Koonin, E. V., Kuhn, J. H., Dolja, V. V. & Krupovic, M. Megataxonomy and global ecology of the virosphere. ISME J. 18, wrad042 (2024).

PubMed 
PubMed Central 

Google Scholar
 

Koonin, E. V. et al. Global organization and proposed megataxonomy of the virus world. Microbiol. Mol. Biol. Rev. 84, e00061–19 (2020). This review proposes a global genome-based viral classification framework that integrates both isolate and metagenome-assembled viral genomes.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Suttle, C. A. Marine viruses — major players in the global ecosystem. Nat. Rev. Microbiol. 5, 801–812 (2007).

CAS 
PubMed 

Google Scholar
 

Bratbak, G., Egge, J. K. & Heldal, M. Viral mortality of the marine alga Emiliania huxleyi (Haptophyceae) and termination of algal blooms. Mar. Ecol. Prog. Ser. 93, 39–48 (1993).


Google Scholar
 

Coy, S. R., Gann, E. R., Pound, H. L., Short, S. M. & Wilhelm, S. W. Viruses of eukaryotic algae: diversity, methods for detection, and future directions. Viruses 10, 487 (2018).

PubMed 
PubMed Central 

Google Scholar
 

Lennon, J. T. & Martiny, J. B. H. Rapid evolution buffers ecosystem impacts of viruses in a microbial food web. Ecol. Lett. 11, 1178–1188 (2008).

PubMed 

Google Scholar
 

Albright, M. B. N. et al. Experimental evidence for the impact of soil viruses on carbon cycling during surface plant litter decomposition. ISME Commun. 2, 24 (2022).

PubMed 
PubMed Central 

Google Scholar
 

Weitz, J. S. & Wilhelm, S. W. Ocean viruses and their effects on microbial communities and biogeochemical cycles. F1000 Biol. Rep. 4, 17 (2012).

PubMed 
PubMed Central 

Google Scholar
 

Runa, V., Wenk, J., Bengtsson, S., Jones, B. V. & Lanham, A. B. Bacteriophages in biological wastewater treatment systems: occurrence, characterization, and function. Front. Microbiol. 12, 730071 (2021).

PubMed 
PubMed Central 

Google Scholar
 

Carreira, C. et al. Integrating viruses into soil food web biogeochemistry. Nat. Microbiol. 9, 1918–1928 (2024).

CAS 
PubMed 

Google Scholar
 

Roux, S. A viral ecogenomics framework to uncover the secrets of nature’s ‘microbe whisperers’. mSystems 4, 1–5 (2019).


Google Scholar
 

Vela, J. D. & Al-Faliti, M. Emerging investigator series: the role of phage lifestyle in wastewater microbial community structures and functions: insights into diverse microbial environments. Environ. Sci. Water Res. Technol. 9, 1982–1991 (2023).


Google Scholar
 

Pires, D. P., Cleto, S., Sillankorva, S., Azeredo, J. & Lu, T. K. Genetically engineered phages: a review of advances over the last decade. Microbiol. Mol. Biol. Rev. 80, 523–543 (2016).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Tringe, S. G. & Rubin, E. M. Metagenomics: DNA sequencing of environmental samples. Nat. Rev. Genet. 6, 805–814 (2005).

CAS 
PubMed 

Google Scholar
 

Edwards, R. A. & Rohwer, F. Viral metagenomics. Nat. Rev. Microbiol. 3, 504–510 (2005).

CAS 
PubMed 

Google Scholar
 

Breitbart, M. et al. Genomic analysis of uncultured marine viral communities. Proc. Natl Acad. Sci. USA 99, 14250–14255 (2002). This is one of the first viral metagenomic analyses from an environmental sample, highlighting the high number of novel genes encoded by viruses.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Breitbart, M. et al. Metagenomic analyses of an uncultured viral community from human feces. J. Bacteriol. 185, 6220–6223 (2003).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Camargo, A. P. et al. IMG/VR v4: an expanded database of uncultivated virus genomes within a framework of extensive functional, taxonomic, and ecological metadata. Nucleic Acids Res. 51, D733–D743 (2023). IMG/VR is a large database integrating metagenome-assembled viral genomes from a broad range of ecosystems.

CAS 
PubMed 

Google Scholar
 

Camarillo-Guerrero, L. F., Almeida, A., Rangel-Pineros, G., Finn, R. D. & Lawley, T. D. Massive expansion of human gut bacteriophage diversity. Cell 184, 1098–1109.e9 (2021).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Ma, B. et al. Biogeographic patterns and drivers of soil viromes. Nat. Ecol. Evol. 8, 717–728 (2024).

PubMed 

Google Scholar
 

Shi, M. et al. Redefining the invertebrate RNA virosphere. Nature 540, 539–543 (2016).

CAS 
PubMed 

Google Scholar
 

Ng, T. F. F. et al. Preservation of viral genomes in 700-y-old caribou feces from a subarctic ice patch. Proc. Natl Acad. Sci. USA 111, 16842–16847 (2014).

