Koonin, E. V., Kuhn, J. H., Dolja, V. V. & Krupovic, M. Megataxonomy and global ecology of the virosphere. ISME J. 18, wrad042 (2024).
Koonin, E. V. et al. Global organization and proposed megataxonomy of the virus world. Microbiol. Mol. Biol. Rev. 84, e00061–19 (2020). This review proposes a global genome-based viral classification framework that integrates both isolate and metagenome-assembled viral genomes.
Suttle, C. A. Marine viruses — major players in the global ecosystem. Nat. Rev. Microbiol. 5, 801–812 (2007).
Bratbak, G., Egge, J. K. & Heldal, M. Viral mortality of the marine alga Emiliania huxleyi (Haptophyceae) and termination of algal blooms. Mar. Ecol. Prog. Ser. 93, 39–48 (1993).
Coy, S. R., Gann, E. R., Pound, H. L., Short, S. M. & Wilhelm, S. W. Viruses of eukaryotic algae: diversity, methods for detection, and future directions. Viruses 10, 487 (2018).
Lennon, J. T. & Martiny, J. B. H. Rapid evolution buffers ecosystem impacts of viruses in a microbial food web. Ecol. Lett. 11, 1178–1188 (2008).
Albright, M. B. N. et al. Experimental evidence for the impact of soil viruses on carbon cycling during surface plant litter decomposition. ISME Commun. 2, 24 (2022).
Weitz, J. S. & Wilhelm, S. W. Ocean viruses and their effects on microbial communities and biogeochemical cycles. F1000 Biol. Rep. 4, 17 (2012).
Runa, V., Wenk, J., Bengtsson, S., Jones, B. V. & Lanham, A. B. Bacteriophages in biological wastewater treatment systems: occurrence, characterization, and function. Front. Microbiol. 12, 730071 (2021).
Carreira, C. et al. Integrating viruses into soil food web biogeochemistry. Nat. Microbiol. 9, 1918–1928 (2024).
Roux, S. A viral ecogenomics framework to uncover the secrets of nature’s ‘microbe whisperers’. mSystems 4, 1–5 (2019).
Vela, J. D. & Al-Faliti, M. Emerging investigator series: the role of phage lifestyle in wastewater microbial community structures and functions: insights into diverse microbial environments. Environ. Sci. Water Res. Technol. 9, 1982–1991 (2023).
Pires, D. P., Cleto, S., Sillankorva, S., Azeredo, J. & Lu, T. K. Genetically engineered phages: a review of advances over the last decade. Microbiol. Mol. Biol. Rev. 80, 523–543 (2016).
Tringe, S. G. & Rubin, E. M. Metagenomics: DNA sequencing of environmental samples. Nat. Rev. Genet. 6, 805–814 (2005).
Edwards, R. A. & Rohwer, F. Viral metagenomics. Nat. Rev. Microbiol. 3, 504–510 (2005).
Breitbart, M. et al. Genomic analysis of uncultured marine viral communities. Proc. Natl Acad. Sci. USA 99, 14250–14255 (2002). This is one of the first viral metagenomic analyses from an environmental sample, highlighting the high number of novel genes encoded by viruses.
Breitbart, M. et al. Metagenomic analyses of an uncultured viral community from human feces. J. Bacteriol. 185, 6220–6223 (2003).
Camargo, A. P. et al. IMG/VR v4: an expanded database of uncultivated virus genomes within a framework of extensive functional, taxonomic, and ecological metadata. Nucleic Acids Res. 51, D733–D743 (2023). IMG/VR is a large database integrating metagenome-assembled viral genomes from a broad range of ecosystems.
Camarillo-Guerrero, L. F., Almeida, A., Rangel-Pineros, G., Finn, R. D. & Lawley, T. D. Massive expansion of human gut bacteriophage diversity. Cell 184, 1098–1109.e9 (2021).
Ma, B. et al. Biogeographic patterns and drivers of soil viromes. Nat. Ecol. Evol. 8, 717–728 (2024).
Shi, M. et al. Redefining the invertebrate RNA virosphere. Nature 540, 539–543 (2016).
Ng, T. F. F. et al. Preservation of viral genomes in 700-y-old caribou feces from a subarctic ice patch. Proc. Natl Acad. Sci. USA 111, 16842–16847 (2014).
Tisza, M. J. et al. Discovery of several thousand highly diverse circular DNA viruses. eLife 9, e51971 (2020).
Chiu, C. Y. & Miller, S. A. Clinical metagenomics. Nat. Rev. Genet. 20, 341–355 (2019).
