Kumar D. Disorders of the genome architecture: a review. Genom Med. 2008;2:69–76. https://doi.org/10.1007/s11568-009-9028-2.

Article 

Google Scholar
 

Shaw CJ, Lupski JR. Non-recurrent 17p11.2 deletions are generated by homologous and non-homologous mechanisms. Hum Genet. 2005;116:1–7. https://doi.org/10.1007/s00439-004-1204-9.

Article 
CAS 

Google Scholar
 

Verdin H, D’haene B, Beysen D, Novikova Y, Menten B, Sante T, et al. Microhomology-mediated mechanisms underlie non-recurrent disease-causing microdeletions of the FOXL2 gene or its regulatory domain. PLoS Genet. 2013;9:e1003358 https://doi.org/10.1371/journal.pgen.1003358.

Article 
CAS 

Google Scholar
 

Gu W, Zhang F, Lupski JR. Mechanisms for human genomic rearrangements. Pathogenetics. 2008;1: https://doi.org/10.1186/1755-8417-1-4.

Gu S, Yuan B, Campbell IM, Beck CR, Carvalho CMB, Nagamani SCS, et al. Alu-mediated diverse and complex pathogenic copy-number variants within human chromosome 17 at p13.3. Hum Mol Genet. 2015;24:4061–77. https://doi.org/10.1093/hmg/ddv146.

Article 
CAS 

Google Scholar
 

Song X, Beck CR, Du R, Campbell IM, Coban-Akdemir Z, Gu S, et al. Predicting human genes susceptible to genomic instability associated with Alu/Alu-mediated rearrangements. Genome Res. 2018;28:1228–42. https://doi.org/10.1101/gr.229401.117.

Article 
CAS 

Google Scholar
 

Korbel JO, Urban AE, Affourtit JP, Godwin B, Grubert F, Simons JF, et al. Paired-end mapping reveals extensive structural variation in the human genome. Science. 2007;318:420–6. https://doi.org/10.1126/science.1149504.

Article 
CAS 

Google Scholar
 

Chen J-M, Cooper DN, Férec C, Kehrer-Sawatzki H, Patrinos GP. Genomic rearrangements in inherited disease and cancer. Semin Cancer Biol. 2010;20:222–33. https://doi.org/10.1016/j.semcancer.2010.05.007.

Article 
CAS 

Google Scholar
 

Carvalho CM, Lupski JR. Mechanisms underlying structural variant formation in genomic disorders. Nat Rev Genet. 2016;17:224–38. https://doi.org/10.1038/nrg.2015.25.

Article 
CAS 

Google Scholar
 

Mucha BE, Banka S, Ajeawung NF, Molidperee S, Chen GG, Koenig MK, et al. A new microdeletion syndrome involving TBC1D24, ATP6V0C, and PDPK1 causes epilepsy, microcephaly, and developmental delay. Genet Med. 2019;21:1058–64. https://doi.org/10.1038/s41436-018-0290-3.

Article 
CAS 

Google Scholar
 

Bartsch O, Rasi S, Delicado A, Dyack S, Neumann LM, Seemanová E, et al. Evidence for a new contiguous gene syndrome, the chromosome 16p13.3 deletion syndrome alias severe Rubinstein–Taybi syndrome. Hum Genet. 2006;120:179–86. https://doi.org/10.1007/s00439-006-0215-0.

Article 
CAS 

Google Scholar
 

Balestrini S, Campeau PM, Mei D, Guerrini R, Sisodiya S. TBC1D24-Related Disorders. In Adam MP editor GeneReviews®. Seattle: University of Washington; 2015.

Mattison KA, Tossing G, Mulroe F, Simmons C, Butler KM, Schreiber A, et al. ATP6V0C variants impair V-ATPase function causing a neurodevelopmental disorder often associated with epilepsy. Brain. 2023;146:1357–72. https://doi.org/10.1093/brain/awac330.

Article 

Google Scholar
 

Tinker RJ, Burghel GJ, Garg S, Steggall M, Cuvertino S, Banka S. Haploinsufficiency of ATP6V0C possibly underlies 16p13.3 deletions that cause microcephaly, seizures, and neurodevelopmental disorder. Am J Med Genet A. 2021;185:196–202. https://doi.org/10.1002/ajmg.a.61905.