PubMed 
PubMed Central 

Google Scholar
 

Tisza, M. J. et al. Discovery of several thousand highly diverse circular DNA viruses. eLife 9, e51971 (2020).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Chiu, C. Y. & Miller, S. A. Clinical metagenomics. Nat. Rev. Genet. 20, 341–355 (2019).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Dutilh, B. E. et al. A highly abundant bacteriophage discovered in the unknown sequences of human faecal metagenomes. Nat. Commun. 5, 4498 (2014). This article was the first to describe the CrAssphage genome, highlighting the potential of viromics for the discovery of novel highly abundant viruses.

CAS 
PubMed 

Google Scholar
 

Yutin, N. et al. Discovery of an expansive bacteriophage family that includes the most abundant viruses from the human gut. Nat. Microbiol. 3, 38–46 (2018).

CAS 
PubMed 

Google Scholar
 

Edwards, R. A. et al. Global phylogeography and ancient evolution of the widespread human gut virus crAssphage. Nat. Microbiol. 4, 1727–1736 (2019).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Roux, S. et al. Ecogenomics and potential biogeochemical impacts of uncultivated globally abundant ocean viruses. Nature 537, 689–693 (2016).

CAS 
PubMed 

Google Scholar
 

ter Horst, A. M. et al. Minnesota peat viromes reveal terrestrial and aquatic niche partitioning for local and global viral populations. Microbiome 9, 1–18 (2021).


Google Scholar
 

Breitbart, M., Bonnain, C., Malki, K. & Sawaya, N. A. Phage puppet masters of the marine microbial realm. Nat. Microbiol. 3, 754–766 (2018). This Review presents an overview of the AMGs discovered at the time in marine phages and highlights the different cellular processes possibly impacted.

CAS 
PubMed 

Google Scholar
 

Sieradzki, E. T., Ignacio-Espinoza, J. C., Needham, D. M., Fichot, E. B. & Fuhrman, J. A. Dynamic marine viral infections and major contribution to photosynthetic processes shown by spatiotemporal picoplankton metatranscriptomes. Nat. Commun. 10, 1169 (2019).

PubMed 
PubMed Central 

Google Scholar
 

Sharon, I. et al. Photosystem I gene cassettes are present in marine virus genomes. Nature 461, 258–262 (2009).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Kieft, K. et al. Ecology of inorganic sulfur auxiliary metabolism in widespread bacteriophages. Nat. Commun. 12, 3503 (2021).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Emerson, J. B. et al. Host-linked soil viral ecology along a permafrost thaw gradient. Nat. Microbiol. 3, 870–880 (2018).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Chen, L.-X. et al. Large freshwater phages with the potential to augment aerobic methane oxidation. Nat. Microbiol. 5, 1504–1515 (2020).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Ahlgren, N. A., Fuchsman, C. A., Rocap, G. & Fuhrman, J. A. Discovery of several novel, widespread, and ecologically distinct marine Thaumarchaeota viruses that encode amoC nitrification genes. ISME J. 13, 618–631 (2019).

CAS 
PubMed 

Google Scholar
 

Braga, L. P. P. et al. Viruses direct carbon cycling in lake sediments under global change. Proc. Natl Acad. Sci. USA 119, e2202261119 (2022).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Schwartz, D. A. et al. Human-gut phages harbor sporulation genes. mBio 14, e00182–23 (2023).

PubMed 
PubMed Central 

Google Scholar
 

Pausch, P. et al. CRISPR–CasΦ from huge phages is a hypercompact genome editor. Science 369, 333–337 (2020). This study highlights the unique features relevant for biotechnological applications of a phage-encoded Cas gene initially discovered via viromics.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Palmer, M. et al. Diversity and distribution of a novel genus of hyperthermophilic aquificae viruses encoding a proof-reading family — a DNA polymerase. Front. Microbiol. 11, 1–18 (2020).


Google Scholar
 

Garmaeva, S. et al. Transmission and dynamics of mother-infant gut viruses during pregnancy and early life. Nat. Commun. 15, 1945 (2024).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Zhang, F. et al. Longitudinal dynamics of gut bacteriome, mycobiome and virome after fecal microbiota transplantation in graft-versus-host disease. Nat. Commun. 12, 65 (2021).

PubMed 
PubMed Central 

Google Scholar
 

Lam, S. et al. Roles of the gut virome and mycobiome in faecal microbiota transplantation. Lancet Gastroenterol. Hepatol. 7, 472–484 (2022).

CAS 
PubMed 

Google Scholar
 

Daly, R. A. et al. Viruses control dominant bacteria colonizing the terrestrial deep biosphere after hydraulic fracturing. Nat. Microbiol. 4, 352–361 (2019).

CAS 
PubMed 

Google Scholar
 

Medvedeva, S. et al. Three families of Asgard archaeal viruses identified in metagenome-assembled genomes. Nat. Microbiol. 7, 962–973 (2022).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Medvedeva, S., Borrel, G., Krupovic, M. & Gribaldo, S. A compendium of viruses from methanogenic archaea reveals their diversity and adaptations to the gut environment. Nat. Microbiol. 8, 2170–2182 (2023).

CAS 
PubMed 

Google Scholar
 

Rambo, I. M., Langwig, M. V., Leão, P., De Anda, V. & Baker, B. J. Genomes of six viruses that infect Asgard archaea from deep-sea sediments. Nat. Microbiol. 7, 953–961 (2022).

