of coding variants in cancer with Perturb-seq. Nat. Biotechnol. 40, 896–905 (2022). This study demonstrates a scalable, single-cell Perturb-seq approach to functionally characterize hundreds of cancer-associated coding variants in TP53 and KRAS, revealing a continuum of phenotypic effect that cannot be predicted solely by variant frequency, thereby enabling more precise functional annotation of variants at scale.

CAS 
PubMed 

Google Scholar
 

Xu, H. et al. Single cell sequencing as a general variant interpretation assay. Preprint at bioRxiv https://doi.org/10.1101/2023.12.12.571130 (2023).

Hasle, N. et al. High-throughput, microscope-based sorting to dissect cellular heterogeneity. Mol. Syst. Biol. 16, e9442 (2020).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Yang, F. et al. Identifying pathogenicity of human variants via paralog-based yeast complementation. PLoS Genet. 13, e1006779 (2017).

PubMed 
PubMed Central 

Google Scholar
 

Yeh, C.-L. C., Jiang, P. & Dunham, M. J. High-throughput approaches to functional characterization of genetic variation in yeast. Curr. Opin. Genet. Dev. 76, 101979 (2022).

CAS 
PubMed 

Google Scholar
 

Kato, S. et al. Understanding the function–structure and function–mutation relationships of p53 tumor suppressor protein by high-resolution missense mutation analysis. Proc. Natl Acad. Sci. USA 100, 8424–8429 (2003). This paper presented the first study to generate a comprehensive, high-resolution functional map of all possible missense mutations in a human disease gene (TP53).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Monteiro, A. N., August, A. & Hanafusa, H. Evidence for a transcriptional activation function of BRCA1 C-terminal region. Proc. Natl Acad. Sci. USA 93, 13595–13599 (1996).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Monteiro, A. N., August, A. & Hanafusa, H. Common BRCA1 variants and transcriptional activation. Am. J. Hum. Genet. 61, 761–762 (1997).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Vallon-Christersson, J. et al. Functional analysis of BRCA1 C-terminal missense mutations identified in breast and ovarian cancer families. Hum. Mol. Genet. 10, 353–360 (2001).

CAS 
PubMed 

Google Scholar
 

Richards, C. S. et al. ACMG recommendations for standards for interpretation and reporting of sequence variations: revisions 2007. Genet. Med. 10, 294–300 (2008).

CAS 
PubMed 

Google Scholar
 

Kazazian, H. H., Boehm, C. D. & Seltzer, W. K. ACMG recommendations for standards for interpretation of sequence variations. Genet. Med. 2, 302–303 (2000).


Google Scholar
 

Olivier, M., Hollstein, M. & Hainaut, P. TP53 mutations in human cancers: origins, consequences, and clinical use. Cold Spring Harb. Perspect. Biol. 2, a001008 (2010).

PubMed 
PubMed Central 

Google Scholar
 

Soussi, T., Kato, S., Levy, P. P. & Ishioka, C. Reassessment of the TP53 mutation database in human disease by data mining with a library of TP53 missense mutations. Hum. Mutat. 25, 6–17 (2005).

CAS 
PubMed 

Google Scholar
 

Iacopetta, B. et al. Functional categories of TP53 mutation in colorectal cancer: results of an international collaborative study. Ann. Oncol. 17, 842–847 (2006).

CAS 
PubMed 

Google Scholar
 

Fortuno, C. et al. Specifications of the ACMG/AMP variant interpretation guidelines for germline TP53 variants. Hum. Mutat. 42, 223–236 (2021).

CAS 
PubMed 

Google Scholar
 

McLaughlin, R. N. Jr, Poelwijk, F. J., Raman, A., Gosal, W. S. & Ranganathan, R. The spatial architecture of protein function and adaptation. Nature 491, 138–142 (2012).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Gajula, K. S. et al. High-throughput mutagenesis reveals functional determinants for DNA targeting by activation-induced deaminase. Nucleic Acids Res. 42, 9964–9975 (2014).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Doolan, K. M. & Colby, D. W. Conformation-dependent epitopes recognized by prion protein antibodies probed using mutational scanning and deep sequencing. J. Mol. Biol. 427, 328–340 (2015).

CAS 
PubMed 

Google Scholar
 

Starita, L. M. et al. Massively parallel functional analysis of BRCA1 RING domain variants. Genetics 200, 413–422 (2015).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Majithia, A. R. et al. Prospective functional classification of all possible missense variants in PPARG. Nat. Genet. 48, 1570–1575 (2016).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Starita, L. M. et al. Variant interpretation: functional assays to the rescue. Am. J. Hum. Genet. 101, 315–325 (2017).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Kachroo, A. H. et al. Systematic humanization of yeast genes reveals conserved functions and genetic modularity. Science 348, 921–925 (2015).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

van Loggerenberg, W. et al. Systematically testing human HMBS missense variants to reveal mechanism and pathogenic variation. Am. J. Hum. Genet. 110, 1769–1786 (2023).