Dutilh, B. E. et al. A highly abundant bacteriophage discovered in the unknown sequences of human faecal metagenomes. Nat. Commun. 5, 4498 (2014). This article was the first to describe the CrAssphage genome, highlighting the potential of viromics for the discovery of novel highly abundant viruses.
Yutin, N. et al. Discovery of an expansive bacteriophage family that includes the most abundant viruses from the human gut. Nat. Microbiol. 3, 38–46 (2018).
Edwards, R. A. et al. Global phylogeography and ancient evolution of the widespread human gut virus crAssphage. Nat. Microbiol. 4, 1727–1736 (2019).
Roux, S. et al. Ecogenomics and potential biogeochemical impacts of uncultivated globally abundant ocean viruses. Nature 537, 689–693 (2016).
ter Horst, A. M. et al. Minnesota peat viromes reveal terrestrial and aquatic niche partitioning for local and global viral populations. Microbiome 9, 1–18 (2021).
Breitbart, M., Bonnain, C., Malki, K. & Sawaya, N. A. Phage puppet masters of the marine microbial realm. Nat. Microbiol. 3, 754–766 (2018). This Review presents an overview of the AMGs discovered at the time in marine phages and highlights the different cellular processes possibly impacted.
Sieradzki, E. T., Ignacio-Espinoza, J. C., Needham, D. M., Fichot, E. B. & Fuhrman, J. A. Dynamic marine viral infections and major contribution to photosynthetic processes shown by spatiotemporal picoplankton metatranscriptomes. Nat. Commun. 10, 1169 (2019).
Sharon, I. et al. Photosystem I gene cassettes are present in marine virus genomes. Nature 461, 258–262 (2009).
Kieft, K. et al. Ecology of inorganic sulfur auxiliary metabolism in widespread bacteriophages. Nat. Commun. 12, 3503 (2021).
Emerson, J. B. et al. Host-linked soil viral ecology along a permafrost thaw gradient. Nat. Microbiol. 3, 870–880 (2018).
Chen, L.-X. et al. Large freshwater phages with the potential to augment aerobic methane oxidation. Nat. Microbiol. 5, 1504–1515 (2020).
Ahlgren, N. A., Fuchsman, C. A., Rocap, G. & Fuhrman, J. A. Discovery of several novel, widespread, and ecologically distinct marine Thaumarchaeota viruses that encode amoC nitrification genes. ISME J. 13, 618–631 (2019).
Braga, L. P. P. et al. Viruses direct carbon cycling in lake sediments under global change. Proc. Natl Acad. Sci. USA 119, e2202261119 (2022).
Schwartz, D. A. et al. Human-gut phages harbor sporulation genes. mBio 14, e00182–23 (2023).
Pausch, P. et al. CRISPR–CasΦ from huge phages is a hypercompact genome editor. Science 369, 333–337 (2020). This study highlights the unique features relevant for biotechnological applications of a phage-encoded Cas gene initially discovered via viromics.
Palmer, M. et al. Diversity and distribution of a novel genus of hyperthermophilic aquificae viruses encoding a proof-reading family — a DNA polymerase. Front. Microbiol. 11, 1–18 (2020).
Garmaeva, S. et al. Transmission and dynamics of mother-infant gut viruses during pregnancy and early life. Nat. Commun. 15, 1945 (2024).
Zhang, F. et al. Longitudinal dynamics of gut bacteriome, mycobiome and virome after fecal microbiota transplantation in graft-versus-host disease. Nat. Commun. 12, 65 (2021).
Lam, S. et al. Roles of the gut virome and mycobiome in faecal microbiota transplantation. Lancet Gastroenterol. Hepatol. 7, 472–484 (2022).
Daly, R. A. et al. Viruses control dominant bacteria colonizing the terrestrial deep biosphere after hydraulic fracturing. Nat. Microbiol. 4, 352–361 (2019).
Medvedeva, S. et al. Three families of Asgard archaeal viruses identified in metagenome-assembled genomes. Nat. Microbiol. 7, 962–973 (2022).
Medvedeva, S., Borrel, G., Krupovic, M. & Gribaldo, S. A compendium of viruses from methanogenic archaea reveals their diversity and adaptations to the gut environment. Nat. Microbiol. 8, 2170–2182 (2023).
Rambo, I. M., Langwig, M. V., Leão, P., De Anda, V. & Baker, B. J. Genomes of six viruses that infect Asgard archaea from deep-sea sediments. Nat. Microbiol. 7, 953–961 (2022).
