Bozkurt, B. et al. Heart failure epidemiology and outcomes statistics: a report of the Heart Failure Society of America. J. Card. Fail. 29, 1412–1451 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Fedeli, U. et al. Mortality from chronic liver disease: recent trends and impact of the COVID-19 pandemic. World J. Gastroenterol. 29, 4166–4173 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar
 

World Health Organization. Chronic obstructive pulmonary disease (COPD); https://www.who.int/news-room/fact-sheets/detail/chronic-obstructive-pulmonary-disease-(copd) (2024).

Kovesdy, C. P. Epidemiology of chronic kidney disease: an update 2022. Kidney Int. Suppl. 12, 7–11 (2022).

Article 

Google Scholar
 

Rana, A. et al. Survival benefit of solid-organ transplant in the United States. JAMA Surg. 150, 252–259 (2015).

Article 
PubMed 

Google Scholar
 

Statista. Estimated number of organ transplantations worldwide in 2023; https://www.statista.com/statistics/398645/global-estimation-of-organ-transplantations/ (2024).

Eurotransplant. Eurotransplant Annual Report 2023; https://www.eurotransplant.org/wp-content/uploads/2024/06/ETP_AR2023_LowRes.pdf (2024).

Chesnaye, N. C., Ortiz, A., Zoccali, C., Stel, V. S. & Jager, K. J. The impact of population ageing on the burden of chronic kidney disease. Nat. Rev. Nephrol. 20, 569–585 (2024).

Article 
PubMed 

Google Scholar
 

Guha, A. et al. Implication of ventricular assist devices in extracorporeal membranous oxygenation patients listed for heart transplantation. J. Clin. Med. 8, 572 (2019).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Pockros, B. M., Finch, D. J. & Weiner, D. E. Dialysis and total health care costs in the United States and worldwide: the financial impact of a single-payer dominant system in the US. J. Am. Soc. Nephrol. 32, 2137–2139 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Chadban, S. et al. Projecting the economic burden of chronic kidney disease at the patient level (inside CKD): a microsimulation modelling study. EClinicalMedicine 72, 102615 (2024).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Wang, Y. et al. Pig-to-human kidney xenotransplants using genetically modified minipigs. Cell Rep. Med. 5, 101744 (2024).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Mehta, M., Hosgood, S. & Nicholson, M. L. Protocol for a single-centre randomised pilot study to assess the safety and feasibility of adding a CytoSorb filter during kidney normothermic machine perfusion to remove inflammatory and immune mediators prior to kidney transplantation. BMJ Open 15, e093001 (2025).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Hosgood, S. A. et al. Normothermic machine perfusion versus static cold storage in donation after circulatory death kidney transplantation: a randomized controlled trial. Nat. Med. 29, 1511–1519 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Schlegel, A. et al. A multicenter randomized-controlled trial of hypothermic oxygenated perfusion (HOPE) for human liver grafts before transplantation. J. Hepatol. 78, 783–793 (2023).

Article 
CAS 
PubMed 

Google Scholar
 

Ardehali, A. et al. Ex-vivo perfusion of donor hearts for human heart transplantation (PROCEED II): a prospective, open-label, multicentre, randomised non-inferiority trial. Lancet 385, 2577–2584 (2015).

Article 
PubMed 

Google Scholar
 

Schroder, J. N. et al. Increasing utilization of extended criteria donor hearts for transplantation. JACC Heart Fail. 12, 438–447 (2024).

Article 
CAS 
PubMed 

Google Scholar
 

Loupy, A., Mengel, M. & Haas, M. Thirty years of the International Banff Classification for Allograft Pathology: the past, present, and future of kidney transplant diagnostics. Kidney Int. 101, 678–691 (2022).

Article 
PubMed 

Google Scholar
 

Cozzi, E., Colpo, A. & De Silvestro, G. The mechanisms of rejection in solid organ transplantation. Transfus. Apher. Sci. 56, 498–505 (2017).

Article 
PubMed 

Google Scholar
 

De Graav, G. N. et al. New developments and therapeutic drug monitoring options in costimulatory blockade in solid organ transplantation: a systematic critical review. Ther. Drug Monit. 47, 64–76 (2025).