PubMed 
PubMed Central 

Google Scholar
 

Lo, R. S. et al. The functional impact of 1,570 individual amino acid substitutions in human OTC. Am. J. Hum. Genet. 110, 863–879 (2023).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Weile, J. et al. Shifting landscapes of human MTHFR missense-variant effects. Am. J. Hum. Genet. 108, 1283–1300 (2021).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Ollodart, A. R. et al. Multiplexing mutation rate assessment: determining pathogenicity of Msh2 variants in Saccharomyces cerevisiae. Genetics 218, iyab058 (2021).

PubMed 
PubMed Central 

Google Scholar
 

Sun, S. et al. A proactive genotype-to-patient-phenotype map for cystathionine beta-synthase. Genome Med. 12, 13 (2020).

PubMed 
PubMed Central 

Google Scholar
 

Silverstein, R. A. et al. A systematic genotype–phenotype map for missense variants in the human intellectual disability-associated gene GDI1. Preprint at bioRxiv https://doi.org/10.1101/2021.10.06.463360 (2021).

Gersing, S. et al. A comprehensive map of human glucokinase variant activity. Genome Biol. 24, 97 (2023).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Jia, X. et al. Massively parallel functional testing of MSH2 missense variants conferring Lynch syndrome risk. Am. J. Hum. Genet. 108, 163–175 (2021).

CAS 
PubMed 

Google Scholar
 

Sung, A. Y. et al. Systematic analysis of NDUFAF6 in complex I assembly and mitochondrial disease. Nat. Metab. 6, 1128–1142 (2024).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Findlay, G. M. et al. Accurate classification of BRCA1 variants with saturation genome editing. Nature 562, 217–222 (2018). This study demonstrated that saturation genome editing enables high-throughput, accurate functional assessment of nearly all possible single-nucleotide variants in key exons of BRCA1 (BRCT and RING domains), providing immediate and clinically actionable data for the classification of variants of uncertain significance.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Radford, E. J. et al. Saturation genome editing of DDX3X clarifies pathogenicity of germline and somatic variation. Nat. Commun. 14, 7702 (2023).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Buckley, M. et al. Saturation genome editing maps the functional spectrum of pathogenic VHL alleles. Nat. Genet. 56, 1446–1455 (2024).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Olvera-León, R. et al. High-resolution functional mapping of RAD51C by saturation genome editing. Cell 187, 5719–5734.e19 (2024).

PubMed 

Google Scholar
 

Waters, A. J. et al. Saturation genome editing of BAP1 functionally classifies somatic and germline variants. Nat. Genet. 56, 1434–1445 (2024).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Blomen, V. A. et al. Gene essentiality and synthetic lethality in haploid human cells. Science 350, 1092–1096 (2015).

CAS 
PubMed 

Google Scholar
 

Meitlis, I. et al. Multiplexed functional assessment of genetic variants in CARD11. Am. J. Hum. Genet. 107, 1029–1043 (2020).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Sahu, S. et al. Saturation genome editing of 11 codons and exon 13 of BRCA2 coupled with chemotherapeutic drug response accurately determines pathogenicity of variants. PLoS Genet. 19, e1010940 (2023).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Huang, H. et al. Saturation genome editing-based functional evaluation and clinical classification of BRCA2 single nucleotide variants. Preprint at bioRxiv https://doi.org/10.1101/2023.12.14.571597 (2023).

Funk, J. S. et al. Deep CRISPR mutagenesis characterizes the functional diversity of TP53 mutations. Nat. Genet. 57, 140–153 (2025).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Yue, P., Li, Z. & Moult, J. Loss of protein structure stability as a major causative factor in monogenic disease. J. Mol. Biol. 353, 459–473 (2005).

CAS 
PubMed 

Google Scholar
 

Redler, R. L., Das, J., Diaz, J. R. & Dokholyan, N. V. Protein destabilization as a common factor in diverse inherited disorders. J. Mol. Evol. 82, 11–16 (2016).

CAS 
PubMed 

Google Scholar
 

Amorosi, C. J. et al. Massively parallel characterization of CYP2C9 variant enzyme activity and abundance. Am. J. Hum. Genet. 108, 1735–1751 (2021).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Boyle, G. E. et al. Deep mutational scanning of CYP2C19 in human cells reveals a substrate specificity-abundance tradeoff. Genetics 228, iyae156 (2024).