Hwang, Y., Roux, S., Coclet, C., Krause, S. J. E. & Girguis, P. R. Viruses interact with hosts that span distantly related microbial domains in dense hydrothermal mats. Nat. Microbiol. 8, 946–957 (2023). This study of deep-sea metagenomes reports a potentially broad range of interactions for some viruses and highlights several potential mechanisms for such interactions to be observed.
Marbouty, M., Thierry, A., Millot, G. A. & Koszul, R. MetaHiC phage-bacteria infection network reveals active cycling phages of the healthy human gut. eLife 10, 1–51 (2021).
Arkhipova, K. et al. Temporal dynamics of uncultured viruses: a new dimension in viral diversity. ISME J. 12, 199–211 (2017).
Knowles, B. et al. Lytic to temperate switching of viral communities. Nature 531, 533–537 (2016).
Ignacio-Espinoza, J. C., Ahlgren, N. A. & Fuhrman, J. A. Long-term stability and Red Queen-like strain dynamics in marine viruses. Nat. Microbiol. 5, 265–271 (2020).
Conceição-Neto, N., Yinda, K. C., Van Ranst, M. & Matthijnssens, J. in The Human Virome: Methods and Protocols (eds. Moya, A. & Pérez Brocal, V.) 85–95 (Springer, 2018).
Kleiner, M., Hooper, L. V. & Duerkop, B. A. Evaluation of methods to purify virus-like particles for metagenomic sequencing of intestinal viromes. BMC Genomics 16, 7 (2015).
Soria-Villalba, A. et al. Comparison of experimental methodologies based on bulk-metagenome and virus-like particle enrichment: pros and cons for representativeness and reproducibility in the study of the fecal human virome. Microorganisms 12, 162 (2024).
Hayes, S., Mahony, J., Nauta, A. & van Sinderen, D. Metagenomic approaches to assess bacteriophages in various environmental niches. Viruses 9, 127 (2017).
Trubl, G. et al. Optimization of viral resuspension methods for carbon-rich soils along a permafrost thaw gradient. PeerJ 4, e1999 (2016).
Forterre, P. The virocell concept and environmental microbiology. ISME J. 7, 233–236 (2013).
Santos-Medellin, C. et al. Viromes outperform total metagenomes in revealing the spatiotemporal patterns of agricultural soil viral communities. ISME J. 15, 1956–1970 (2021).
Kosmopoulos, J. C., Klier, K. M., Langwig, M. V., Tran, P. Q. & Anantharaman, K. Viromes vs. mixed community metagenomes: choice of method dictates interpretation of viral community ecology. Microbiome 12, 195 (2024). This benchmarking study highlights the differences between and complementarity of different metagenomics approaches for viromics studies.
Lücking, D., Mercier, C., Alarcón-Schumacher, T. & Erdmann, S. Extracellular vesicles are the main contributor to the non-viral protected extracellular sequence space. ISME Commun. 3, 112 (2023).
Shkoporov, A. N. et al. The human gut virome is highly diverse, stable, and individual specific. Cell Host Microbe 26, 527–541.e5 (2019).
Labonté, J. M. et al. Single-cell genomics-based analysis of virus–host interactions in marine surface bacterioplankton. ISME J. 9, 2386–2399 (2015).
Jarett, J. K. et al. Insights into the dynamics between viruses and their hosts in a hot spring microbial mat. ISME J. 14, 2527–2541 (2020).
Martinez-Hernandez, F. et al. Single-virus genomics reveals hidden cosmopolitan and abundant viruses. Nat. Commun. 8, 15892 (2017). This application of single-virus genomics to oceanic samples uncovers a widespread virus population difficult to assemble from metagenomes, highlighting a potential blind spot for some viromics analyses.
Hillary, L. S., Adriaenssens, E. M., Jones, D. L. & McDonald, J. E. RNA-viromics reveals diverse communities of soil RNA viruses with the potential to affect grassland ecosystems across multiple trophic levels. ISME Commun. 2, 34 (2022).
Potapov, S. et al. RNA-seq virus fraction in Lake Baikal and treated wastewaters. Int. J. Mol. Sci. 24, 12049 (2023).
Cook, R. et al. The long and short of it: benchmarking viromics using illumina, nanopore and PacBio sequencing technologies. Microb. Genomics 10, 001198 (2024).
Warwick-Dugdale, J. et al. Long-read powered viral metagenomics in the oligotrophic Sargasso Sea. Nat. Commun. 15, 4089 (2024).
