Regev, A. et al. The human cell atlas. eLife 6, e27041 (2017).

PubMed 
PubMed Central 

Google Scholar
 

Karlsson, M. et al. A single-cell type transcriptomics map of human tissues. Sci. Adv. 7, eabh2169 (2021).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Consortium, T. T. S. et al. The tabula sapiens: a multiple-organ, single-cell transcriptomic atlas of humans. Science 376, eabl4896 (2022).


Google Scholar
 

Jain, S. et al. Advances and prospects for the Human BioMolecular Atlas Program (HuBMAP). Nat. Cell Biol. 25, 1089–1100 (2023).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Frenkel, M. & Raman, S. Discovering mechanisms of human genetic variation and controlling cell states at scale. Trends Genet. 40, 587–600 (2024).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Rafelski, S. M. & Theriot, J. A. Establishing a conceptual framework for holistic cell states and state transitions. Cell 187, 2633–2651 (2024).

CAS 
PubMed 

Google Scholar
 

Zhang, M. et al. Molecularly defined and spatially resolved cell atlas of the whole mouse brain. Nature 624, 343–354 (2023).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Patel, A. S. & Yanai, I. A developmental constraint model of cancer cell states and tumor heterogeneity. Cell 187, 2907–2918 (2024).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Rood, J. E., Maartens, A., Hupalowska, A., Teichmann, S. A. & Regev, A. Impact of the Human Cell Atlas on medicine. Nat. Med. 28, 2486–2496 (2022).

CAS 
PubMed 

Google Scholar
 

Joung, J. et al. A transcription factor atlas of directed differentiation. Cell 186, 209–229.e26 (2023).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Gilbert, L. A. et al. Genome-scale CRISPR-mediated control of gene repression and activation. Cell 159, 647–661 (2014).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Konermann, S. et al. Genome-scale transcriptional activation by an engineered CRISPR–Cas9 complex. Nature 517, 583–588 (2015).

CAS 
PubMed 

Google Scholar
 

Liu, Y. et al. CRISPR activation screens systematically identify factors that drive neuronal fate and reprogramming. Cell Stem Cell 23, 758–771.e8 (2018).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Norman, T. M. et al. Exploring genetic interaction manifolds constructed from rich single-cell phenotypes. Science 365, 786–793 (2019).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Tian, R. et al. Genome-wide CRISPRi/a screens in human neurons link lysosomal failure to ferroptosis. Nat. Neurosci. 24, 1020–1034 (2021).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Yang, J. et al. Genome-scale CRISPRa screen identifies novel factors for cellular reprogramming. Stem Cell Rep. 12, 757–771 (2019).

CAS 

Google Scholar
 

Sanson, K. R. et al. Optimized libraries for CRISPR–Cas9 genetic screens with multiple modalities. Nat. Commun. 9, 5416 (2018).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Papalexi, E. et al. Characterizing the molecular regulation of inhibitory immune checkpoints with multimodal single-cell screens. Nat. Genet. 53, 322–331 (2021).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Griffith, A. L. et al. Optimization of Cas12a for multiplexed genome-scale transcriptional activation. Cell Genomics 3, 100387 (2023).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Adamson, B. et al. A multiplexed single-cell CRISPR screening platform enables systematic dissection of the unfolded protein response. Cell 167, 1867–1882.e21 (2016).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Dixit, A. et al. Perturb-seq: dissecting molecular circuits with scalable single-cell RNA profiling of pooled genetic screens. Cell 167, 1853–1866.e17 (2016).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Bock, C. et al. High-content CRISPR screening. Nat. Rev. Methods Prim. 2, 8 (2022).

CAS 

Google Scholar
 

Pacalin, N. M. et al. Bidirectional epigenetic editing reveals hierarchies in gene regulation. Nat. Biotechnol. 43, 355–368 (2025).

