Zheng, Y. et al. Precise genome-editing in human diseases: mechanisms, strategies and applications. Signal. Transduct. Target. Ther. 9, 47 (2024).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Adli, M. The CRISPR tool kit for genome editing and beyond. Nat. Commun. 9, 1911 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Pixley, K. V. et al. Genome-edited crops for improved food security of smallholder farmers. Nat. Genet. 54, 364–367 (2022).

Article 
PubMed 
CAS 

Google Scholar
 

Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821 (2012).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Chavez, M., Chen, X., Finn, P. B. & Qi, L. S. Advances in CRISPR therapeutics. Nat. Rev. Nephrol. 19, 9–22 (2023).

Article 
PubMed 
CAS 

Google Scholar
 

Chen, P. J. & Liu, D. R. Prime editing for precise and highly versatile genome manipulation. Nat. Rev. Genet. 24, 161–177 (2023).

Article 
PubMed 
CAS 

Google Scholar
 

Villiger, L. et al. CRISPR technologies for genome, epigenome and transcriptome editing. Nat. Rev. Mol. Cell Biol. 25, 464–487 (2024).

Article 
PubMed 
CAS 

Google Scholar
 

Porto, E. M., Komor, A. C., Slaymaker, I. M. & Yeo, G. W. Base editing: advances and therapeutic opportunities. Nat. Rev. Drug. Discov. 19, 839–859 (2020).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Urnov, F. D., Rebar, E. J., Holmes, M. C., Zhang, H. S. & Gregory, P. D. Genome editing with engineered zinc finger nucleases. Nat. Rev. Genet. 11, 636–646 (2010).

Article 
PubMed 
CAS 

Google Scholar
 

Joung, J. K. & Sander, J. D. TALENs: a widely applicable technology for targeted genome editing. Nat. Rev. Mol. Cell Biol. 14, 49–55 (2013).

Article 
PubMed 
CAS 

Google Scholar
 

Pacesa, M., Pelea, O. & Jinek, M. Past, present, and future of CRISPR genome editing technologies. Cell 187, 1076–1100 (2024).

Article 
PubMed 
CAS 

Google Scholar
 

Winter, J., Shirguppe, S. & Perez-Pinera, P. Protein engineering technologies for development of next-generation genome editors. Curr. Opin. Biomed. Eng. 28, 100514 (2023).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Hu, J. H. et al. Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature 556, 57–63 (2018).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Yoon, P. H. et al. Structure-guided discovery of ancestral CRISPR–Cas13 ribonucleases. Science 385, 538–543 (2024).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Altae-Tran, H. et al. Uncovering the functional diversity of rare CRISPR–Cas systems with deep terascale clustering. Science 382, eadi1910 (2023).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Wang, Z. et al. Robust enzyme discovery and engineering with deep learning using CataPro. Nat. Commun. 16, 2736 (2025).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Senior, A. W. et al. Improved protein structure prediction using potentials from deep learning. Nature 577, 706–710 (2020).

Article 
PubMed 
CAS 

Google Scholar
 

Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Abramson, J. et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 630, 493–500 (2024).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Baek, M. et al. Accurate prediction of protein structures and interactions using a three-track neural network. Science 373, 871–876 (2021).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Simon, E., Swanson, K. & Zou, J. Language models for biological research: a primer. Nat. Methods 21, 1422–1429 (2024).

Article 
PubMed 
CAS 

Google Scholar
 

Nambiar, T. S., Baudrier, L., Billon, P. & Ciccia, A. CRISPR-based genome editing through the lens of DNA repair. Mol. Cell 82, 348–388 (2022).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Li, T. et al. CRISPR/Cas9 therapeutics: progress and prospects. Signal. Transduct. Target. Ther. 8, 36 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Zetsche, B. et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR–Cas system. Cell 163, 759–771 (2015).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Badon, I. W., Oh, Y., Kim, H. J. & Lee, S. H. Recent application of CRISPR–Cas12 and OMEGA system for genome editing. Mol. Ther. 32, 32–43 (2024).

Article 
PubMed 
CAS 

Google Scholar
 

Hino, T. et al. An AsCas12f-based compact genome-editing tool derived by deep mutational scanning and structural analysis. Cell 186, 4920–4935.e23 (2023).

Article 
PubMed 
CAS 

Google Scholar
 

Abudayyeh, O. O. et al. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science 353, aaf5573 (2016).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Altae-Tran, H. et al. The widespread IS200/IS605 transposon family encodes diverse programmable RNA-guided endonucleases. Science 374, 57–65 (2021).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Marquart, K. F. et al. Effective genome editing with an enhanced ISDra2 TnpB system and deep learning-predicted omegaRNAs. Nat. Methods 21, 2084–2093 (2024).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Karvelis, T. et al. Transposon-associated TnpB is a programmable RNA-guided DNA endonuclease. Nature 599, 692–696 (2021).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Kannan, S. et al. Evolution-guided protein design of IscB for persistent epigenome editing in vivo. Nat. Biotechnol. https://doi.org/10.1038/s41587-025-02655-3 (2025).