Article 
PubMed 

Google Scholar
 

Fodor Duric, L., Basic Jukic, N. & Vujicic, B. Comparison of autologous and allogeneic adipose-derived stem cells in kidney transplantation: immunological considerations and therapeutic efficacy. J. Clin. Med. 13, 5763 (2024).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Zhang, W. et al. Patch grafting, strategies for transplantation of organoids into solid organs such as liver. Biomaterials 277, 121067 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Mohiuddin, M. M. et al. Graft dysfunction in compassionate use of genetically engineered pig-to-human cardiac xenotransplantation: a case report. Lancet 402, 397–410 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Anand, R. P. et al. Design and testing of a humanized porcine donor for xenotransplantation. Nature 622, 393–401 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Poirier, N. et al. Inducing CTLA-4–dependent immune regulation by selective CD28 blockade promotes regulatory T cells in organ transplantation. Sci. Transl. Med. 2, 17ra10 (2010).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Loupy, A. et al. Prediction system for risk of allograft loss in patients receiving kidney transplants: international derivation and validation study. BMJ 366, l4923 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Zhang, X., Gavaldà, R. & Baixeries, J. Interpretable prediction of mortality in liver transplant recipients based on machine learning. Comput. Biol. Med. 151, 106188 (2022).

Article 
PubMed 

Google Scholar
 

Bartosh, T. J. et al. Aggregation of human mesenchymal stromal cells (MSCs) into 3D spheroids enhances their antiinflammatory properties. Proc. Natl Acad. Sci. USA 107, 13724–13729 (2010).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Sablik, M. et al. Microvascular inflammation of kidney allografts and clinical outcomes. N. Engl. J. Med. 392, 763–776 (2025).

Article 
CAS 
PubMed 

Google Scholar
 

Khush, K. K. et al. The international thoracic organ transplant registry of the international society for heart and lung transplantation: thirty-sixth adult heart transplantation report — 2019; focus theme: donor and recipient size match. J. Heart Lung Transplant. 38, 1056–1066 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Halverson, L. P. & Hachem, R. R. Antibody-mediated rejection. Clin. Chest Med. 44, 95–103 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Van Der Mark, S. C., Hoek, R. A. S. & Hellemons, M. E. Developments in lung transplantation over the past decade. Eur. Respir. Rev. 29, 190132 (2020).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Choudhary, N. S. et al. Acute and chronic rejection after liver transplantation: what a clinician needs to know. J. Clin. Exp. Hepatol. 7, 358–366 (2017).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Manzia, T. M. et al. Immunosuppression in adult liver transplant recipients: a 2024 update from the italian liver transplant working group. Hepatol. Int. 18, 1416–1430 (2024).

Article 
PubMed 

Google Scholar
 

Lucey, M. R., Furuya, K. N. & Foley, D. P. Liver transplantation. N. Engl. J. Med. 389, 1888–1900 (2023).

Article 
CAS 
PubMed 

Google Scholar
 

Fernando, J. J., Biswas, R. & Biswas, L. Non‐invasive molecular biomarkers for monitoring solid organ transplantation: a comprehensive overview. Int. J. Immunogenet. 51, 47–62 (2024).

Article 
CAS 
PubMed 

Google Scholar
 

Millán, O., Julian, J. & Brunet, M. miRNAs, dd-cf-DNA, and chemokines as potential noninvasive biomarkers for the assessment of clinical graft evolution and personalized immunosuppression requirement in solid organ transplantation. Ther. Drug Monit. 47, 77–97 (2025).

Article 
PubMed 

Google Scholar
 

Madill-Thomsen, K. S. & Halloran, P. F. Precision diagnostics in transplanted organs using microarray-assessed gene expression: concepts and technical methods of the molecular microscope diagnostic system (MMDx). Clin. Sci. 138, 663–685 (2024).

Article 
CAS 

Google Scholar
 

Halloran, P. F. Immunosuppressive drugs for kidney transplantation. N. Engl. J. Med. 351, 2715–2729 (2004).