Hopkins, M. et al. Diversity of environmental single-stranded DNA phages revealed by PCR amplification of the partial major capsid protein. ISME J. 8, 2093–2103 (2014).
Potapov, S. et al. Assessing the diversity of the g23 gene of T4-like bacteriophages from Lake Baikal with high-throughput sequencing. FEMS Microbiol. Lett. 365, fnx264 (2018).
Frantzen, C. A. & Holo, H. Unprecedented diversity of lactococcal group 936 bacteriophages revealed by amplicon sequencing of the portal protein gene. Viruses 11, 443 (2019).
Munson-McGee, J. H., Rooney, C. & Young, M. J. An uncultivated virus infecting a nanoarchaeal parasite in the hot springs of Yellowstone national park. J. Virol. 94, e01213–e01219 (2020).
Lund, M. C. et al. Diverse microviruses circulating in invertebrates within a lake ecosystem. J. Gen. Virol. 105, 002049 (2024).
Lopez, J. K. M. et al. Genomes of bacteriophages belonging to the orders caudovirales and petitvirales identified in fecal samples from pacific flying Fox (Pteropus tonganus) from the kingdom of Tonga. Microbiol. Resour. Announc. 11, e00038–22 (2022).
Marine, R. et al. Caught in the middle with multiple displacement amplification: the myth of pooling for avoiding multiple displacement amplification bias in a metagenome. Microbiome 2, 3 (2014).
Kim, K.-H. & Bae, J.-W. Amplification methods bias metagenomic libraries of uncultured single-stranded and double-stranded DNA viruses. Appl. Env. Microbiol. 77, 7663–7668 (2011).
Roux, S. et al. Minimum information about an uncultivated virus genome (MIUVIG). Nat. Biotechnol. 37, 29–37 (2019). This consensus paper outlines key approaches for recovery and analysis of uncultivated virus genomes and the critical metadata to report when submitting these genomes to public databases.
Zolfo, M. et al. Detecting contamination in viromes using ViromeQC. Nat. Biotechnol. 37, 1408–1412 (2019).
Pinto, Y. & Bhatt, A. S. Sequencing-based analysis of microbiomes. Nat. Rev. Genet. 25, 829–845 (2024).
Meyer, F. et al. Critical assessment of metagenome interpretation: the second round of challenges. Nat. Methods 19, 429–440 (2022).
Nurk, S., Meleshko, D., Korobeynikov, A. & Pevzner, P. A. metaSPAdes: a new versatile metagenomic assembler. Genome Res. 27, 824–834 (2017).
Li, D. et al. MEGAHIT v1.0: a fast and scalable metagenome assembler driven by advanced methodologies and community practices. Methods 102, 3–11 (2016).
Antipov, D., Raiko, M., Lapidus, A. & Pevzner, P. A. Metaviral SPAdes: assembly of viruses from metagenomic data. Bioinformatics 36, 4126–4129 (2020).
Roux, S., Emerson, J. B., Eloe-Fadrosh, E. A. & Sullivan, M. B. Benchmarking viromics: an in silico evaluation of metagenome-enabled estimates of viral community composition and diversity. PeerJ 5, e3817 (2017).
Kieft, K., Adams, A., Salamzade, R., Kalan, L. & Anantharaman, K. vRhyme enables binning of viral genomes from metagenomes. Nucleic Acids Res. 50, e83 (2022).
Johansen, J. et al. Genome binning of viral entities from bulk metagenomics data. Nat. Commun. 13, 965 (2022).
Schulz, F. et al. Advantages and limits of metagenomic assembly and binning of a giant virus. mSystems 5, e00048–20 (2020).
Camargo, A. P. et al. Identification of mobile genetic elements with geNomad. Nat. Biotechnol. 42, 1303–1312 (2023).
Kieft, K., Zhou, Z. & Anantharaman, K. VIBRANT: automated recovery, annotation and curation of microbial viruses, and evaluation of viral community function from genomic sequences. Microbiome 8, 90 (2020).
Guo, J. et al. VirSorter2: a multi-classifier, expert-guided approach to detect diverse DNA and RNA viruses. Microbiome 9, 37 (2021).
Ren, J. et al. Identifying viruses from metagenomic data using deep learning. Quant. Biol. 8, 64–77 (2020).
Hegarty, B. et al. Benchmarking informatics approaches for virus discovery: caution is needed when combining in silico identification methods. mSystems 9, e01105–e01123 (2024).