PubMed 

Google Scholar
 

Chiasson, M. A. et al. Multiplexed measurement of variant abundance and activity reveals VKOR topology, active site and human variant impact. eLife 9, e58026 (2020).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Suiter, C. C. et al. Massively parallel variant characterization identifies NUDT15 alleles associated with thiopurine toxicity. Proc. Natl Acad. Sci. USA 117, 5394–5401 (2020).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Clausen, L. et al. A mutational atlas for Parkin proteostasis. Nat. Commun. 15, 1541 (2024).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Muhammad, A. et al. High-throughput functional mapping of variants in an arrhythmia gene, KCNE1, reveals novel biology. Genome Med. 16, 73 (2024).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

O’Neill, M. J. et al. Multiplexed assays of variant effect and automated patch clamping improve KCNH2-LQTS variant classification and cardiac event risk stratification. Circulation 150, 1869–1881 (2024).

PubMed 

Google Scholar
 

Kozek, K. A. et al. High-throughput discovery of trafficking-deficient variants in the cardiac potassium channel KV11.1. Heart Rhythm 17, 2180–2189 (2020).

PubMed 
PubMed Central 

Google Scholar
 

Grønbæk-Thygesen, M. et al. Deep mutational scanning reveals a correlation between degradation and toxicity of thousands of aspartoacylase variants. Nat. Commun. 15, 4026 (2024).

PubMed 
PubMed Central 

Google Scholar
 

Yee, S. W. et al. The full spectrum of SLC22 OCT1 mutations illuminates the bridge between drug transporter biophysics and pharmacogenomics. Mol. Cell 84, 1932–1947.e10 (2024).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Popp, N. A. et al. Multiplex, multimodal mapping of variant effects in secreted proteins. Preprint at bioRxiv https://doi.org/10.1101/2024.04.01.587474 (2024).

Tavtigian, S. V. et al. Modeling the ACMG/AMP variant classification guidelines as a Bayesian classification framework. Genet. Med. 20, 1054–1060 (2018). This paper translated the ACMG/AMP variant classification guidelines into a quantitative Bayesian framework by assigning odds of pathogenicity to each evidence strength level (supporting, moderate, strong and very strong) and modelling the combination of evidence as multiplicative updates to a prior probability of pathogenicity.

PubMed 
PubMed Central 

Google Scholar
 

Fayer, S. et al. Closing the gap: systematic integration of multiplexed functional data resolves variants of uncertain significance in BRCA1, TP53, and PTEN. Am. J. Hum. Genet. 108, 2248–2258 (2021). This paper systematically integrated multiplexed assays of variant effect evidence to resolve variants of uncertain significance in clinically actionable genes, BRCA1, TP53 and PTEN, using a diagnostic laboratory cohort and demonstrated that 49% of such variants in BRCA1, 69% in TP53 and 15% in PTEN could be reclassified.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Mester, J. L. et al. Gene-specific criteria for PTEN variant curation: recommendations from the ClinGen PTEN expert panel. Hum. Mutat. 39, 1581–1592 (2018).

PubMed 

Google Scholar
 

Scott, A. et al. Saturation-scale functional evidence supports clinical variant interpretation in Lynch syndrome. Genome Biol. 23, 266 (2022).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Miller, D. T. et al. ACMG SF v3.2 list for reporting of secondary findings in clinical exome and genome sequencing: a policy statement of the American College of Medical Genetics and Genomics (ACMG). Genet. Med. 25, 100866 (2023).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Adamovich, A. I. et al. The functional impact of BRCA1 BRCT domain variants using multiplexed DNA double-strand break repair assays. Am. J. Hum. Genet. 109, 618–630 (2022).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Floyd, B. J. et al. Proactive variant effect mapping aids diagnosis in pediatric cardiac arrest. Circ. Genom. Precis. Med. 16, e003792 (2023).

PubMed 
PubMed Central 

Google Scholar
 

Boettcher, S. et al. A dominant-negative effect drives selection of TP53 missense mutations in myeloid malignancies. Science 365, 599–604 (2019).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Zheng, H. et al. Proactive functional classification of all possible missense single-nucleotide variants in KCNQ4. Genome Res. 32, 1573–1584 (2022).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Glazer, A. M. et al. Deep mutational scan of an SCN5A voltage sensor. Circ. Genom. Precis. Med. 13, e002786 (2020).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Rubin, A. F. et al. MaveDB 2024: a curated community database with over seven million variant effects from multiplexed functional assays. Genome Biol. 26, 13 (2025). This study provides a centralized, publicly accessible repository for multiplexed assays of variant effect data.