CAS 
PubMed 

Google Scholar
 

Schmidt, R. et al. CRISPR activation and interference screens decode stimulation responses in primary human T cells. Science 375, eabj4008 (2022).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Chardon, F. M. et al. Multiplex, single-cell CRISPRa screening for cell type specific regulatory elements. Nat. Commun. 15, 8209 (2024).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Replogle, J. M. et al. Mapping information-rich genotype–phenotype landscapes with genome-scale Perturb-seq. Cell 185, 2559–2575.e28 (2022).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Smith, M. H. et al. Drivers of heterogeneity in synovial fibroblasts in rheumatoid arthritis. Nat. Immunol. 24, 1200–1210 (2023).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Wei, K. et al. Notch signalling drives synovial fibroblast identity and arthritis pathology. Nature 582, 259–264 (2020).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Mizoguchi, F. et al. Functionally distinct disease-associated fibroblast subsets in rheumatoid arthritis. Nat. Commun. 9, 789 (2018).

PubMed 
PubMed Central 

Google Scholar
 

Smillie, C. S. et al. Intra- and Inter-cellular rewiring of the human colon during ulcerative colitis. Cell 178, 714–730.e22 (2019).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Kinchen, J. et al. Structural remodeling of the human colonic mesenchyme in inflammatory bowel disease. Cell 175, 372–386.e17 (2018).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Cadinu, P. et al. Charting the cellular biogeography in colitis reveals fibroblast trajectories and coordinated spatial remodeling. Cell 187, 2010–2028.e30 (2024).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Tsukui, T., Wolters, P. J. & Sheppard, D. Alveolar fibroblast lineage orchestrates lung inflammation and fibrosis. Nature 631, 627–634 (2024).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Tsukui, T. et al. Collagen-producing lung cell atlas identifies multiple subsets with distinct localization and relevance to fibrosis. Nat. Commun. 11, 1920 (2020).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Amrute, J. M. et al. Targeting immune–fibroblast cell communication in heart failure. Nature 635, 423–433 (2024).

CAS 
PubMed 

Google Scholar
 

Alexanian, M. et al. Chromatin remodelling drives immune cell–fibroblast communication in heart failure. Nature 635, 434–443 (2024).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Chen, X. & Song, E. Turning foes to friends: targeting cancer-associated fibroblasts. Nat. Rev. Drug Discov. 18, 99–115 (2019).

CAS 
PubMed 

Google Scholar
 

Pradhan, R. N., Krishnamurty, A. T., Fletcher, A. L., Turley, S. J. & Müller, S. A bird’s eye view of fibroblast heterogeneity: a pan-disease, pan-cancer perspective. Immunological Rev. 302, 299–320 (2021).

CAS 

Google Scholar
 

Buechler, M. B. et al. Cross-tissue organization of the fibroblast lineage. Nature 593, 575–579 (2021).

CAS 
PubMed 

Google Scholar
 

Korsunsky, I. et al. Cross-tissue, single-cell stromal atlas identifies shared pathological fibroblast phenotypes in four chronic inflammatory diseases. Med 3, 481–518.e14 (2022).

CAS 
PubMed 

Google Scholar
 

Gao, Y. et al. Cross-tissue human fibroblast atlas reveals myofibroblast subtypes with distinct roles in immune modulation. Cancer Cell 42, 1764–1783.e10 (2024).

CAS 
PubMed 

Google Scholar
 

Croft, A. P. et al. Distinct fibroblast subsets drive inflammation and damage in arthritis. Nature 570, 246–251 (2019).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Krishnamurty, A. T. et al. LRRC15+ myofibroblasts dictate the stromal setpoint to suppress tumour immunity. Nature 611, 148–154 (2022).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

McCartney, E. E., Chung, Y. & Buechler, M. B. Life of Pi: exploring functions of Pi16+ fibroblasts. F1000Res 13, 126 (2024).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Melms, J. C. et al. A molecular single-cell lung atlas of lethal COVID-19. Nature 595, 114–119 (2021).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Horlbeck, M. A. et al. Compact and highly active next-generation libraries for CRISPR-mediated gene repression and activation. eLife 5, e19760 (2016).