Nayfach, S. et al. CheckV assesses the quality and completeness of metagenome-assembled viral genomes. Nat. Biotechnol. 39, 578–585 (2020).
Terzian, P. et al. PHROG: families of prokaryotic virus proteins clustered using remote homology. Nar. Genomics Bioinforma. 3, lqab067 (2021).
Shaffer, M. et al. DRAM for distilling microbial metabolism to automate the curation of microbiome function. Nucleic Acids Res. 48, 8883–8900 (2020).
Jang, H. B. et al. Taxonomic assignment of uncultivated prokaryotic virus genomes is enabled by gene-sharing networks. Nat. Biotechnol. 37, 632–639 (2019).
Coclet, C. & Roux, S. Global overview and major challenges of host prediction methods for uncultivated phages. Curr. Opin. Virol. 49, 117–126 (2021).
Pratama, A. A. et al. Expanding standards in viromics: in silico evaluation of dsDNA viral genome identification, classification, and auxiliary metabolic gene curation. PeerJ 9, e11447 (2021).
Zhou, Z., Martin, C., Kosmopoulos, J. C. & Anantharaman, K. ViWrap: a modular pipeline to identify, bin, classify, and predict viral–host relationships for viruses from metagenomes. iMeta 2, e118 (2023).
Coclet, C., Camargo, A. P. & Roux, S. MVP: a modular viromics pipeline to identify, filter, cluster, annotate, and bin viruses from metagenomes. mSystems 9, e00888–24 (2024).
Páez-Espino, D. et al. Uncovering earth’s virome. Nature 536, 425–430 (2016).
Enault, F. et al. Phages rarely encode antibiotic resistance genes: a cautionary tale for virome analyses. ISME J. 11, 237–247 (2016).
Anantharaman, K. et al. Sulfur oxidation genes in diverse deep-sea viruses. Science 344, 757–760 (2014). This report and analysis of sulfur oxidation AMGs in metagenome-assembled virus genomes significantly expanded the list of metabolic processes potentially redirected during viral infections.
Nayfach, S. et al. Metagenomic compendium of 189,680 DNA viruses from the human gut microbiome. Nat. Microbiol. 6, 960–970 (2021).
Gregory, A. C. et al. The gut virome database reveals age-dependent patterns of virome diversity in the human gut. Cell Host Microbe 28, 724–740.e8 (2020).
An, L. et al. Global diversity and ecological functions of viruses inhabiting oil reservoirs. Nat. Commun. 15, 6789 (2024).
Brum, J. R. et al. Ocean plankton. Patterns and ecological drivers of ocean viral communities. Science 348, 1261498 (2015).
Gregory, A. C. et al. Marine DNA viral macro- and microdiversity from pole to pole. Cell 177, 1109–1123.e14 (2019).
Graham, E. B. et al. A global atlas of soil viruses reveals unexplored biodiversity and potential biogeochemical impacts. Nat. Microbiol. 9, 1873–1883 (2024).
Neri, U. et al. Expansion of the global RNA virome reveals diverse clades of bacteriophages. Cell 185, 4023–4037.e18 (2022).
Edgar, R. C. et al. Petabase-scale sequence alignment catalyses viral discovery. Nature 602, 142–147 (2022).
Zayed, A. A. et al. Cryptic and abundant marine viruses at the evolutionary origins of Earth’s RNA virome. Science 376, 156–162 (2022).
Wang, R. H. et al. PhageScope: a well-annotated bacteriophage database with automatic analyses and visualizations. Nucleic Acids Res. 52, D756–D761 (2024).
Willner, D., Thurber, R. V. & Rohwer, F. Metagenomic signatures of 86 microbial and viral metagenomes. Environ. Microbiol. 11, 1752–1766 (2009).
Dinsdale, E. A. et al. Functional metagenomic profiling of nine biomes. Nature 452, 629–632 (2008).
Zhou, Z. et al. Unravelling viral ecology and evolution over 20 years in a freshwater lake. Nat. Microbiol. 10, 231–245 (2025).
Coclet, C. et al. Virus diversity and activity is driven by snowmelt and host dynamics in a high-altitude watershed soil ecosystem. Microbiome 11, 237 (2023).
Bolaños, L. M., Michelsen, M. & Temperton, B. Metagenomic time series reveals a Western English Channel viral community dominated by members with strong seasonal signals. ISME J. 18, wrae216 (2024).
Sun, C. L. et al. Virus ecology and 7-year temporal dynamics across a permafrost thaw gradient. Environ. Microbiol. 26, e16665 (2024).