PubMed 
PubMed Central 

Google Scholar
 

IGVF Consortium. Deciphering the impact of genomic variation on function. Nature 633, 47–57 (2024). This paper established a comprehensive framework and resource for systematically mapping the functional consequences of human genomic variation across hundreds of cell types and states, integrating single-cell mapping, high-throughput genomic perturbations and predictive modelling to link both coding and non-coding variants to molecular and cellular phenotypes.

CAS 
PubMed Central 

Google Scholar
 

Claussnitzer, M. et al. Minimum information and guidelines for reporting a multiplexed assay of variant effect. Genome Biol. 25, 100 (2024).

PubMed 
PubMed Central 

Google Scholar
 

Zhang, F. & Lupski, J. R. Non-coding genetic variants in human disease. Hum. Mol. Genet. 24, R102–R110 (2015).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

French, J. D. & Edwards, S. L. The role of noncoding variants in heritable disease. Trends Genet. 36, 880–891 (2020).

CAS 
PubMed 

Google Scholar
 

Mattioli, K. et al. High-throughput functional analysis of lncRNA core promoters elucidates rules governing tissue specificity. Genome Res. 29, 344–355 (2019).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Patwardhan, R. P. et al. Massively parallel functional dissection of mammalian enhancers in vivo. Nat. Biotechnol. 30, 265–270 (2012).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Kheradpour, P. et al. Systematic dissection of regulatory motifs in 2000 predicted human enhancers using a massively parallel reporter assay. Genome Res. 23, 800–811 (2013).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Zhao, W. et al. Massively parallel functional annotation of 3′ untranslated regions. Nat. Biotechnol. 32, 387–391 (2014).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Birnbaum, R. Y. et al. Systematic dissection of coding exons at single nucleotide resolution supports an additional role in cell-specific transcriptional regulation. PLoS Genet. 10, e1004592 (2014).

PubMed 
PubMed Central 

Google Scholar
 

Kwasnieski, J. C., Fiore, C., Chaudhari, H. G. & Cohen, B. A. High-throughput functional testing of ENCODE segmentation predictions. Genome Res. 24, 1595–1602 (2014).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Wong, M. S., Kinney, J. B. & Krainer, A. R. Quantitative activity profile and context dependence of all human 5′ splice sites. Mol. Cell 71, 1012–1026.e3 (2018).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Doni Jayavelu, N., Jajodia, A., Mishra, A. & Hawkins, R. D. Candidate silencer elements for the human and mouse genomes. Nat. Commun. 11, 1061 (2020).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Oikonomou, P., Goodarzi, H. & Tavazoie, S. Systematic identification of regulatory elements in conserved 3′ UTRs of human transcripts. Cell Rep. 7, 281–292 (2014).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Sample, P. J. et al. Human 5′ UTR design and variant effect prediction from a massively parallel translation assay. Nat. Biotechnol. 37, 803–809 (2019).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Mueller, W. F., Larsen, L. S. Z., Garibaldi, A., Hatfield, G. W. & Hertel, K. J. The silent sway of splicing by synonymous substitutions. J. Biol. Chem. 290, 27700–27711 (2015).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Julien, P., Miñana, B., Baeza-Centurion, P., Valcárcel, J. & Lehner, B. The complete local genotype–phenotype landscape for the alternative splicing of a human exon. Nat. Commun. 7, 11558 (2016).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Ke, S. et al. Saturation mutagenesis reveals manifold determinants of exon definition. Genome Res. 28, 11–24 (2018).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Chong, R. et al. A multiplexed assay for exon recognition reveals that an unappreciated fraction of rare genetic variants cause large-effect splicing disruptions. Mol. Cell 73, 183–194.e8 (2019).

PubMed 

Google Scholar
 

Rosenberg, A. B., Patwardhan, R. P., Shendure, J. & Seelig, G. Learning the sequence determinants of alternative splicing from millions of random sequences. Cell 163, 698–711 (2015).

CAS 
PubMed 

Google Scholar
 

Braun, S. et al. Decoding a cancer-relevant splicing decision in the RON proto-oncogene using high-throughput mutagenesis. Nat. Commun. 9, 3315 (2018).