Article 
CAS 
PubMed 

Google Scholar
 

Ufere, N. N., Satapathy, N., Philpotts, L., Lai, J. C. & Serper, M. Financial burden in adults with chronic liver disease: a scoping review. Liver Transpl. 28, 1920–1935 (2022).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Jha, V. et al. Global economic burden associated with chronic kidney disease: a pragmatic review of medical costs for the inside CKD research programme. Adv. Ther. 40, 4405–4420 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Al Moussawy, M., Lakkis, Z. S., Ansari, Z. A., Cherukuri, A. R. & Abou-Daya, K. I. The transformative potential of artificial intelligence in solid organ transplantation. Front. Transplant. 3, 1361491 (2024).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Kamath, P. S. & Kim, W. R. The model for end-stage liver disease (MELD). Hepatology 45, 797–805 (2007).

Article 
PubMed 

Google Scholar
 

Bertsimas, D. et al. Development and validation of an optimized prediction of mortality for candidates awaiting liver transplantation. Am. J. Transplant. 19, 1109–1118 (2019).

Article 
PubMed 

Google Scholar
 

Brüggenwirth, I. M. A. et al. The liver retransplantation risk score: a prognostic model for survival after adult liver retransplantation. Transpl. Int. 34, 1928–1937 (2021).

Article 
PubMed 

Google Scholar
 

Truchot, A. et al. Extended validations of the iBox system in real life settings. In 22nd Congress of the European Society for Organ Transplantation Abstract FOS_06_1 (ESOT, 2025).

Klein, A. et al. Qualifying a novel clinical trial endpoint (iBOX) predictive of long-term kidney transplant outcomes. Am. J. Transplant. 23, 1496–1506 (2023).

Article 
CAS 
PubMed 

Google Scholar
 

Raynaud, M. et al. Dynamic prediction of renal survival among deeply phenotyped kidney transplant recipients using artificial intelligence: an observational, international, multicohort study. Lancet Digit. Health 3, e795–e805 (2021).

Article 
CAS 
PubMed 

Google Scholar
 

Loupy, A. et al. Identification and characterization of trajectories of cardiac allograft vasculopathy after heart transplantation: a population-based study. Circulation 141, 1954–1967 (2020).

Article 
PubMed 

Google Scholar
 

Loftus, T. J. et al. Artificial intelligence-enabled decision support in nephrology. Nat. Rev. Nephrol. 18, 452–465 (2022).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Monlezun, D. J., Samura, A. T., Patel, R. S., Thannoun, T. E. & Balan, P. Racial and socioeconomic disparities in out-of-hospital cardiac arrest outcomes: artificial intelligence-augmented propensity score and geospatial cohort analysis of 3,952 patients. Cardiol. Res. Pract. 2021, 3180987 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Becker, J. U. et al. Artificial intelligence and machine learning in nephropathology. Kidney Int. 98, 65–75 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Peyster, E. et al. Computational pathology assessments of cardiac stromal remodeling: clinical correlates and prognostic implications in heart transplantation. JHLT Open 7, 100202 (2024).

Yoo, D. et al. An automated histological classification system for precision diagnostics of kidney allografts. Nat. Med. 29, 1211–1220 (2023).

Article 
CAS 
PubMed 

Google Scholar
 

Demir, Z. et al. Identification of liver transplant biopsy phenotypes associated with distinct liver biological markers and allograft survival. Am. J. Transplant. 24, 954–966 (2024).

Article 
CAS 
PubMed 

Google Scholar
 

Zielinski, D. et al. Molecular diagnosis of kidney allograft rejection based on the Banff Human Organ Transplant (B-HOT) gene panel: a multicenter international study. Am. J. Transplant. https://doi.org/10.1016/j.ajt.2025.04.025 (2025).

Spooner, A. et al. Benchmarking ensemble machine learning algorithms for multi-class, multi-omics data integration in clinical outcome prediction. Brief. Bioinform. 26, bbaf116 (2025).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Khanal, B. et al. Investigating the robustness of vision transformers against label noise in medical image classification. Ann. Int. Conf. IEEE Eng. Med. Biol. Soc. 2024, 1–6 (2024).

Tasca, P. et al. Application of spatial-omics to the classification of kidney biopsy samples in transplantation. Nat. Rev. Nephrol. 20, 755–766 (2024).

Article 
PubMed 

Google Scholar
 

Amancherla, K. et al. Dynamic responses to rejection in the transplanted human heart revealed through spatial transcriptomics. Preprint at bioRxiv https://doi.org/10.1101/2025.02.28.640852 (2025).