CAS 
PubMed 

Google Scholar
 

Hwang, Y., Roux, S., Coclet, C., Krause, S. J. E. & Girguis, P. R. Viruses interact with hosts that span distantly related microbial domains in dense hydrothermal mats. Nat. Microbiol. 8, 946–957 (2023). This study of deep-sea metagenomes reports a potentially broad range of interactions for some viruses and highlights several potential mechanisms for such interactions to be observed.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Marbouty, M., Thierry, A., Millot, G. A. & Koszul, R. MetaHiC phage-bacteria infection network reveals active cycling phages of the healthy human gut. eLife 10, 1–51 (2021).


Google Scholar
 

Arkhipova, K. et al. Temporal dynamics of uncultured viruses: a new dimension in viral diversity. ISME J. 12, 199–211 (2017).

PubMed 
PubMed Central 

Google Scholar
 

Knowles, B. et al. Lytic to temperate switching of viral communities. Nature 531, 533–537 (2016).


Google Scholar
 

Ignacio-Espinoza, J. C., Ahlgren, N. A. & Fuhrman, J. A. Long-term stability and Red Queen-like strain dynamics in marine viruses. Nat. Microbiol. 5, 265–271 (2020).

CAS 
PubMed 

Google Scholar
 

Conceição-Neto, N., Yinda, K. C., Van Ranst, M. & Matthijnssens, J. in The Human Virome: Methods and Protocols (eds. Moya, A. & Pérez Brocal, V.) 85–95 (Springer, 2018).

Kleiner, M., Hooper, L. V. & Duerkop, B. A. Evaluation of methods to purify virus-like particles for metagenomic sequencing of intestinal viromes. BMC Genomics 16, 7 (2015).

PubMed 
PubMed Central 

Google Scholar
 

Soria-Villalba, A. et al. Comparison of experimental methodologies based on bulk-metagenome and virus-like particle enrichment: pros and cons for representativeness and reproducibility in the study of the fecal human virome. Microorganisms 12, 162 (2024).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Hayes, S., Mahony, J., Nauta, A. & van Sinderen, D. Metagenomic approaches to assess bacteriophages in various environmental niches. Viruses 9, 127 (2017).

PubMed 
PubMed Central 

Google Scholar
 

Trubl, G. et al. Optimization of viral resuspension methods for carbon-rich soils along a permafrost thaw gradient. PeerJ 4, e1999 (2016).

PubMed 
PubMed Central 

Google Scholar
 

Forterre, P. The virocell concept and environmental microbiology. ISME J. 7, 233–236 (2013).

CAS 
PubMed 

Google Scholar
 

Santos-Medellin, C. et al. Viromes outperform total metagenomes in revealing the spatiotemporal patterns of agricultural soil viral communities. ISME J. 15, 1956–1970 (2021).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Kosmopoulos, J. C., Klier, K. M., Langwig, M. V., Tran, P. Q. & Anantharaman, K. Viromes vs. mixed community metagenomes: choice of method dictates interpretation of viral community ecology. Microbiome 12, 195 (2024). This benchmarking study highlights the differences between and complementarity of different metagenomics approaches for viromics studies.

PubMed 
PubMed Central 

Google Scholar
 

Lücking, D., Mercier, C., Alarcón-Schumacher, T. & Erdmann, S. Extracellular vesicles are the main contributor to the non-viral protected extracellular sequence space. ISME Commun. 3, 112 (2023).

PubMed 
PubMed Central 

Google Scholar
 

Shkoporov, A. N. et al. The human gut virome is highly diverse, stable, and individual specific. Cell Host Microbe 26, 527–541.e5 (2019).

CAS 
PubMed 

Google Scholar
 

Labonté, J. M. et al. Single-cell genomics-based analysis of virus–host interactions in marine surface bacterioplankton. ISME J. 9, 2386–2399 (2015).

PubMed 
PubMed Central 

Google Scholar
 

Jarett, J. K. et al. Insights into the dynamics between viruses and their hosts in a hot spring microbial mat. ISME J. 14, 2527–2541 (2020).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Martinez-Hernandez, F. et al. Single-virus genomics reveals hidden cosmopolitan and abundant viruses. Nat. Commun. 8, 15892 (2017). This application of single-virus genomics to oceanic samples uncovers a widespread virus population difficult to assemble from metagenomes, highlighting a potential blind spot for some viromics analyses.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Hillary, L. S., Adriaenssens, E. M., Jones, D. L. & McDonald, J. E. RNA-viromics reveals diverse communities of soil RNA viruses with the potential to affect grassland ecosystems across multiple trophic levels. ISME Commun. 2, 34 (2022).

PubMed 
PubMed Central 

Google Scholar
 

Potapov, S. et al. RNA-seq virus fraction in Lake Baikal and treated wastewaters. Int. J. Mol. Sci. 24, 12049 (2023).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Cook, R. et al. The long and short of it: benchmarking viromics using illumina, nanopore and PacBio sequencing technologies. Microb. Genomics 10, 001198 (2024).