PubMed 
PubMed Central 

Google Scholar
 

Safra, M., Nir, R., Farouq, D., Vainberg Slutskin, I. & Schwartz, S. TRUB1 is the predominant pseudouridine synthase acting on mammalian mRNA via a predictable and conserved code. Genome Res. 27, 393–406 (2017).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Liu, X. et al. Learning cis-regulatory principles of ADAR-based RNA editing from CRISPR-mediated mutagenesis. Nat. Commun. 12, 2165 (2021).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Shukla, C. J. et al. High-throughput identification of RNA nuclear enrichment sequences. EMBO J. 37, e98452 (2018).

PubMed 
PubMed Central 

Google Scholar
 

McQuerry, J. A. et al. Massively parallel identification of functionally consequential noncoding genetic variants in undiagnosed rare disease patients. Sci. Rep. 12, 7576 (2022).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Rhine, C. L. et al. Massively parallel reporter assays discover de novo exonic splicing mutants in paralogs of autism genes. PLoS Genet. 18, e1009884 (2022).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Kircher, M. et al. Saturation mutagenesis of twenty disease-associated regulatory elements at single base-pair resolution. Nat. Commun. 10, 3583 (2019). This study demonstrated that saturation mutagenesis combined with massively parallel reporter assays enables single base-pair resolution functional mapping of disease-associated regulatory elements.

PubMed 
PubMed Central 

Google Scholar
 

Ellingford, J. M. et al. Recommendations for clinical interpretation of variants found in non-coding regions of the genome. Genome Med. 14, 73 (2022).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Li, M. M. et al. Standards and guidelines for the interpretation and reporting of sequence variants in cancer: a joint consensus recommendation of the Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists. J. Mol. Diagn. 19, 4–23 (2017).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Horak, P. et al. Standards for the classification of pathogenicity of somatic variants in cancer (oncogenicity): joint recommendations of Clinical Genome Resource (ClinGen), Cancer Genomics Consortium (CGC), and Variant Interpretation for Cancer Consortium (VICC). Genet. Med. 24, 986–998 (2022).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Johnson, A. et al. Clinical use of precision oncology decision support. JCO Precis. Oncol. 2017, 1–12 (2017).


Google Scholar
 

Dogruluk, T. et al. Identification of variant-specific functions of PIK3CA by rapid phenotyping of rare mutations. Cancer Res. 75, 5341–5354 (2015).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Narayan, P. et al. FDA approval summary: alpelisib plus fulvestrant for patients with HR-positive, HER2-negative, PIK3CA-mutated, advanced or metastatic breast cancer. Clin. Cancer Res. 27, 1842–1849 (2021).

CAS 
PubMed 

Google Scholar
 

de Bruijn, I. et al. Analysis and visualization of longitudinal genomic and clinical data from the AACR Project GENIE Biopharma Collaborative in cBioPortal. Cancer Res. 83, 3861–3867 (2023).

PubMed 
PubMed Central 

Google Scholar
 

Bridgford, J. L. et al. Novel drivers and modifiers of MPL-dependent oncogenic transformation identified by deep mutational scanning. Blood 135, 287–292 (2020).

PubMed 

Google Scholar
 

Estevam, G. O. et al. Conserved regulatory motifs in the juxtamembrane domain and kinase N-lobe revealed through deep mutational scanning of the MET receptor tyrosine kinase domain. eLife 12, RP91619 (2024).

PubMed 
PubMed Central 

Google Scholar
 

Bandaru, P. et al. Deconstruction of the Ras switching cycle through saturation mutagenesis. eLife 6, e27810 (2017).

PubMed 
PubMed Central 

Google Scholar
 

Cantor, A. J., Shah, N. H. & Kuriyan, J. Deep mutational analysis reveals functional trade-offs in the sequences of EGFR autophosphorylation sites. Proc. Natl Acad. Sci. USA 115, E7303–E7312 (2018).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Belli, O., Karava, K., Farouni, R. & Platt, R. J. Multimodal scanning of genetic variants with base and prime editing. Nat. Biotechnol. https://doi.org/10.1038/s41587-024-02439-1 (2024).

PubMed 

Google Scholar
 

Kohsaka, S. et al. A method of high-throughput functional evaluation of EGFR gene variants of unknown significance in cancer. Sci. Transl. Med. 9, eaan6566 (2017).

PubMed 

Google Scholar
 

Kim, Y., Oh, H.-C., Lee, S. & Kim, H. H. Saturation profiling of drug-resistant genetic variants using prime editing. Nat. Biotechnol. https://doi.org/10.1038/s41587-024-02465-z (2024).

PubMed 
PubMed Central 

Google Scholar
 

Chardon, F. M. et al. A multiplex, prime editing framework for identifying drug resistance variants at scale. Preprint at bioRxiv https://doi.org/10.1101/2023.07.27.550902 (2023).