Kang, M. et al. Spatial transcriptomic signatures of early acute T cell–mediated rejection in kidney transplants. Transplant. Direct 10, e1705 (2024).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Martin-Martin, C. et al. Exploring kidney allograft rejection: a proof-of-concept study using spatial transcriptomics. Am. J. Transplant. 24, 1161–1171 (2024).

Article 
PubMed 

Google Scholar
 

Mou, L. et al. Single-cell genomics and spatial transcriptomics in islet transplantation for diabetes treatment: advancing towards personalized therapies. Front. Immunol. 16, 1554876 (2025).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Chauveau, B., Couzi, L. & Merville, P. The microscope and beyond: current trends in the characterization of kidney allograft rejection from tissue samples. Transplantation 109, 440–453 (2025).

Article 
PubMed 

Google Scholar
 

Cross, A. R., Gartner, L., Hester, J. & Issa, F. Opportunities for high-plex spatial transcriptomics in solid organ transplantation. Transplantation 107, 2464–2472 (2023).

Article 
PubMed 

Google Scholar
 

Noel, T., Wang, Q. S., Greka, A. & Marshall, J. L. Principles of spatial transcriptomics analysis: a practical walk-through in kidney tissue. Front. Physiol. 12, 809346 (2022).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Pilch, N. A., Bowman, L. J. & Taber, D. J. Immunosuppression trends in solid organ transplantation: the future of individualization, monitoring, and management. Pharmacotherapy 41, 119–131 (2021).

Article 
PubMed 

Google Scholar
 

Dunn, D. L. Problems related to immunosuppression. Infection and malignancy occurring after solid organ transplantation. Crit. Care Clin. 6, 955–977 (1990).

Article 
CAS 
PubMed 

Google Scholar
 

Kasiske, B. L. Payment for immunosuppression after organ transplantation. JAMA 283, 2445–2450 (2000).

Article 
PubMed 

Google Scholar
 

Aubert, O. et al. Cell-free DNA for the detection of kidney allograft rejection. Nat. Med. 30, 2320–2327 (2024).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Van Rijn, A., Roos, R., Dekker, F., Rotmans, J. & Feltkamp, M. Torque teno virus load as marker of rejection and infection in solid organ transplantation – a systematic review and meta-analysis. Rev. Med. Virol. 33, e2393 (2023).

Article 
PubMed 

Google Scholar
 

Thishya, K., Vattam, K. K., Naushad, S. M., Raju, S. B. & Kutala, V. K. Artificial neural network model for predicting the bioavailability of tacrolimus in patients with renal transplantation. PLoS ONE 13, e0191921 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Süsal, C. & Döhler, B. Late intra-patient tacrolimus trough level variability as a major problem in kidney transplantation: a collaborative transplant study report. Am. J. Transplant. 19, 2805–2813 (2019).

Article 
PubMed 

Google Scholar
 

Wang, Z. et al. Locally controlled release of immunosuppressive promotes survival of transplanted adult spinal cord tissue. Regen. Biomater. 10, rbac097 (2023).

Article 
CAS 
PubMed 

Google Scholar
 

Chang, C. -C. et al. A peptide derived from interleukin-10 exhibits potential anticancer activity and can facilitate cell targeting of gold nanoparticles loaded with anticancer therapeutics. Commun. Chem. 6, 278 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Cassano, A., Chong, A. S. & Alegre, M. -L. Tregs in transplantation tolerance: role and therapeutic potential. Front. Transplant. 2, 1217065 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Bézie, S., Anegon, I. & Guillonneau, C. Advances on CD8+ Treg cells and their potential in transplantation. Transplantation 102, 1467–1478 (2018).

Article 
PubMed 

Google Scholar
 

Sawitzki, B. et al. Regulatory cell therapy in kidney transplantation (The ONE Study): a harmonised design and analysis of seven non-randomised, single-arm, phase 1/2A trials. Lancet 395, 1627–1639 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Proics, E. et al. Preclinical assessment of antigen-specific chimeric antigen receptor regulatory T cells for use in solid organ transplantation. Gene Ther. 30, 309–322 (2023).

Article 
CAS 
PubMed 

Google Scholar
 

European Cooperation in Science and Technology (COST). BM1305 – action to focus and accelerate cell-based tolerance-inducing therapies (A FACTT); https://www.cost.eu/actions/BM1305/ (2018).