Muscatt, G., Cook, R., Millard, A., Bending, G. D. & Jameson, E. Viral metagenomics reveals diverse virus–host interactions throughout the soil depth profile. mBio 14, e02246–23 (2023).
Coutinho, F. H., Rosselli, R. & RodrÃguez-Valera, F. Trends of microdiversity reveal depth-dependent evolutionary strategies of viruses in the Mediterranean. mSystems 4, e00554–19 (2019).
Pavlopoulos, G. A. et al. Unraveling the functional dark matter through global metagenomics. Nature 622, 594–602 (2023). This global reanalysis of public metagenomes reveals and describes a large number of novel protein families, many seemingly encoded by viruses.
Zayed, A. A. et al. efam: an expanded, metaproteome-supported HMM profile database of viral protein fam ilies. Bioinformatics 37, 4202–4208 (2021).
Fremin, B. J. et al. Thousands of small, novel genes predicted in global phage genomes. Cell Rep. 39, 110984 (2022).
Chevallereau, A., Pons, B. J., van Houte, S. & Westra, E. R. Interactions between bacterial and phage communities in natural environments. Nat. Rev. Microbiol. 20, 49–62 (2022).
van Kempen, M. et al. Fast and accurate protein structure search with Foldseek. Nat. Biotechnol. 42, 243–246 (2024).
Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).
Shao, B. & Yan, J. A long-context language model for deciphering and generating bacteriophage genomes. Nat. Commun. 15, 9392 (2024).
Hwang, Y., Cornman, A. L., Kellogg, E. H., Ovchinnikov, S. & Girguis, P. R. Genomic language model predicts protein co-regulation and function. Nat. Commun. 15, 2880 (2024).
Flamholz, Z. N., Biller, S. J. & Kelly, L. Large language models improve annotation of prokaryotic viral proteins. Nat. Microbiol. 9, 537–549 (2024).
Sullivan, M. B. et al. Prevalence and evolution of core photosystem II genes in marine cyanobacterial viruses and their hosts. PLoS Biol. 4, e234 (2006).
Lindell, D. et al. Transfer of photosynthesis genes to and from Prochlorococcus viruses. Proc. Natl Acad. Sci. USA 101, 11013–11018 (2004).
Mann, N. H., Cook, A., Millard, A., Bailey, S. & Clokie, M. Bacterial photosynthesis genes in a virus. Nature 424, 741–741 (2003). This first description of photosynthesis genes encoded by phages, reported here from isolate cyanophages, spurred the search for and subsequent discoveries of a large number of AMGs.
Puxty, R. J. & Millard, A. D. Functional ecology of bacteriophages in the environment. Curr. Opin. Microbiol. 71, 102245 (2023).
Brown, T. L., Charity, O. J. & Adriaenssens, E. M. Ecological and functional roles of bacteriophages in contrasting environments: marine, terrestrial and human gut. Curr. Opin. Microbiol. 70, 102229 (2022).
Johansen, J. et al. Centenarians have a diverse gut virome with the potential to modulate metabolism and promote healthy lifespan. Nat. Microbiol. 8, 1064–1078 (2023).
Kieft, K. et al. Virus-associated organosulfur metabolism in human and environmental systems. Cell Rep. 36, 109471 (2021).
Zheng, X. et al. Organochlorine contamination enriches virus-encoded metabolism and pesticide degradation associated auxiliary genes in soil microbiomes. ISME J. 16, 1397–1408 (2022).
Gao, R. et al. Ecological drivers and potential functions of viral communities in flooded arsenic-contaminated paddy soils. Sci. Total. Environ. 872, 162289 (2023).
Al-Shayeb, B. et al. Diverse virus-encoded CRISPR–Cas systems include streamlined genome editors. Cell 185, 4574–4586.e16 (2022).
Thompson, L. R. et al. Phage auxiliary metabolic genes and the redirection of cyanobacterial host carbon metabolism. Proc. Natl Acad. Sci. USA 108, E757–E764 (2011).
Hiraoka, S. et al. Diverse DNA modification in marine prokaryotic and viral communities. Nucleic Acids Res. 50, 1531–1550 (2022).
Seong, H. J., Roux, S., Hwang, C. Y. & Sul, W. J. Marine DNA methylation patterns are associated with microbial community composition and inform virus–host dynamics. Microbiome 10, 157 (2022).
Fu, Y. et al. DeepMineLys: deep mining of phage lysins from human microbiome. Cell Rep. 43, 114583 (2024).