PubMed 
PubMed Central 

Google Scholar
 

Ma, L. et al. CRISPR–Cas9-mediated saturated mutagenesis screen predicts clinical drug resistance with improved accuracy. Proc. Natl Acad. Sci. USA 114, 11751–11756 (2017).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Chakraborty, S. et al. Profiling of drug resistance in Src kinase at scale uncovers a regulatory network coupling autoinhibition and catalytic domain dynamics. Cell Chem. Biol. 31, 207–220.e11 (2024).

CAS 
PubMed 

Google Scholar
 

Awad, M. M. et al. Acquired resistance to KRASG12C inhibition in cancer. N. Engl. J. Med. 384, 2382–2393 (2021).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Persky, N. S. et al. Defining the landscape of ATP-competitive inhibitor resistance residues in protein kinases. Nat. Struct. Mol. Biol. 27, 92–104 (2020).

CAS 
PubMed 

Google Scholar
 

Kim, J. et al. A framework for individualized splice-switching oligonucleotide therapy. Nature 619, 828–836 (2023).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

McKee, A. G. et al. General trends in the effects of VX-661 and VX-445 on the plasma membrane expression of clinical CFTR variants. Cell Chem. Biol. 30, 632–642.e5 (2023).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Howard, C. J. et al. High resolution deep mutational scanning of the melanocortin-4 receptor enables target characterization for drug discovery. eLife 13, RP104725 (2024).


Google Scholar
 

Mathy, C. J. P. et al. A complete allosteric map of a GTPase switch in its native cellular network. Cell Syst. 14, 237–246.e7 (2023).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Tack, D. S. et al. The genotype–phenotype landscape of an allosteric protein. Mol. Syst. Biol. 17, e10179 (2021).

PubMed 
PubMed Central 

Google Scholar
 

Faure, A. J. et al. Mapping the energetic and allosteric landscapes of protein binding domains. Nature 604, 175–183 (2022).

CAS 
PubMed 

Google Scholar
 

Leander, M., Yuan, Y., Meger, A., Cui, Q. & Raman, S. Functional plasticity and evolutionary adaptation of allosteric regulation. Proc. Natl Acad. Sci. USA 117, 25445–25454 (2020).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Weng, C., Faure, A. J., Escobedo, A. & Lehner, B. The energetic and allosteric landscape for KRAS inhibition. Nature 626, 643–652 (2024).

CAS 
PubMed 

Google Scholar
 

Mason, D. M. et al. High-throughput antibody engineering in mammalian cells by CRISPR/Cas9-mediated homology-directed mutagenesis. Nucleic Acids Res. 46, 7436–7449 (2018).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Wollacott, A. M. et al. Structural prediction of antibody–APRIL complexes by computational docking constrained by antigen saturation mutagenesis library data. J. Mol. Recognit. 32, e2778 (2019).

PubMed 

Google Scholar
 

Koenig, P., Sanowar, S., Lee, C. V. & Fuh, G. Tuning the specificity of a Two-in-One Fab against three angiogenic antigens by fully utilizing the information of deep mutational scanning. MAbs 9, 959–967 (2017).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Renn, A., Fu, Y., Hu, X., Hall, M. D. & Simeonov, A. Fruitful neutralizing antibody pipeline brings hope to defeat SARS-CoV-2. Trends Pharmacol. Sci. 41, 815–829 (2020).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Mengist, H. M. et al. Mutations of SARS-CoV-2 spike protein: implications on immune evasion and vaccine-induced immunity. Semin. Immunol. 55, 101533 (2021).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Starr, T. N. et al. Deep mutational scanning of SARS-CoV-2 receptor binding domain reveals constraints on folding and ACE2 binding. Cell 182, 1295–1310.e20 (2020).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Starr, T. N. et al. Prospective mapping of viral mutations that escape antibodies used to treat COVID-19. Science 371, 850–854 (2021).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Starr, T. N., Greaney, A. J., Dingens, A. S. & Bloom, J. D. Complete map of SARS-CoV-2 RBD mutations that escape the monoclonal antibody LY-CoV555 and its cocktail with LY-CoV016. Cell Rep. Med. 2, 100255 (2021).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Greaney, A. J. et al. Mapping mutations to the SARS-CoV-2 RBD that escape binding by different classes of antibodies. Nat. Commun. 12, 4196 (2021).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Greaney, A. J., Starr, T. N. & Bloom, J. D. An antibody-escape estimator for mutations to the SARS-CoV-2 receptor-binding domain. Virus Evol. 8, veac021 (2022).