Article 
CAS 

Google Scholar
 

Talkowski ME, Ernst C, Heilbut A, Chiang C, Hanscom C, Lindgren A, et al. Next-generation sequencing strategies enable routine detection of balanced chromosome rearrangements for clinical diagnostics and genetic research. Am J Hum Genet. 2011;88:469–81. https://doi.org/10.1016/j.ajhg.2011.03.013.

Article 
CAS 

Google Scholar
 

Hottentot QP, van Min M, Splinter E, White SJ. Targeted locus amplification and next-generation sequencing. In: Methods in molecular biology. New York, NY: Springer New York; 2017. p. 185–96.

Koressaar T, Remm M. Enhancements and modifications of primer design program Primer3. Bioinforma. 2007;23:1289–91. https://doi.org/10.1093/bioinformatics/btm091.

Article 
CAS 

Google Scholar
 

Tsai M-F, Lin Y-J, Cheng Y-C, Lee K-H, Huang C-C, Chen Y-T, et al. PrimerZ: streamlined primer design for promoters, exons and human SNPs. Nucleic Acids Res. 2007;35:W63–W65. https://doi.org/10.1093/nar/gkm383.

Article 

Google Scholar
 

Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, et al. Primer3—new capabilities and interfaces. Nucleic Acids Res. 2012;40:e115–e115. https://doi.org/10.1093/nar/gks596.

Article 
CAS 

Google Scholar
 

Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden TL. Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics. 2012;13: https://doi.org/10.1186/1471-2105-13-134.

Kent WJ. BLAT—the BLAST-like alignment tool. Genome Res. 2002;12:656–64. https://doi.org/10.1101/gr.229202.

Article 
CAS 

Google Scholar
 

Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, et al. The human genome browser at UCSC. Genome Res. 2002;12:996–1006. https://doi.org/10.1101/gr.229102.

Article 
CAS 

Google Scholar
 

Paré B, Rozendaal M, Morin S, Kaufmann L, Simpson SM, Poujol R, et al. Patient health records and whole viral genomes from an early SARS-CoV-2 outbreak in a Quebec hospital reveal features associated with favorable outcomes. PLoS One. 2021;16:e0260714 https://doi.org/10.1371/journal.pone.0260714.

Article 
CAS 

Google Scholar
 

Delehelle F, Cussat-Blanc S, Alliot J-M, Luga H, Balaresque P. ASGART: fast and parallel genome scale segmental duplications mapping. Bioinforma. 2018;34:2708–14. https://doi.org/10.1093/bioinformatics/bty172.

Article 
CAS 

Google Scholar
 

Cer RZ, Bruce KH, Mudunuri US, Yi M, Volfovsky N, Luke BT, et al. Non-B DB: a database of predicted non-B DNA-forming motifs in mammalian genomes. Nucleic Acids Res. 2011;39:D383–D391. https://doi.org/10.1093/nar/gkq1170.

Article 
CAS 

Google Scholar
 

Cer RZ, Donohue DE, Mudunuri US, Temiz NA, Loss MA, Starner NJ, et al. Non-B DB v2.0: a database of predicted non-B DNA-forming motifs and its associated tools. Nucleic Acids Res. 2012;41:D94–D100. https://doi.org/10.1093/nar/gks955.

Article 
CAS 

Google Scholar
 

Cer RZ, Bruce KH, Donohue DE, Temiz NA, Mudunuri US, Yi M, et al. Searching for non-B DNA-forming motifs using nBMST (non-B DNA Motif Search Tool). Curr Protoc Hum Genet. 2012;73: https://doi.org/10.1002/0471142905.hg1807s73.

Bansal A, Kaushik S, Kukreti S. Non-canonical DNA structures: diversity and disease association. Front Genet. 2022;13:959258. https://doi.org/10.3389/fgene.2022.959258.

Article 
CAS 

Google Scholar
 

Duardo RC, Guerra F, Pepe S, Capranico G. Non-B DNA structures as a booster of genome instability. Biochimie. 2023;214:176–92. https://doi.org/10.1016/j.biochi.2023.07.002.