CAS 

Google Scholar
 

Warwick-Dugdale, J. et al. Long-read powered viral metagenomics in the oligotrophic Sargasso Sea. Nat. Commun. 15, 4089 (2024).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Hopkins, M. et al. Diversity of environmental single-stranded DNA phages revealed by PCR amplification of the partial major capsid protein. ISME J. 8, 2093–2103 (2014).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Potapov, S. et al. Assessing the diversity of the g23 gene of T4-like bacteriophages from Lake Baikal with high-throughput sequencing. FEMS Microbiol. Lett. 365, fnx264 (2018).


Google Scholar
 

Frantzen, C. A. & Holo, H. Unprecedented diversity of lactococcal group 936 bacteriophages revealed by amplicon sequencing of the portal protein gene. Viruses 11, 443 (2019).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Munson-McGee, J. H., Rooney, C. & Young, M. J. An uncultivated virus infecting a nanoarchaeal parasite in the hot springs of Yellowstone national park. J. Virol. 94, e01213–e01219 (2020).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Lund, M. C. et al. Diverse microviruses circulating in invertebrates within a lake ecosystem. J. Gen. Virol. 105, 002049 (2024).

CAS 

Google Scholar
 

Lopez, J. K. M. et al. Genomes of bacteriophages belonging to the orders caudovirales and petitvirales identified in fecal samples from pacific flying Fox (Pteropus tonganus) from the kingdom of Tonga. Microbiol. Resour. Announc. 11, e00038–22 (2022).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Marine, R. et al. Caught in the middle with multiple displacement amplification: the myth of pooling for avoiding multiple displacement amplification bias in a metagenome. Microbiome 2, 3 (2014).

PubMed 
PubMed Central 

Google Scholar
 

Kim, K.-H. & Bae, J.-W. Amplification methods bias metagenomic libraries of uncultured single-stranded and double-stranded DNA viruses. Appl. Env. Microbiol. 77, 7663–7668 (2011).

CAS 

Google Scholar
 

Roux, S. et al. Minimum information about an uncultivated virus genome (MIUVIG). Nat. Biotechnol. 37, 29–37 (2019). This consensus paper outlines key approaches for recovery and analysis of uncultivated virus genomes and the critical metadata to report when submitting these genomes to public databases.

CAS 
PubMed 

Google Scholar
 

Zolfo, M. et al. Detecting contamination in viromes using ViromeQC. Nat. Biotechnol. 37, 1408–1412 (2019).

CAS 
PubMed 

Google Scholar
 

Pinto, Y. & Bhatt, A. S. Sequencing-based analysis of microbiomes. Nat. Rev. Genet. 25, 829–845 (2024).

CAS 
PubMed 

Google Scholar
 

Meyer, F. et al. Critical assessment of metagenome interpretation: the second round of challenges. Nat. Methods 19, 429–440 (2022).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Nurk, S., Meleshko, D., Korobeynikov, A. & Pevzner, P. A. metaSPAdes: a new versatile metagenomic assembler. Genome Res. 27, 824–834 (2017).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Li, D. et al. MEGAHIT v1.0: a fast and scalable metagenome assembler driven by advanced methodologies and community practices. Methods 102, 3–11 (2016).

CAS 
PubMed 

Google Scholar
 

Antipov, D., Raiko, M., Lapidus, A. & Pevzner, P. A. Metaviral SPAdes: assembly of viruses from metagenomic data. Bioinformatics 36, 4126–4129 (2020).

CAS 
PubMed 

Google Scholar
 

Roux, S., Emerson, J. B., Eloe-Fadrosh, E. A. & Sullivan, M. B. Benchmarking viromics: an in silico evaluation of metagenome-enabled estimates of viral community composition and diversity. PeerJ 5, e3817 (2017).

PubMed 
PubMed Central 

Google Scholar
 

Kieft, K., Adams, A., Salamzade, R., Kalan, L. & Anantharaman, K. vRhyme enables binning of viral genomes from metagenomes. Nucleic Acids Res. 50, e83 (2022).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Johansen, J. et al. Genome binning of viral entities from bulk metagenomics data. Nat. Commun. 13, 965 (2022).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Schulz, F. et al. Advantages and limits of metagenomic assembly and binning of a giant virus. mSystems 5, e00048–20 (2020).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Camargo, A. P. et al. Identification of mobile genetic elements with geNomad. Nat. Biotechnol. 42, 1303–1312 (2023).

PubMed 
PubMed Central 

Google Scholar
 

Kieft, K., Zhou, Z. & Anantharaman, K. VIBRANT: automated recovery, annotation and curation of microbial viruses, and evaluation of viral community function from genomic sequences. Microbiome 8, 90 (2020).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Guo, J. et al. VirSorter2: a multi-classifier, expert-guided approach to detect diverse DNA and RNA viruses. Microbiome 9, 37 (2021).

PubMed 
PubMed Central 

Google Scholar
 

Ren, J. et al. Identifying viruses from metagenomic data using deep learning. Quant. Biol. 8, 64–77 (2020).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Hegarty, B. et al. Benchmarking informatics approaches for virus discovery: caution is needed when combining in silico identification methods. mSystems 9, e01105–e01123 (2024).

PubMed 
PubMed Central 

Google Scholar
 

Nayfach, S. et al. CheckV assesses the quality and completeness of metagenome-assembled viral genomes. Nat. Biotechnol. 39, 578–585 (2020).