European Cooperation in Science and Technology. COST Action Mye-EUNITER establish a common yet robust protocol for the comparative analysis of myeloid cells (MDSC) in various diseases; https://www.cost.eu/breaking-boundaries-cost-action-mye-euniter/ (2020).

INsTRuCT Consortium. A network of European scientists from academic and industry focused on developing innovative myeloid regulatory cell (MRC)-based immunotherapies; https://instruct-h2020.eu/consortium (2020).

Pushpakom, S. et al. Drug repurposing: progress, challenges and recommendations. Nat. Rev. Drug Discov. 18, 41–58 (2019).

Article 
CAS 
PubMed 

Google Scholar
 

Corsello, S. M. et al. Discovering the anticancer potential of non-oncology drugs by systematic viability profiling. Nat. Cancer 1, 235–248 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Zhang, Q. et al. Drug repurposing: ibrutinib exhibits immunosuppressive potential in organ transplantation. Int. J. Med. Sci. 15, 1118–1128 (2018).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Zhou, Y. et al. Network-based drug repurposing for novel coronavirus 2019-nCoV/SARS-CoV-2. Cell Discov. 6, 14 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Laubenbacher, R. et al. Building digital twins of the human immune system: toward a roadmap. NPJ Digit. Med. 5, 64 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Montgomery, R. A. et al. Results of two cases of pig-to-human kidney xenotransplantation. N. Engl. J. Med. 386, 1889–1898 (2022).

Article 
CAS 
PubMed 

Google Scholar
 

Porrett, P. M. et al. First clinical-grade porcine kidney xenotransplant using a human decedent model. Am. J. Transplant. 22, 1037–1053 (2022).

Article 
PubMed 

Google Scholar
 

Locke, J. E., Kumar, V., Anderson, D. & Porrett, P. M. Normal graft function after pig-to-human kidney xenotransplant. JAMA Surg. 158, 1106–1108 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar
 

NYU Langone Health. wo-month study of pig kidney xenotransplantation gives new hope to the future of the organ supply; https://nyulangone.org/news/two-month-study-pig-kidney-xenotransplantation-gives-new-hope-future-organ-supply (2023).

Kawai, T. et al. Xenotransplantation of a porcine kidney for end-stage kidney disease. N. Engl. J. Med. 392, 1933–1940 (2025).

NYU Langone Health. First-ever combined heart pump and pig kidney transplant gives new hope to patient with terminal illness; https://nyulangone.org/news/first-ever-combined-heart-pump-gene-edited-pig-kidney-transplant-gives-new-hope-patient-terminal-illness (2024).

NYU Langone Health. Gene-edited pig kidney gives living donor new lease on life; https://nyulangone.org/news/gene-edited-pig-kidney-gives-living-donor-new-lease-life (2024).

Griffith, B. P. et al. Genetically modified porcine-to-human cardiac xenotransplantation. N. Engl. J. Med. 387, 35–44 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Tao, K. -S. et al. Gene-modified pig-to-human liver xenotransplantation. Nature 641, 1029–1036 (2025).

Mallapaty, S. First pig-to-human liver transplant recipient ‘doing very well’. Nature 630, 18–18 (2024).

Article 
CAS 
PubMed 

Google Scholar
 

US Food & Drug Administration. Xenotransplantation; https://www.fda.gov/vaccines-blood-biologics/xenotransplantation (2021).

Cooper, D. K. C. & Cozzi, E. Clinical pig heart xenotransplantation—where do we go from here? Transpl. Int. 37, 12592 (2024).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Griffith, B. P. et al. Transplantation of a genetically modified porcine heart into a live human. Nat. Med. 31, 589–598 (2025).

Article 
CAS 
PubMed 

Google Scholar
 

Moazami, N. et al. Pig-to-human heart xenotransplantation in two recently deceased human recipients. Nat. Med. 29, 1989–1997 (2023).

Article 
CAS 
PubMed 

Google Scholar
 

Kotz, D. In Memoriam: Lawrence Faucette. University of Maryland School of Medicine. https://www.medschool.umaryland.edu/news/2023/in-memoriam-lawrence-faucette.html (2023).