Pottie, I., Vázquez Fernández, R., Van de Wiele, T. & Briers, Y. Phage lysins for intestinal microbiome modulation: current challenges and enabling techniques. Gut Microbes 16, 2387144 (2024).
Fischetti, V. Development of phage lysins as novel therapeutics: a historical perspective. Viruses 10, 310 (2018).
Coutinho, F. H. et al. RaFAH: host prediction for viruses of bacteria and archaea based on protein content. Patterns 2, 100274 (2021).
Amgarten, D., Iha, B. K. V., Piroupo, C. M., da Silva, A. M. & Setubal, J. C. vHULK, a new tool for bacteriophage host prediction based on annotated genomic features and neural networks. PHAGE 3, 204–212 (2022).
Edwards, R. A., McNair, K., Faust, K., Raes, J. & Dutilh, B. E. Computational approaches to predict bacteriophage–host relationships. FEMS Microbiol. Rev. 40, 258–272 (2016).
Roux, S. et al. iPHoP: An integrated machine learning framework to maximize host prediction for metagenome-derived viruses of archaea and bacteria. PLoS Biol. 21, e3002083 (2023).
Wang, W. et al. A network-based integrated framework for predicting virus–prokaryote interactions. Nar. Genomics Bioinforma. 2, lqaa044 (2020).
Zhou, F. et al. PHISDetector: a tool to detect diverse in silico phage–host interaction signals for virome studies. Genomics, Proteom. Bioinforma. 20, 508–523 (2022).
Boeckaerts, D. et al. Prediction of Klebsiella phage-host specificity at the strain level. Nat. Commun. 15, 4355 (2024).
Gaborieau, B. et al. Prediction of strain level phage–host interactions across the Escherichia genus using only genomic information. Nat. Microbiol. 9, 2847–2861 (2024).
Bastien, G. E. et al. Virus-host interactions predictor (VHIP): machine learning approach to resolve microbial virus–host interaction networks. PLOS Comput. Biol. 20, e1011649 (2024).
Kumar, M., Ji, B., Zengler, K. & Nielsen, J. Modelling approaches for studying the microbiome. Nat. Microbiol. 4, 1253–1267 (2019).
Sokol, N. W. et al. Life and death in the soil microbiome: how ecological processes influence biogeochemistry. Nat. Rev. Microbiol. 20, 415–430 (2022).
Meng, L. et al. Quantitative assessment of nucleocytoplasmic large DNA virus and host interactions predicted by co-occurrence analyses. mSphere 6, e01298–20 (2021).
Coenen, A. R. & Weitz, J. S. Limitations of correlation-based inference in complex virus–microbe communities. mSystems 3, e00084–18 (2018).
Wu, R. et al. Hi-C metagenome sequencing reveals soil phage–host interactions. Nat. Commun. 14, 7666 (2023).
Uritskiy, G. et al. Accurate viral genome reconstruction and host assignment with proximity-ligation sequencing. Preprint at bioRxiv https://doi.org/10.1101/2021.06.14.448389 (2021).
Marbouty, M., Baudry, L., Cournac, A. & Koszul, R. Scaffolding bacterial genomes and probing host–virus interactions in gut microbiome by proximity ligation (chromosome capture) assay. Sci. Adv. 3, e1602105 (2017).
Du, Y., Fuhrman, J. A. & Sun, F. ViralCC retrieves complete viral genomes and virus-host pairs from metagenomic Hi-C data. Nat. Commun. 14, 502 (2023).
Howard-Varona, C. et al. Regulation of infection efficiency in a globally abundant marine Bacteriodetes virus. ISME J. 00, 1–12 (2016).
Lindell, D. et al. Genome-wide expression dynamics of a marine virus and host reveal features of co-evolution. Nature 449, 83–86 (2007).
Owen, S. V. et al. A window into lysogeny: revealing temperate phage biology with transcriptomics. Microb. Genomics 6, e000330 (2020).
Blasdel, B. G., Chevallereau, A., Monot, M., Lavigne, R. & Debarbieux, L. Comparative transcriptomics analyses reveal the conservation of an ancestral infectious strategy in two bacteriophage genera. ISME J. 11, 1988–1996 (2017).
Stough, J. M. A. et al. Molecular prediction of lytic vs lysogenic states for Microcystis phage: metatranscriptomic evidence of lysogeny during large bloom events. PLoS ONE 12, 1–17 (2017).
Merges, D. et al. Metatranscriptomics reveals contrasting effects of elevation on the activity of bacteria and bacterial viruses in soil. Mol. Ecol. 32, 6552–6563 (2023).