PubMed 
PubMed Central 

Google Scholar
 

Replogle, J. M. et al. Maximizing CRISPRi efficacy and accessibility with dual-sgRNA libraries and optimal effectors. eLife 11, e81856 (2022).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Gasperini, M. et al. A genome-wide framework for mapping gene regulation via cellular genetic screens. Cell 176, 377–390.e19 (2019).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Yao, D. et al. Scalable genetic screening for regulatory circuits using compressed Perturb-seq. Nat. Biotechnol. 42, 1282–1295 (2024).

CAS 
PubMed 

Google Scholar
 

Morris, J. A. et al. Discovery of target genes and pathways at GWAS loci by pooled single-cell CRISPR screens. Science 380, eadh7699 (2023).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Datlinger, P. et al. Ultra-high-throughput single-cell RNA sequencing and perturbation screening with combinatorial fluidic indexing. Nat. Methods 18, 635–642 (2021).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Wu, B. et al. Overloading and unpacKing (OAK)—droplet-based combinatorial indexing for ultra-high throughput single-cell multiomic profiling. Nat. Commun. 15, 9146 (2024).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Wu, Q. et al. Massively parallel characterization of CRISPR activator efficacy in human induced pluripotent stem cells and neurons. Mol. Cell 83, 1125–1139.e8 (2023).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Loyfer, N. et al. A DNA methylation atlas of normal human cell types. Nature 613, 355–364 (2023).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Cazares, T. A. et al. maxATAC: genome-scale transcription-factor binding prediction from ATAC-seq with deep neural networks. PLoS Comput. Biol. 19, e1010863 (2023).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Tribolet-Hardy, J. et al. Genetic features and genomic targets of human KRAB-zinc finger proteins. Genome Res. 33, 1409–1423 (2023).

PubMed 
PubMed Central 

Google Scholar
 

O’Geen, H., Henry, I. M., Bhakta, M. S., Meckler, J. F. & Segal, D. J. A genome-wide analysis of Cas9 binding specificity using ChIP-seq and targeted sequence capture. Nucleic Acids Res. 43, 3389–3404 (2015).

PubMed 
PubMed Central 

Google Scholar
 

Rostain, W. et al. Cas9 off-target binding to the promoter of bacterial genes leads to silencing and toxicity. Nucleic Acids Res. 51, 3485–3496 (2023).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Uthaya et al. A genome-wide CRISPR activation screen identifies SCREEM a novel SNAI1 super-enhancer demarcated by eRNAs. Front. Mol. Biosci. 10, 1110445 (2023).


Google Scholar
 

Nuñez, J. K. et al. Genome-wide programmable transcriptional memory by CRISPR-based epigenome editing. Cell 184, 2503–2519.e17 (2021).

PubMed 
PubMed Central 

Google Scholar
 

Li, Y. et al. Genome-wide analyses reveal a role of Polycomb in promoting hypomethylation of DNA methylation valleys. Genome Biol. 19, 18 (2018).

PubMed 
PubMed Central 

Google Scholar
 

Cui, A. et al. Dictionary of immune responses to cytokines at single-cell resolution. Nature 625, 377–384 (2024).

CAS 
PubMed 

Google Scholar
 

Fang, F. et al. Early growth response 3 (Egr-3) is induced by transforming growth factor-β and regulates fibrogenic responses. Am. J. Pathol. 183, 1197–1208 (2013).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Li, A. et al. GATA6 triggers fibroblast activation and tracheal fibrosis through the Wnt/β-catenin pathway. Cell. Signal. 105, 110593 (2023).

CAS 
PubMed 

Google Scholar
 

Stebler, S. & Raghunath, M. The Scar-in-a-Jar: In Vitro Fibrosis Model for Anti-Fibrotic Drug Testing. In Myofibroblasts: Methods and Protocols (eds. Hinz, B. & Lagares, D.) 147–156 (Springer, 2021). https://doi.org/10.1007/978-1-0716-1382-5_11

Vázquez-García, I. et al. Ovarian cancer mutational processes drive site-specific immune evasion. Nature 612, 778–786 (2022).