PubMed 
PubMed Central 

Google Scholar
 

Terzian, P. et al. PHROG: families of prokaryotic virus proteins clustered using remote homology. Nar. Genomics Bioinforma. 3, lqab067 (2021).


Google Scholar
 

Shaffer, M. et al. DRAM for distilling microbial metabolism to automate the curation of microbiome function. Nucleic Acids Res. 48, 8883–8900 (2020).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Jang, H. B. et al. Taxonomic assignment of uncultivated prokaryotic virus genomes is enabled by gene-sharing networks. Nat. Biotechnol. 37, 632–639 (2019).


Google Scholar
 

Coclet, C. & Roux, S. Global overview and major challenges of host prediction methods for uncultivated phages. Curr. Opin. Virol. 49, 117–126 (2021).

CAS 
PubMed 

Google Scholar
 

Pratama, A. A. et al. Expanding standards in viromics: in silico evaluation of dsDNA viral genome identification, classification, and auxiliary metabolic gene curation. PeerJ 9, e11447 (2021).

PubMed 
PubMed Central 

Google Scholar
 

Zhou, Z., Martin, C., Kosmopoulos, J. C. & Anantharaman, K. ViWrap: a modular pipeline to identify, bin, classify, and predict viral–host relationships for viruses from metagenomes. iMeta 2, e118 (2023).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Coclet, C., Camargo, A. P. & Roux, S. MVP: a modular viromics pipeline to identify, filter, cluster, annotate, and bin viruses from metagenomes. mSystems 9, e00888–24 (2024).

PubMed 
PubMed Central 

Google Scholar
 

Páez-Espino, D. et al. Uncovering earth’s virome. Nature 536, 425–430 (2016).

PubMed 

Google Scholar
 

Enault, F. et al. Phages rarely encode antibiotic resistance genes: a cautionary tale for virome analyses. ISME J. 11, 237–247 (2016).

PubMed 
PubMed Central 

Google Scholar
 

Anantharaman, K. et al. Sulfur oxidation genes in diverse deep-sea viruses. Science 344, 757–760 (2014). This report and analysis of sulfur oxidation AMGs in metagenome-assembled virus genomes significantly expanded the list of metabolic processes potentially redirected during viral infections.

CAS 
PubMed 

Google Scholar
 

Nayfach, S. et al. Metagenomic compendium of 189,680 DNA viruses from the human gut microbiome. Nat. Microbiol. 6, 960–970 (2021).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Gregory, A. C. et al. The gut virome database reveals age-dependent patterns of virome diversity in the human gut. Cell Host Microbe 28, 724–740.e8 (2020).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

An, L. et al. Global diversity and ecological functions of viruses inhabiting oil reservoirs. Nat. Commun. 15, 6789 (2024).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Brum, J. R. et al. Ocean plankton. Patterns and ecological drivers of ocean viral communities. Science 348, 1261498 (2015).

PubMed 

Google Scholar
 

Gregory, A. C. et al. Marine DNA viral macro- and microdiversity from pole to pole. Cell 177, 1109–1123.e14 (2019).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Graham, E. B. et al. A global atlas of soil viruses reveals unexplored biodiversity and potential biogeochemical impacts. Nat. Microbiol. 9, 1873–1883 (2024).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Neri, U. et al. Expansion of the global RNA virome reveals diverse clades of bacteriophages. Cell 185, 4023–4037.e18 (2022).

CAS 
PubMed 

Google Scholar
 

Edgar, R. C. et al. Petabase-scale sequence alignment catalyses viral discovery. Nature 602, 142–147 (2022).

CAS 
PubMed 

Google Scholar
 

Zayed, A. A. et al. Cryptic and abundant marine viruses at the evolutionary origins of Earth’s RNA virome. Science 376, 156–162 (2022).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Wang, R. H. et al. PhageScope: a well-annotated bacteriophage database with automatic analyses and visualizations. Nucleic Acids Res. 52, D756–D761 (2024).

CAS 
PubMed 

Google Scholar
 

Willner, D., Thurber, R. V. & Rohwer, F. Metagenomic signatures of 86 microbial and viral metagenomes. Environ. Microbiol. 11, 1752–1766 (2009).

CAS 
PubMed 

Google Scholar
 

Dinsdale, E. A. et al. Functional metagenomic profiling of nine biomes. Nature 452, 629–632 (2008).

CAS 
PubMed 

Google Scholar
 

Zhou, Z. et al. Unravelling viral ecology and evolution over 20 years in a freshwater lake. Nat. Microbiol. 10, 231–245 (2025).

CAS 
PubMed 

Google Scholar
 

Coclet, C. et al. Virus diversity and activity is driven by snowmelt and host dynamics in a high-altitude watershed soil ecosystem. Microbiome 11, 237 (2023).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Bolaños, L. M., Michelsen, M. & Temperton, B. Metagenomic time series reveals a Western English Channel viral community dominated by members with strong seasonal signals. ISME J. 18, wrae216 (2024).

PubMed 
PubMed Central 

Google Scholar
 

Sun, C. L. et al. Virus ecology and 7-year temporal dynamics across a permafrost thaw gradient. Environ. Microbiol. 26, e16665 (2024).