Kuchina, A. et al. Microbial single-cell RNA sequencing by split-pool barcoding. Science 371, eaba5257 (2021). This study describes the development and application of a single-cell RNA sequencing method for prokaryotes, that provides a unique opportunity for detailed characterization of virus-host interactions.
Shen, Y. et al. High-throughput single-microbe RNA sequencing reveals adaptive state heterogeneity and host–phage activity associations in human gut microbiome. Protein Cell 16, 211–226 (2024).
Putzeys, L. et al. Exploring the transcriptional landscape of phage–host interactions using novel high-throughput approaches. Curr. Opin. Microbiol. 77, 102419 (2024).
Fromm, A. et al. Single-cell RNA-seq of the rare virosphere reveals the native hosts of giant viruses in the marine environment. Nat. Microbiol. 9, 1619–1629 (2024).
Hevroni, G., Vincent, F., Ku, C., Sheyn, U. & Vardi, A. Daily turnover of active giant virus infection during algal blooms revealed by single-cell transcriptomics. Sci. Adv. 9, eadf7971 (2023).
Santos-MedellÃn, C., Blazewicz, S. J., Pett-Ridge, J., Firestone, M. K. & Emerson, J. B. Viral but not bacterial community successional patterns reflect extreme turnover shortly after rewetting dry soils. Nat. Ecol. Evol. 7, 1809–1822 (2023). This time-series viromics analysis integrating bulk soil and viral fractions samples highlights distinct successional patterns between microbial and viral communities.
Van Goethem, M. W., Swenson, T. L., Trubl, G., Roux, S. & Northen, T. R. Characteristics of wetting-induced bacteriophage blooms in biological soil crust. mBio 10, 1–15 (2019).
Barnett, S. E. & Buckley, D. H. Metagenomic stable isotope probing reveals bacteriophage participation in soil carbon cycling. Environ. Microbiol. 25, 1785–1795 (2023).
Trubl, G. et al. Active virus–host interactions at sub-freezing temperatures in Arctic peat soil. Microbiome 9, 208 (2021).
Ngo, V. Q. H. et al. Establishing host–virus link through host metabolism: viral DNA SIP validation using T4 bacteriophage and E. coli. Curr. Microbiol. 81, 266 (2024).
Charon, J. et al. Consensus statement from the first RdRp summit: advancing RNA virus discovery at scale across communities. Front. Virol. 4, 1–10 (2024). This consensus statement reports on the discussions led at the first RdRP summit, which gathered experts from different fields around the topic of sequence-based RNA virus discovery.
Simmonds, P. et al. Virus taxonomy in the age of metagenomics. Nat. Rev. Microbiol. 15, 161–168 (2017). This perspective represents a key step and statement by the ICTV towards the integration of metagenome-derived virus genomes in the formal virus taxonomy.
Lang, A. S., Buchan, A. & Burrus, V. Interactions and evolutionary relationships among bacterial mobile genetic elements. Nat. Rev. Microbiol. 23, 423–438 (2025).
Casjens, S. Prophages and bacterial genomics: what have we learned so far?: prophage genomics. Mol. Microbiol. 49, 277–300 (2003).
Holmes, E. C. The evolution of endogenous viral elements. Cell Host Microbe 10, 368–377 (2011).
Lang, A. S., Westbye, A. B. & Beatty, J. T. The distribution, evolution, and roles of gene transfer agents in prokaryotic genetic exchange. Annu. Rev. Virol. 4, 87–104 (2017).
Scholl, D. Phage tail–like bacteriocins. Annu. Rev. Virol. 4, 453–467 (2017).
Krupovic, M., Bamford, D. H. & Koonin, E. V. Conservation of major and minor jelly-roll capsid proteins in Polinton (Maverick) transposons suggests that they are bona fide viruses. Biol. Direct 9, 6 (2014).
Gaïa, M. et al. Mirusviruses link herpesviruses to giant viruses. Nature 616, 783–789 (2023).
Zheludev, I. N. et al. Viroid-like colonists of human microbiomes. Cell 187, 6521–6536.e18 (2024).
Banfield, J. et al. Convergent evolution of viral-like Borg archaeal extrachromosomal elements and giant eukaryotic viruses. Preprint at bioRxiv https://doi.org/10.1101/2024.11.05.622173 (2024).
Bolduc, B. et al. Identification of novel positive-strand RNA viruses by metagenomic analysis of archaea-dominated Yellowstone hot springs. J. Virol. 86, 5562–5573 (2012).