Eisenson, D. L., Hisadome, Y. & Yamada, K. Progress in xenotransplantation: immunologic barriers, advances in gene editing, and successful tolerance induction strategies in pig-to-primate transplantation. Front. Immunol. 13, 899657 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Cross-Najafi, A. A. et al. Current barriers to clinical liver xenotransplantation. Front. Immunol. 13, 827535 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Zhang, X. et al. A review of pig liver xenotransplantation: current problems and recent progress. Xenotransplantation 26, e12497 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Loupy, A. et al. Immune response after pig-to-human kidney xenotransplantation: a multimodal phenotyping study. Lancet 402, 1158–1169 (2023).

Article 
CAS 
PubMed 

Google Scholar
 

Samy, K. P., Butler, J. R., Li, P., Cooper, D. K. C. & Ekser, B. The role of costimulation blockade in solid organ and islet xenotransplantation. J. Immunol. Res. 2017, 1–11 (2017).

Article 

Google Scholar
 

Dominici, M. et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The international society for cellular therapy position statement. Cytotherapy 8, 315–317 (2006).

Article 
CAS 
PubMed 

Google Scholar
 

Thomson, J. A. et al. Embryonic stem cell lines derived from human blastocysts. Science 282, 1145–1147 (1998).

Article 
CAS 
PubMed 

Google Scholar
 

Hyun, I. The bioethics of stem cell research and therapy. J. Clin. Invest. 120, 71–75 (2010).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Yamanaka, S. Induced pluripotent stem cells: past, present, and future. Cell Stem Cell 10, 678–684 (2012).

Article 
CAS 
PubMed 

Google Scholar
 

Wnorowski, A., Yang, H. & Wu, J. C. Progress, obstacles, and limitations in the use of stem cells in organ-on-a-chip models. Adv. Drug Deliv. Rev. 140, 3–11 (2019).

Article 
CAS 
PubMed 

Google Scholar
 

Wang, S. et al. Transplantation of chemically induced pluripotent stem-cell-derived islets under abdominal anterior rectus sheath in a type 1 diabetes patient. Cell 187, 6152–6164 (2024).

Article 
CAS 
PubMed 

Google Scholar
 

Guilak, F. et al. Control of stem cell fate by physical interactions with the extracellular matrix. Cell Stem Cell 5, 17–26 (2009).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Zhao, Z. et al. Organoids. Nat. Rev. Methods Primers 2, 94 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

McKee, C. & Chaudhry, G. R. Advances and challenges in stem cell culture. Colloids Surf. B Biointerfaces 159, 62–77 (2017).

Article 
CAS 
PubMed 

Google Scholar
 

Dzobo, K. et al. Advances in regenerative medicine and tissue engineering: innovation and transformation of medicine. Stem Cells Int. 2018, 2495848 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Shopova, D. et al. (Bio)printing in personalized medicine-opportunities and potential benefits. Bioengineering 10, 287 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Li, P. et al. The potential role of 3D-bioprinting in xenotransplantation. Curr. Opin. Organ Transplant. 24, 547–554 (2019).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Murphy, S. V. & Atala, A. 3D bioprinting of tissues and organs. Nat. Biotechnol. 32, 773–785 (2014).

Article 
CAS 
PubMed 

Google Scholar
 

Vanaei, S., Parizi, M. S., Vanaei, S., Salemizadehparizi, F. & Vanaei, H. R. An overview on materials and techniques in 3D bioprinting toward biomedical application. Eng. Regen. 2, 1–18 (2021).


Google Scholar
 

Ricci, G., Gibelli, F. & Sirignano, A. Three-dimensional bioprinting of human organs and tissues: bioethical and medico-legal implications examined through a scoping review. Bioengineering 10, 1052 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Pipis, N., James, B. D. & Allen, J. B. Multifunctional DNA-collagen biomaterials: developmental advances and biomedical applications. ACS Biomater. Sci. Eng. 11, 1253–1268 (2025).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Rodrigues, F. A. P. et al. Molecules in motion: unravelling the dynamics of vascularization control in tissue engineering. Macromol. Biosci. 24, 2400139 (2024).