Article 
PubMed 

Google Scholar
 

Xu, C. et al. Conversion of IscB and Cas9 into RNA-guided RNA editors. Cell 188, 5847–5861.e11 (2025).

Article 
PubMed 
CAS 

Google Scholar
 

Enache, O. M. et al. Cas9 activates the p53 pathway and selects for p53-inactivating mutations. Nat. Genet. 52, 662–668 (2020).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Kosicki, M., Tomberg, K. & Bradley, A. Repair of double-strand breaks induced by CRISPR–Cas9 leads to large deletions and complex rearrangements. Nat. Biotechnol. 36, 765–771 (2018).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Leibowitz, M. L. et al. Chromothripsis as an on-target consequence of CRISPR–Cas9 genome editing. Nat. Genet. 53, 895–905 (2021).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Komor, A. C., Kim, Y. B., Packer, M. S., Zuris, J. A. & Liu, D. R. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420–424 (2016).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Gaudelli, N. M. et al. Programmable base editing of A*T to G*C in genomic DNA without DNA cleavage. Nature 551, 464–471 (2017).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Xu, F. et al. Breaking genetic shackles: the advance of base editing in genetic disorder treatment. Front. Pharmacol. 15, 1364135 (2024).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Davies, K., Philippidis, A. & Barrangou, R. Five years of progress in CRISPR clinical trials (2019–2024). CRISPR J. 7, 227–230 (2024).

Article 
PubMed 

Google Scholar
 

Musunuru, K. et al. Patient-specific in vivo gene editing to treat a rare genetic disease. N. Engl. J. Med. 392, 2235–2243 (2025).

Article 
PubMed 
CAS 

Google Scholar
 

Grunewald, J. et al. Transcriptome-wide off-target RNA editing induced by CRISPR-guided DNA base editors. Nature 569, 433–437 (2019).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Anzalone, A. V. et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576, 149–157 (2019).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Anzalone, A. V. et al. Programmable deletion, replacement, integration and inversion of large DNA sequences with twin prime editing. Nat. Biotechnol. 40, 731–740 (2022).

Article 
PubMed 
CAS 

Google Scholar
 

Yarnall, M. T. N. et al. Drag-and-drop genome insertion of large sequences without double-strand DNA cleavage using CRISPR-directed integrases. Nat. Biotechnol. 41, 500–512 (2023).

Article 
PubMed 
CAS 

Google Scholar
 

Pandey, S. et al. Efficient site-specific integration of large genes in mammalian cells via continuously evolved recombinases and prime editing. Nat. Biomed. Eng. 9, 22–39 (2025).

Article 
PubMed 
CAS 

Google Scholar
 

Doman, J. L., Sousa, A. A., Randolph, P. B., Chen, P. J. & Liu, D. R. Designing and executing prime editing experiments in mammalian cells. Nat. Protoc. 17, 2431–2468 (2022).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Chen, P. J. et al. Enhanced prime editing systems by manipulating cellular determinants of editing outcomes. Cell 184, 5635–5652.e29 (2021).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Doman, J. L. et al. Phage-assisted evolution and protein engineering yield compact, efficient prime editors. Cell 186, 3983–4002.e26 (2023).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Yan, J. et al. Improving prime editing with an endogenous small RNA-binding protein. Nature 628, 639–647 (2024).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Nelson, J. W. et al. Engineered pegRNAs improve prime editing efficiency. Nat. Biotechnol. 40, 402–410 (2022).