PubMed 
PubMed Central 

Google Scholar
 

Pollak, N. M., Hoffman, M., Goldberg, I. J. & Drosatos, K. Krüppel-like factors: crippling and uncrippling metabolic pathways. JACC Basic Transl. Sci. 3, 132–156 (2018).

PubMed 
PubMed Central 

Google Scholar
 

Varrault, A. et al. Identification of Plagl1/Zac1 binding sites and target genes establishes its role in the regulation of extracellular matrix genes and the imprinted gene network. Nucleic Acids Res. 45, 10466–10480 (2017).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Jonsson, M. K. B. et al. A transcriptomic and epigenomic comparison of fetal and adult human cardiac fibroblasts reveals novel key transcription factors in adult cardiac fibroblasts. JACC Basic Transl. Sci. 1, 590–602 (2016).

PubMed 
PubMed Central 

Google Scholar
 

Tsuda, T. et al. Zinc finger protein Zac1 is expressed in chondrogenic sites of the mouse. Dev. Dyn. 229, 340–348 (2004).

CAS 
PubMed 

Google Scholar
 

Chrysanthopoulou, A. et al. Down-regulation of KLF2 in lung fibroblasts is linked with COVID-19 immunofibrosis and restored by combined inhibition of NETs, JAK-1/2 and IL-6 signaling. Clin. Immunol. 247, 109240 (2023).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Shi, J. et al. KLF2 attenuates bleomycin-induced pulmonary fibrosis and inflammation with regulation of AP-1. Biochem. Biophys. Res. Commun. 495, 20–26 (2018).

CAS 
PubMed 

Google Scholar
 

Chandran, R. R. et al. Distinct roles of KLF4 in mesenchymal cell subtypes during lung fibrogenesis. Nat. Commun. 12, 7179 (2021).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Penke, L. R. et al. KLF4 is a therapeutically tractable brake on fibroblast activation that promotes resolution of pulmonary fibrosis. JCI Insight 7, e160688 (2022).

PubMed 
PubMed Central 

Google Scholar
 

Noda, S. et al. Simultaneous downregulation of KLF5 and Fli1 is a key feature underlying systemic sclerosis. Nat. Commun. 5, 5797 (2014).

CAS 
PubMed 

Google Scholar
 

Roadmap Epigenomics Consortium et al. Integrative analysis of 111 reference human epigenomes. Nature 518, 317–330 (2015).

PubMed Central 

Google Scholar
 

Wang, X. et al. Antibody-free profiling of transcription factor occupancy during early embryogenesis by FitCUT&RUN. Genome Res. 32, 378–388 (2022).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Southard, K. et al. Hs27-CRISPRa-TFs cellranger outputs. Zenodo https://doi.org/10.5281/ZENODO.15213597 (2025).

Southard, K. et al. Hs27-CRISPRa-TFs. Zenodo https://doi.org/10.5281/ZENODO.15200179 (2025).

Southard, K. et al. RPE1-CRISPRa-TFs cellranger outputs. Zenodo https://doi.org/10.5281/ZENODO.15211972 (2025).

Southard, K. et al. RPE1-CRISPRa-TFs. Zenodo https://doi.org/10.5281/ZENODO.15213619 (2025).

Southard, K. et al. RPE1-E150-Benchmarking cellranger outputs. Zenodo https://doi.org/10.5281/ZENODO.15215389 (2025).

Southard, K. et al. RPE1-E150-Benchmarking. Zenodo https://doi.org/10.5281/ZENODO.15215414 (2025).

Southard, K. et al. K562 dCas9-CUT&RUN. Zenodo https://doi.org/10.5281/ZENODO.15215154 (2025).

Southard, K. et al. RPE-1 and Hs27 CUT&RUN, ATAC-seq, and RNA-seq characterization. Zenodo https://doi.org/10.5281/ZENODO.15215216 (2025).

K. Southard & Norman, T. norman-lab-msk/TFs_CRISPRa: CRISPRa TFs Perturb-seq v0.1. Zenodo https://doi.org/10.5281/ZENODO.15373940 (2025).