PubMed 
PubMed Central 

Google Scholar
 

Dadonaite, B. et al. Spike deep mutational scanning helps predict success of SARS-CoV-2 clades. Nature 631, 617–626 (2024).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Li, Y., Arcos, S., Sabsay, K. R., Te Velthuis, A. J. W. & Lauring, A. S. Deep mutational scanning reveals the functional constraints and evolutionary potential of the influenza A virus PB1 protein. J. Virol. 97, e0132923 (2023).

PubMed 

Google Scholar
 

Kikawa, C. et al. The effect of single mutations in Zika virus envelope on escape from broadly neutralizing antibodies. J. Virol. 97, e0141423 (2023).

PubMed 

Google Scholar
 

Radford, C. E. et al. Mapping the neutralizing specificity of human anti-HIV serum by deep mutational scanning. Cell Host Microbe 31, 1200–1215.e9 (2023).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Lei, R. et al. Mutational fitness landscape of human influenza H3N2 neuraminidase. Cell Rep. 42, 111951 (2023).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Soh, Y. S., Moncla, L. H., Eguia, R., Bedford, T. & Bloom, J. D. Comprehensive mapping of adaptation of the avian influenza polymerase protein PB2 to humans. eLife 8, e45079 (2019).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Dadonaite, B. et al. Deep mutational scanning of H5 hemagglutinin to inform influenza virus surveillance. PLoS Biol. 22, e3002916 (2024).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Larsen, B. B. et al. Functional and antigenic landscape of the Nipah virus receptor-binding protein. Cell 188, 2480–2494.e22 (2025).

PubMed 

Google Scholar
 

Carr, C. R. et al. Deep mutational scanning reveals functional constraints and antibody-escape potential of Lassa virus glycoprotein complex. Immunity 57, 2061–2076.e11 (2024).

CAS 
PubMed 

Google Scholar
 

Martin-Rufino, J. D. et al. Massively parallel base editing to map variant effects in human hematopoiesis. Cell 186, 2456–2474.e24 (2023).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Schmidt, R. et al. Base-editing mutagenesis maps alleles to tune human T cell functions. Nature 625, 805–812 (2024).

CAS 
PubMed 

Google Scholar
 

Walsh, Z. H. et al. Mapping variant effects on anti-tumor hallmarks of primary human T cells with base-editing screens. Nat. Biotechnol. https://doi.org/10.1038/s41587-024-02235-x (2024).

PubMed 
PubMed Central 

Google Scholar
 

Richter, M. F. et al. Phage-assisted evolution of an adenine base editor with improved Cas domain compatibility and activity. Nat. Biotechnol. 38, 883–891 (2020).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Nishimasu, H. et al. Engineered CRISPR–Cas9 nuclease with expanded targeting space. Science 361, 1259–1262 (2018).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Thuronyi, B. W. et al. Continuous evolution of base editors with expanded target compatibility and improved activity. Nat. Biotechnol. 37, 1070–1079 (2019).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Kim, M. Y. et al. Genetic inactivation of CD33 in hematopoietic stem cells to enable CAR T cell immunotherapy for acute myeloid leukemia. Cell 173, 1439–1453.e19 (2018).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Cheng, J. et al. Accurate proteome-wide missense variant effect prediction with AlphaMissense. Science 381, eadg7492 (2023).

CAS 
PubMed 

Google Scholar
 

Frazer, J. et al. Disease variant prediction with deep generative models of evolutionary data. Nature 599, 91–95 (2021).

CAS 
PubMed 

Google Scholar
 

Orenbuch, R. et al. Proteome-wide model for human disease genetics. Preprint at medRxiv https://doi.org/10.1101/2023.11.27.23299062 (2025).

Schneider, K., Zelley, K., Nichols, K. E., Schwartz Levine, A. & Garber, J. GeneReviews (Univ. Washington, 1993).

Sondka, Z. et al. COSMIC: a curated database of somatic variants and clinical data for cancer. Nucleic Acids Res. 52, D1210–D1217 (2024).

CAS 
PubMed 

Google Scholar
 

Critical Assessment of Genome Interpretation Consortium. CAGI, the critical assessment of genome interpretation, establishes progress and prospects for computational genetic variant interpretation methods. Genome Biol. 25, 53 (2024).


Google Scholar
 

Livesey, B. J. & Marsh, J. A. Using deep mutational scanning to benchmark variant effect predictors and identify disease mutations. Mol. Syst. Biol. 16, e9380 (2020). This study demonstrated that deep mutational scanning provides an independent, quantitative benchmark for evaluating computational variant effect predictors, revealing that experimental deep mutational scanning data often outperform current computational methods in identifying pathogenic missense mutations.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Notin, P. et al. ProteinGym: large-scale benchmarks for protein design and fitness prediction. Preprint at bioRxiv https://doi.org/10.1101/2023.12.07.570727 (2023).