CAS 
PubMed 

Google Scholar
 

Muscatt, G., Cook, R., Millard, A., Bending, G. D. & Jameson, E. Viral metagenomics reveals diverse virus–host interactions throughout the soil depth profile. mBio 14, e02246–23 (2023).

PubMed 
PubMed Central 

Google Scholar
 

Coutinho, F. H., Rosselli, R. & Rodríguez-Valera, F. Trends of microdiversity reveal depth-dependent evolutionary strategies of viruses in the Mediterranean. mSystems 4, e00554–19 (2019).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Pavlopoulos, G. A. et al. Unraveling the functional dark matter through global metagenomics. Nature 622, 594–602 (2023). This global reanalysis of public metagenomes reveals and describes a large number of novel protein families, many seemingly encoded by viruses.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Zayed, A. A. et al. efam: an expanded, metaproteome-supported HMM profile database of viral protein fam ilies. Bioinformatics 37, 4202–4208 (2021).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Fremin, B. J. et al. Thousands of small, novel genes predicted in global phage genomes. Cell Rep. 39, 110984 (2022).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Chevallereau, A., Pons, B. J., van Houte, S. & Westra, E. R. Interactions between bacterial and phage communities in natural environments. Nat. Rev. Microbiol. 20, 49–62 (2022).

CAS 
PubMed 

Google Scholar
 

van Kempen, M. et al. Fast and accurate protein structure search with Foldseek. Nat. Biotechnol. 42, 243–246 (2024).

PubMed 

Google Scholar
 

Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Shao, B. & Yan, J. A long-context language model for deciphering and generating bacteriophage genomes. Nat. Commun. 15, 9392 (2024).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Hwang, Y., Cornman, A. L., Kellogg, E. H., Ovchinnikov, S. & Girguis, P. R. Genomic language model predicts protein co-regulation and function. Nat. Commun. 15, 2880 (2024).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Flamholz, Z. N., Biller, S. J. & Kelly, L. Large language models improve annotation of prokaryotic viral proteins. Nat. Microbiol. 9, 537–549 (2024).

PubMed 
PubMed Central 

Google Scholar
 

Sullivan, M. B. et al. Prevalence and evolution of core photosystem II genes in marine cyanobacterial viruses and their hosts. PLoS Biol. 4, e234 (2006).

PubMed 
PubMed Central 

Google Scholar
 

Lindell, D. et al. Transfer of photosynthesis genes to and from Prochlorococcus viruses. Proc. Natl Acad. Sci. USA 101, 11013–11018 (2004).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Mann, N. H., Cook, A., Millard, A., Bailey, S. & Clokie, M. Bacterial photosynthesis genes in a virus. Nature 424, 741–741 (2003). This first description of photosynthesis genes encoded by phages, reported here from isolate cyanophages, spurred the search for and subsequent discoveries of a large number of AMGs.

CAS 
PubMed 

Google Scholar
 

Puxty, R. J. & Millard, A. D. Functional ecology of bacteriophages in the environment. Curr. Opin. Microbiol. 71, 102245 (2023).

CAS 
PubMed 

Google Scholar
 

Brown, T. L., Charity, O. J. & Adriaenssens, E. M. Ecological and functional roles of bacteriophages in contrasting environments: marine, terrestrial and human gut. Curr. Opin. Microbiol. 70, 102229 (2022).

CAS 
PubMed 

Google Scholar
 

Johansen, J. et al. Centenarians have a diverse gut virome with the potential to modulate metabolism and promote healthy lifespan. Nat. Microbiol. 8, 1064–1078 (2023).

CAS 
PubMed 

Google Scholar
 

Kieft, K. et al. Virus-associated organosulfur metabolism in human and environmental systems. Cell Rep. 36, 109471 (2021).

CAS 
PubMed 

Google Scholar
 

Zheng, X. et al. Organochlorine contamination enriches virus-encoded metabolism and pesticide degradation associated auxiliary genes in soil microbiomes. ISME J. 16, 1397–1408 (2022).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Gao, R. et al. Ecological drivers and potential functions of viral communities in flooded arsenic-contaminated paddy soils. Sci. Total. Environ. 872, 162289 (2023).

CAS 
PubMed 

Google Scholar
 

Al-Shayeb, B. et al. Diverse virus-encoded CRISPR–Cas systems include streamlined genome editors. Cell 185, 4574–4586.e16 (2022).

CAS 
PubMed 

Google Scholar
 

Thompson, L. R. et al. Phage auxiliary metabolic genes and the redirection of cyanobacterial host carbon metabolism. Proc. Natl Acad. Sci. USA 108, E757–E764 (2011).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Hiraoka, S. et al. Diverse DNA modification in marine prokaryotic and viral communities. Nucleic Acids Res. 50, 1531–1550 (2022).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Seong, H. J., Roux, S., Hwang, C. Y. & Sul, W. J. Marine DNA methylation patterns are associated with microbial community composition and inform virus–host dynamics. Microbiome 10, 157 (2022).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Fu, Y. et al. DeepMineLys: deep mining of phage lysins from human microbiome. Cell Rep. 43, 114583 (2024).