Article 
CAS 

Google Scholar
 

Neishabouri, A., Soltani Khaboushan, A., Daghigh, F., Kajbafzadeh, A. -M. & Majidi Zolbin, M. Decellularization in tissue engineering and regenerative medicine: evaluation, modification, and application methods. Front. Bioeng. Biotechnol. 10, 805299 (2022).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Rathnam, C. et al. Hybrid SMART spheroids to enhance stem cell therapy for CNS injuries. Sci. Adv. 7, eabj2281 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Torabinavid, P., Khosropanah, M. H., Azimzadeh, A. & Kajbafzadeh, A. -M. Current strategies on kidney regeneration using tissue engineering approaches: a systematic review. BMC Nephrol. 26, 66 (2025).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Abbaszadeh, S. et al. Emerging strategies to bypass transplant rejection via biomaterial-assisted immunoengineering: insights from islets and beyond. Adv. Drug Deliv. Rev. 200, 115050 (2023).

Article 
CAS 
PubMed 

Google Scholar
 

Ajima, K. et al. A porcine islet-encapsulation device that enables long-term discordant xenotransplantation in immunocompetent diabetic mice. Cell Rep. Methods 3, 100370 (2023).

Article 
CAS 
PubMed 

Google Scholar
 

Keymeulen, B. et al. Encapsulated stem cell–derived β cells exert glucose control in patients with type 1 diabetes. Nat. Biotechnol. 42, 1507–1514 (2024).

Article 
CAS 
PubMed 

Google Scholar
 

Zhang, K. et al. Concepts and applications of digital twins in healthcare and medicine. Patterns 5, 101028 (2024).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Keyue, X. & Qiongfang, D. China’s first AI hospital town debuts: revolutionizing healthcare with artificial intelligence (Global Times, 2024).

Hein, D. et al. Prompts to table: specification and iterative refinement for clinical information extraction with large language models. Preprint at medRxiv https://doi.org/10.1101/2025.02.11.25322107 (2025).

Liu, X. et al. A generalist medical language model for disease diagnosis assistance. Nat. Med. 31, 932–942 (2025).

Article 
CAS 
PubMed 

Google Scholar
 

Tozuka, R. et al. Application of NotebookLM, a large language model with retrieval-augmented generation, for lung cancer staging. Jpn. J. Radiol. 43, 706–712 (2024).

Singh, R. et al. ChatGPT vs. Gemini: comparative accuracy and efficiency in lung-RADS score assignment from radiology reports. Clin. Imaging 121, 110455 (2025).

Article 
PubMed 

Google Scholar
 

Villani, V., Nguyen, H. -H. T. & Shanmugarajah, K. Evaluating quality and readability of AI-generated information on living kidney donation. Transplant. Direct 11, e1740 (2024).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Demirbaş, K. C. et al. The potential of ChatGPT as a source of information for kidney transplant recipients and their caregivers. Pediatr. Transplant. 29, e70068 (2025).

Article 
PubMed 

Google Scholar
 

Temsah, A. et al. DeepSeek in healthcare: revealing opportunities and steering challenges of a new open-source artificial intelligence frontier. Cureus 17, e79221 (2025).

PubMed 
PubMed Central 

Google Scholar
 

Bedi, S. et al. Testing and evaluation of health care applications of large language models: a systematic review. JAMA 333, 319–328 (2025).

Article 
PubMed 

Google Scholar
 

Miao, J., Thongprayoon, C., Craici, I. M. & Cheungpasitporn, W. How to improve ChatGPT performance for nephrologists: a technique guide. J. Nephrol. 37, 1397–1403 (2024).

Article 
PubMed 

Google Scholar
 

Horgan, S., Vanuno, D., Sileri, P., Cicalese, L. & Benedetti, E. Robotic-assisted laparoscopic donor nephrectomy for kidney transplantation. Transplantation 73, 1474–1479 (2002).

Article 
PubMed 

Google Scholar
 

Giulianotti, P. C. et al. Robot-assisted right lobe donor hepatectomy. Transpl. Int. 25, e5–e9 (2012).

Article 
PubMed 

Google Scholar
 

Boggi, U. et al. Laparoscopic robot-assisted pancreas transplantation: first world experience. Transplantation 93, 201–206 (2012).

Article 
PubMed 

Google Scholar
 

Emerson, D., Catarino, P., Rampolla, R., Chikwe, J. & Megna, D. Robotic-assisted lung transplantation: first in man. J. Heart Lung Transplant. 43, 158–161 (2024).