Avsec, Ž. et al. Effective gene expression prediction from sequence by integrating long-range interactions. Nat. Methods 18, 1196–1203 (2021).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Gray, V. E., Hause, R. J., Luebeck, J., Shendure, J. & Fowler, D. M. Quantitative missense variant effect prediction using large-scale mutagenesis data. Cell Syst. 6, 116–124.e3 (2018).

CAS 
PubMed 

Google Scholar
 

Jagota, M. et al. Cross-protein transfer learning substantially improves disease variant prediction. Genome Biol. 24, 182 (2023).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Lafita, A. et al. Fine-tuning protein language models with deep mutational scanning improves variant effect prediction. Preprint at https://doi.org/10.48550/arXiv.2405.06729 (2024).

Dieckhaus, H., Brocidiacono, M., Randolph, N. Z. & Kuhlman, B. Transfer learning to leverage larger datasets for improved prediction of protein stability changes. Proc. Natl Acad. Sci. USA 121, e2314853121 (2024).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Tsuboyama, K. et al. Mega-scale experimental analysis of protein folding stability in biology and design. Nature 620, 434–444 (2023).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Dawood, M. et al. Using multiplexed functional data to reduce variant classification inequities in underrepresented populations. Genome Med. 16, 143 (2024).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Kuang, D. et al. MaveRegistry: a collaboration platform for multiplexed assays of variant effect. Bioinformatics 37, 3382–3383 (2021).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Beltran, A., Jiang, X., Shen, Y. & Lehner, B. Site-saturation mutagenesis of 500 human protein domains. Nature 637, 885–894 (2025).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Kreimer, A. et al. Massively parallel reporter perturbation assays uncover temporal regulatory architecture during neural differentiation. Nat. Commun. 13, 1504 (2022).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Capauto, D. et al. Characterization of enhancer activity in early human neurodevelopment using massively parallel reporter assay (MPRA) and forebrain organoids. Sci. Rep. 14, 3936 (2024).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Deng, C. et al. Massively parallel characterization of regulatory elements in the developing human cortex. Science 384, eadh0559 (2024).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Allen, S. et al. Workshop report: the clinical application of data from multiplex assays of variant effect (MAVEs), 12 July 2023. Eur. J. Hum. Genet. 32, 593–600 (2024).

PubMed 
PubMed Central 

Google Scholar
 

Villani, R. M. et al. Consultation informs strategies for improving the use of functional evidence in variant classification. Am. J. Hum. Genet. 112, 1489–1495 (2025). 

CAS 
PubMed 

Google Scholar
 

Park, M. S. et al. Insights on improving accessibility and usability of functional data to unlock their potential for variant interpretation. Am. J. Hum. Genet. 112, 1468–1478 (2025). This paper surveys genetics professionals actively engaged in clinical variant interpretation, with both quantitative and qualitative analyses performed on the responses to assess current practices, barriers and needs related to the use of high-throughput functional assay data for variant classification.

CAS 
PubMed 

Google Scholar
 

Clark, K. A. et al. Comprehensive evaluation and efficient classification of BRCA1 RING domain missense substitutions. Am. J. Hum. Genet. 109, 1153–1174 (2022).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Gebbia, M. et al. A missense variant effect map for the human tumor-suppressor protein CHK2. Am. J. Hum. Genet. 111, 2675–2692 (2024).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Shepherdson, J. L. et al. Mutational scanning of CRX classifies clinical variants and reveals biochemical properties of the transcriptional effector domain. Genome Res. 34, 1540–1552 (2024).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Gilbert, M. A. et al. Functional characterization of 2,832 JAG1 variants supports reclassification for Alagille syndrome and improves guidance for clinical variant interpretation. Am. J. Hum. Genet. 111, 1656–1672 (2024).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

McDonnell, A. F. et al. Deep mutational scanning quantifies DNA binding and predicts clinical outcomes of PAX6 variants. Mol. Syst. Biol. 20, 825–844 (2024).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Wan, A., Place, E., Pierce, E. A. & Comander, J. Characterizing variants of unknown significance in rhodopsin: a functional genomics approach. Hum. Mutat. 40, 1127–1144 (2019).

CAS 
PubMed 

Google Scholar
 

Fortuno, C. et al. An updated quantitative model to classify missense variants in the TP53 gene: a novel multifactorial strategy. Hum. Mutat. 42, 1351–1361 (2021).

CAS 
PubMed 

Google Scholar
Â