CAS 
PubMed 

Google Scholar
 

Pottie, I., Vázquez Fernández, R., Van de Wiele, T. & Briers, Y. Phage lysins for intestinal microbiome modulation: current challenges and enabling techniques. Gut Microbes 16, 2387144 (2024).

PubMed 
PubMed Central 

Google Scholar
 

Fischetti, V. Development of phage lysins as novel therapeutics: a historical perspective. Viruses 10, 310 (2018).

PubMed 
PubMed Central 

Google Scholar
 

Coutinho, F. H. et al. RaFAH: host prediction for viruses of bacteria and archaea based on protein content. Patterns 2, 100274 (2021).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Amgarten, D., Iha, B. K. V., Piroupo, C. M., da Silva, A. M. & Setubal, J. C. vHULK, a new tool for bacteriophage host prediction based on annotated genomic features and neural networks. PHAGE 3, 204–212 (2022).

PubMed 
PubMed Central 

Google Scholar
 

Edwards, R. A., McNair, K., Faust, K., Raes, J. & Dutilh, B. E. Computational approaches to predict bacteriophage–host relationships. FEMS Microbiol. Rev. 40, 258–272 (2016).

CAS 
PubMed 

Google Scholar
 

Roux, S. et al. iPHoP: An integrated machine learning framework to maximize host prediction for metagenome-derived viruses of archaea and bacteria. PLoS Biol. 21, e3002083 (2023).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Wang, W. et al. A network-based integrated framework for predicting virus–prokaryote interactions. Nar. Genomics Bioinforma. 2, lqaa044 (2020).


Google Scholar
 

Zhou, F. et al. PHISDetector: a tool to detect diverse in silico phage–host interaction signals for virome studies. Genomics, Proteom. Bioinforma. 20, 508–523 (2022).


Google Scholar
 

Boeckaerts, D. et al. Prediction of Klebsiella phage-host specificity at the strain level. Nat. Commun. 15, 4355 (2024).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Gaborieau, B. et al. Prediction of strain level phage–host interactions across the Escherichia genus using only genomic information. Nat. Microbiol. 9, 2847–2861 (2024).

CAS 
PubMed 

Google Scholar
 

Bastien, G. E. et al. Virus-host interactions predictor (VHIP): machine learning approach to resolve microbial virus–host interaction networks. PLOS Comput. Biol. 20, e1011649 (2024).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Kumar, M., Ji, B., Zengler, K. & Nielsen, J. Modelling approaches for studying the microbiome. Nat. Microbiol. 4, 1253–1267 (2019).

CAS 
PubMed 

Google Scholar
 

Sokol, N. W. et al. Life and death in the soil microbiome: how ecological processes influence biogeochemistry. Nat. Rev. Microbiol. 20, 415–430 (2022).

CAS 
PubMed 

Google Scholar
 

Meng, L. et al. Quantitative assessment of nucleocytoplasmic large DNA virus and host interactions predicted by co-occurrence analyses. mSphere 6, e01298–20 (2021).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Coenen, A. R. & Weitz, J. S. Limitations of correlation-based inference in complex virus–microbe communities. mSystems 3, e00084–18 (2018).

PubMed 
PubMed Central 

Google Scholar
 

Wu, R. et al. Hi-C metagenome sequencing reveals soil phage–host interactions. Nat. Commun. 14, 7666 (2023).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Uritskiy, G. et al. Accurate viral genome reconstruction and host assignment with proximity-ligation sequencing. Preprint at bioRxiv https://doi.org/10.1101/2021.06.14.448389 (2021).

Marbouty, M., Baudry, L., Cournac, A. & Koszul, R. Scaffolding bacterial genomes and probing host–virus interactions in gut microbiome by proximity ligation (chromosome capture) assay. Sci. Adv. 3, e1602105 (2017).

PubMed 
PubMed Central 

Google Scholar
 

Du, Y., Fuhrman, J. A. & Sun, F. ViralCC retrieves complete viral genomes and virus-host pairs from metagenomic Hi-C data. Nat. Commun. 14, 502 (2023).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Howard-Varona, C. et al. Regulation of infection efficiency in a globally abundant marine Bacteriodetes virus. ISME J. 00, 1–12 (2016).


Google Scholar
 

Lindell, D. et al. Genome-wide expression dynamics of a marine virus and host reveal features of co-evolution. Nature 449, 83–86 (2007).

CAS 
PubMed 

Google Scholar
 

Owen, S. V. et al. A window into lysogeny: revealing temperate phage biology with transcriptomics. Microb. Genomics 6, e000330 (2020).


Google Scholar
 

Blasdel, B. G., Chevallereau, A., Monot, M., Lavigne, R. & Debarbieux, L. Comparative transcriptomics analyses reveal the conservation of an ancestral infectious strategy in two bacteriophage genera. ISME J. 11, 1988–1996 (2017).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Stough, J. M. A. et al. Molecular prediction of lytic vs lysogenic states for Microcystis phage: metatranscriptomic evidence of lysogeny during large bloom events. PLoS ONE 12, 1–17 (2017).


Google Scholar
 

Merges, D. et al. Metatranscriptomics reveals contrasting effects of elevation on the activity of bacteria and bacterial viruses in soil. Mol. Ecol. 32, 6552–6563 (2023).