Article 
PubMed 

Google Scholar
 

Lu, Y., Zhou, Y., Ju, R. & Chen, J. Human-animal chimeras for autologous organ transplantation: technological advances and future perspectives. Ann. Transl. Med. 7, 576 (2019).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Tan, T. et al. Chimeric contribution of human extended pluripotent stem cells to monkey embryos ex vivo. Cell 184, 3589 (2021).

Article 
CAS 
PubMed 

Google Scholar
 

Lebret, A. Allocating organs through algorithms and equitable access to transplantation—a European human rights law approach. J. Law Biosci. 10, lsad004 (2023).

US Food and Drug Administration. Current Good Manufacturing Practice regulations for drugs (21 CFR Parts 210 & 211) (2023).

US Food and Drug Administration. Expedited programs for regenerative medicine therapies for serious conditions—guidance for industry (2019).

US Food and Drug Administration. CBER standards recognition program for regenerative medicine therapies standard recognition summary (SRS) (2023).

European Commission. Regulation (EC) no. 1394/2007 of the European parliament and of the council of 13 November 2007 on advanced therapy medicinal products and amending directive 2001/83/EC and regulation (EC) no. 726/2004—EU requirements for ATMP authorization and hospital exemption (2007).

Zhang, J. et al. Standardisation is the key to the sustained, rapid and healthy development of stem cell-based therapy. Clin. Transl. Med. 14, e1646 (2024).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

World Health Organization. WHO releases AI ethics and governance guidance for large multi-modal models (2024).

European Commission. Proposal for a Regulation on the European Health Data Space (2022).

US Food and Drug Administration. Artificial intelligence and machine learning in software as a medical device (2025).

Wang, W., He, W., Ruan, Y. & Geng, Q. First pig-to-human heart transplantation. Innovation 3, 100223 (2022).

PubMed 
PubMed Central 

Google Scholar
 

Cooper, D. K. C. et al. Regulation of clinical xenotransplantation—time for a reappraisal. Transplantation 101, 1766–1769 (2017).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Hawthorne, W. J. et al. Third WHO Global Consultation on Regulatory Requirements for Xenotransplantation Clinical Trials, Changsha, Hunan, China December 12–14, 2018: ‘The 2018 Changsha Communique’ The 10-year anniversary of The International Consultation on Xenotransplantation. Xenotransplantation 26, e12513 (2019).

Centers for Disease Control and Prevention. Morbidity and Mortality Weekly Report. US Public Health Service Guideline on infectious disease issues in xenotransplantation. MMWR Recomm. Rep. 50, 1–46 (2001).

US Department of Health and Human Services Food and Drug Administration Center for Biologics Evaluation and Research. Source animal, product, preclinical, and clinical issues concerning the use of xenotransplantation products in humans–guidance for industry (2016).

Hawthorne, W. J., Cowan, P. J., Buhler, L. & Wolf, E. International standards and guidelines for xenotransplantation. Nat. Biotechnol. 39, 1501–1502 (2021).

Article 
CAS 
PubMed 

Google Scholar
 

Fishman, J. A., Scobie, L. & Takeuchi, Y. Xenotransplantation‐associated infectious risk: a WHO consultation. Xenotransplantation 19, 72–81 (2012).

Article 
PubMed 
PubMed Central 

Google Scholar
 

World Health Organization. First WHO global consultation on regulatory requirements for xenotransplantation clinical trials: Changsha, China, 19–21 November 2008. The Changsha Communiqué. Xenotransplantation 16, 61–63 (2009).

Harris, A. R., Walker, M. J. & Gilbert, F. Ethical and regulatory issues of stem cell-derived 3-dimensional organoid and tissue therapy for personalised regenerative medicine. BMC Med. 20, 499 (2022).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Witten, C. M., McFarland, R. D. & Simek, S. L. Concise review: the US food and drug administration and regenerative medicine. Stem Cells Transl. Med. 4, 1495–1499 (2015).

Article 
PubMed 
PubMed Central 

Google Scholar
 

US Food and Drug Administration. Regulatory considerations for human cells, tissues, and cellular and tissue-based products: minimal manipulation and homologous use. FDA-2017-D-6146 (2020).