Article 
CAS 

Google Scholar
 

Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol. 2011;7: https://doi.org/10.1038/msb.2011.75.

Sievers F, Higgins DG. Clustal Omega for making accurate alignments of many protein sequences. Protein Sci. 2018;27:135–45. https://doi.org/10.1002/pro.3290.

Article 
CAS 

Google Scholar
 

Brown NP, Leroy C, Sander C. MView: a web-compatible database search or multiple alignment viewer. Bioinforma. 1998;14:380–1. https://doi.org/10.1093/bioinformatics/14.4.380.

Article 
CAS 

Google Scholar
 

Bacolla A, Wells RD. Non-B DNA conformations, genomic rearrangements, and human disease. J Biol Chem. 2004;279:47411–4. https://doi.org/10.1074/jbc.r400028200.

Article 
CAS 

Google Scholar
 

Kaushal S, Freudenreich CH. The role of fork stalling and DNA structures in causing chromosome fragility. Genes Chromosomes Cancer. 2019;58:270–83. https://doi.org/10.1002/gcc.22721.

Article 
CAS 

Google Scholar
 

Sen SK, Han K, Wang J, Lee J, Wang H, Callinan PA, et al. Human genomic deletions mediated by recombination between Alu elements. Am J Hum Genet. 2006;79:41–53. https://doi.org/10.1086/504600.

Article 
CAS 

Google Scholar
 

Waldman AS, Liskay RM. Dependence of intrachromosomal recombination in mammalian cells on uninterrupted homology. Mol Cell Biol. 1988;8:5350–7. https://doi.org/10.1128/mcb.8.12.5350-5357.1988.

Article 
CAS 

Google Scholar
 

Rubnitz J, Subramani S. The minimum amount of homology required for homologous recombination in mammalian cells. Mol Cell Biol. 1984;4:2253–8. https://doi.org/10.1128/mcb.4.11.2253-2258.1984.

Article 
CAS 

Google Scholar
 

Lieber MR. The mechanism of human nonhomologous DNA end joining. J Biol Chem. 2008;283:1–5. https://doi.org/10.1074/jbc.r700039200.

Article 
CAS 

Google Scholar
 

Boyer A-S, Grgurevic S, Cazaux C, Hoffmann J-S. The human specialized DNA polymerases and non-B DNA: vital relationships to preserve genome integrity. J Mol Biol. 2013;425:4767–81. https://doi.org/10.1016/j.jmb.2013.09.022.

Article 
CAS 

Google Scholar
 

Xu Y, Komiyama M. G-quadruplexes in human telomere: structures, properties, and applications. Molecules. 2023;29:174 https://doi.org/10.3390/molecules29010174.

Article 
CAS 

Google Scholar
 

Georgakopoulos-Soares I, Victorino J, Parada GE, Agarwal V, Zhao J, Wong HY, et al. High-throughput characterization of the role of non-B DNA motifs on promoter function. Cell Genomics. 2022;2:100111. https://doi.org/10.1016/j.xgen.2022.100111.

Article 
CAS 

Google Scholar
 

De Cario R, Kura A, Suraci S, Magi A, Volta A, Marcucci R, et al. Sanger validation of high-throughput sequencing in genetic diagnosis: still the best practice? Front Genet. 2020;11: https://doi.org/10.3389/fgene.2020.592588.

Walz K, Fonseca P, Lupski JR. Animal models for human contiguous gene syndromes and other genomic disorders. Genet Mol Biol. 2004;27:305–20. https://doi.org/10.1590/s1415-47572004000300001.

Article 
CAS 

Google Scholar
 

Theisen A, Shaffer LG. Disorders caused by chromosome abnormalities. Appl Clin Genet. 2010;159: https://doi.org/10.2147/tacg.s8884.

Zhao B, Rothenberg E, Ramsden DA, Lieber MR. The molecular basis and disease relevance of non-homologous DNA end joining. Nat Rev Mol Cell Biol. 2020;21:765–81. https://doi.org/10.1038/s41580-020-00297-8.

Article 
CAS 

Google Scholar