CAS 
PubMed 

Google Scholar
 

Kuchina, A. et al. Microbial single-cell RNA sequencing by split-pool barcoding. Science 371, eaba5257 (2021). This study describes the development and application of a single-cell RNA sequencing method for prokaryotes, that provides a unique opportunity for detailed characterization of virus-host interactions.

CAS 
PubMed 

Google Scholar
 

Shen, Y. et al. High-throughput single-microbe RNA sequencing reveals adaptive state heterogeneity and host–phage activity associations in human gut microbiome. Protein Cell 16, 211–226 (2024).

PubMed Central 

Google Scholar
 

Putzeys, L. et al. Exploring the transcriptional landscape of phage–host interactions using novel high-throughput approaches. Curr. Opin. Microbiol. 77, 102419 (2024).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Fromm, A. et al. Single-cell RNA-seq of the rare virosphere reveals the native hosts of giant viruses in the marine environment. Nat. Microbiol. 9, 1619–1629 (2024).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Hevroni, G., Vincent, F., Ku, C., Sheyn, U. & Vardi, A. Daily turnover of active giant virus infection during algal blooms revealed by single-cell transcriptomics. Sci. Adv. 9, eadf7971 (2023).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Santos-Medellín, C., Blazewicz, S. J., Pett-Ridge, J., Firestone, M. K. & Emerson, J. B. Viral but not bacterial community successional patterns reflect extreme turnover shortly after rewetting dry soils. Nat. Ecol. Evol. 7, 1809–1822 (2023). This time-series viromics analysis integrating bulk soil and viral fractions samples highlights distinct successional patterns between microbial and viral communities.

PubMed 

Google Scholar
 

Van Goethem, M. W., Swenson, T. L., Trubl, G., Roux, S. & Northen, T. R. Characteristics of wetting-induced bacteriophage blooms in biological soil crust. mBio 10, 1–15 (2019).


Google Scholar
 

Barnett, S. E. & Buckley, D. H. Metagenomic stable isotope probing reveals bacteriophage participation in soil carbon cycling. Environ. Microbiol. 25, 1785–1795 (2023).

CAS 
PubMed 

Google Scholar
 

Trubl, G. et al. Active virus–host interactions at sub-freezing temperatures in Arctic peat soil. Microbiome 9, 208 (2021).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Ngo, V. Q. H. et al. Establishing host–virus link through host metabolism: viral DNA SIP validation using T4 bacteriophage and E. coli. Curr. Microbiol. 81, 266 (2024).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Charon, J. et al. Consensus statement from the first RdRp summit: advancing RNA virus discovery at scale across communities. Front. Virol. 4, 1–10 (2024). This consensus statement reports on the discussions led at the first RdRP summit, which gathered experts from different fields around the topic of sequence-based RNA virus discovery.


Google Scholar
 

Simmonds, P. et al. Virus taxonomy in the age of metagenomics. Nat. Rev. Microbiol. 15, 161–168 (2017). This perspective represents a key step and statement by the ICTV towards the integration of metagenome-derived virus genomes in the formal virus taxonomy.

CAS 
PubMed 

Google Scholar
 

Lang, A. S., Buchan, A. & Burrus, V. Interactions and evolutionary relationships among bacterial mobile genetic elements. Nat. Rev. Microbiol. 23, 423–438 (2025).

CAS 
PubMed 

Google Scholar
 

Casjens, S. Prophages and bacterial genomics: what have we learned so far?: prophage genomics. Mol. Microbiol. 49, 277–300 (2003).

CAS 
PubMed 

Google Scholar
 

Holmes, E. C. The evolution of endogenous viral elements. Cell Host Microbe 10, 368–377 (2011).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Lang, A. S., Westbye, A. B. & Beatty, J. T. The distribution, evolution, and roles of gene transfer agents in prokaryotic genetic exchange. Annu. Rev. Virol. 4, 87–104 (2017).

CAS 
PubMed 

Google Scholar
 

Scholl, D. Phage tail–like bacteriocins. Annu. Rev. Virol. 4, 453–467 (2017).

CAS 
PubMed 

Google Scholar
 

Krupovic, M., Bamford, D. H. & Koonin, E. V. Conservation of major and minor jelly-roll capsid proteins in Polinton (Maverick) transposons suggests that they are bona fide viruses. Biol. Direct 9, 6 (2014).

PubMed 
PubMed Central 

Google Scholar
 

Gaïa, M. et al. Mirusviruses link herpesviruses to giant viruses. Nature 616, 783–789 (2023).

PubMed 
PubMed Central 

Google Scholar
 

Zheludev, I. N. et al. Viroid-like colonists of human microbiomes. Cell 187, 6521–6536.e18 (2024).

CAS 
PubMed 

Google Scholar
 

Banfield, J. et al. Convergent evolution of viral-like Borg archaeal extrachromosomal elements and giant eukaryotic viruses. Preprint at bioRxiv https://doi.org/10.1101/2024.11.05.622173 (2024).

Bolduc, B. et al. Identification of novel positive-strand RNA viruses by metagenomic analysis of archaea-dominated Yellowstone hot springs. J. Virol. 86, 5562–5573 (2012).

CAS 
PubMed 
PubMed Central 

Google Scholar
Â