Article 
PubMed 
CAS 

Google Scholar
 

Li, X. et al. Highly efficient prime editing by introducing same-sense mutations in pegRNA or stabilizing its structure. Nat. Commun. 13, 1669 (2022).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Fei, J. et al. Mismatch prime editing gRNA increased efficiency and reduced indels. Nat. Commun. 16, 139 (2025).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Gilbert, L. A. et al. Genome-scale CRISPR-mediated control of gene repression and activation. Cell 159, 647–661 (2014).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Gilbert, L. ukeA. et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154, 442–451 (2013).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Chavez, A. et al. Highly efficient Cas9-mediated transcriptional programming. Nat. Methods 12, 326–328 (2015).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Nunez, J. K. et al. Genome-wide programmable transcriptional memory by CRISPR-based epigenome editing. Cell 184, 2503–2519.e17 (2021).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Hilton, I. B. et al. Epigenome editing by a CRISPR–Cas9-based acetyltransferase activates genes from promoters and enhancers. Nat. Biotechnol. 33, 510–517 (2015).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Li, J. et al. Programmable human histone phosphorylation and gene activation using a CRISPR/Cas9-based chromatin kinase. Nat. Commun. 12, 896 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Konstantakos, V., Nentidis, A., Krithara, A. & Paliouras, G. CRISPR–Cas9 gRNA efficiency prediction: an overview of predictive tools and the role of deep learning. Nucleic Acids Res. 50, 3616–3637 (2022).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Sherkatghanad, Z., Abdar, M., Charlier, J. & Makarenkov, V. Using traditional machine learning and deep learning methods for on- and off-target prediction in CRISPR/Cas9: a review. Brief. Bioinform. 24, bbad131 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Dixit, S., Kumar, A., Srinivasan, K., Vincent, P. & Ramu Krishnan, N. Advancing genome editing with artificial intelligence: opportunities, challenges, and future directions. Front. Bioeng. Biotechnol. 11, 1335901 (2023).

Article 
PubMed 

Google Scholar
 

Chari, R., Mali, P., Moosburner, M. & Church, G. M. Unraveling CRISPR–Cas9 genome engineering parameters via a library-on-library approach. Nat. Methods 12, 823–826 (2015).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Kim, H. K. et al. In vivo high-throughput profiling of CRISPR–Cpf1 activity. Nat. Methods 14, 153–159 (2017).

Article 
PubMed 
CAS 

Google Scholar
 

Zhang, G., Luo, Y., Dai, X. & Dai, Z. Benchmarking deep learning methods for predicting CRISPR/Cas9 sgRNA on- and off-target activities. Brief. Bioinform. 24, bbad333 (2023).

Article 
PubMed 

Google Scholar
 

Kim, H. K. et al. Deep learning improves prediction of CRISPR–Cpf1 guide RNA activity. Nat. Biotechnol. 36, 239–241 (2018).

Article 
PubMed 
CAS 

Google Scholar
 

Kim, H. K. et al. SpCas9 activity prediction by DeepSpCas9, a deep learning-based model with high generalization performance. Sci. Adv. 5, eaax9249 (2019).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Chuai, G. et al. DeepCRISPR: optimized CRISPR guide RNA design by deep learning. Genome Biol. 19, 80 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Xiang, X. et al. Enhancing CRISPR–Cas9 gRNA efficiency prediction by data integration and deep learning. Nat. Commun. 12, 3238 (2021).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Li, C., Zou, Q., Li, J. & Feng, H. Prediction of CRISPR–Cas9 on-target activity based on a hybrid neural network. Comput. Struct. Biotechnol. J. 27, 2098–2106 (2025).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Hou, Y. et al. Leveraging protein language models for cross-variant CRISPR/Cas9 sgRNA activity prediction. Bioinformatics 41, btaf385 (2025).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Lin, Z. et al. Evolutionary-scale prediction of atomic-level protein structure with a language model. Science 379, 1123–1130 (2023).

Article 
PubMed 
CAS 

Google Scholar
 

Elkayam, S., Tziony, I. & Orenstein, Y. DeepCRISTL: deep transfer learning to predict CRISPR/Cas9 on-target editing efficiency in specific cellular contexts. Bioinformatics 40, btae481 (2024).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Liu, Q., Cheng, X., Liu, G., Li, B. & Liu, X. Deep learning improves the ability of sgRNA off-target propensity prediction. BMC Bioinforma. 21, 51 (2020).

Article 
CAS 

Google Scholar
 

Chen, Q. et al. Genome-wide CRISPR off-target prediction and optimization using RNA–DNA interaction fingerprints. Nat. Commun. 14, 7521 (2023).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Ozden, F. & Minary, P. Learning to quantify uncertainty in off-target activity for CRISPR guide RNAs. Nucleic Acids Res. 52, e87 (2024).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Tahsin, A. et al. CRISPR-Embedding: CRISPR/Cas9 off-target activity prediction using DNA k-mer embedding. Computational Struct. Biotechnol. Rep. 2, 100043 (2025).


Google Scholar
 

Du, W. et al. A versatile CRISPR/Cas9 system off-target prediction tool using language model. Commun. Biol. 8, 882 (2025).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Cheng, X. et al. Modeling CRISPR–Cas13d on-target and off-target effects using machine learning approaches. Nat. Commun. 14, 752 (2023).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Wessels, H. H. et al. Prediction of on-target and off-target activity of CRISPR–Cas13d guide RNAs using deep learning. Nat. Biotechnol. 42, 628–637 (2024).

Article 
PubMed 
CAS 

Google Scholar
 

Shen, M. W. et al. Predictable and precise template-free CRISPR editing of pathogenic variants. Nature 563, 646–651 (2018).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Chen, W. et al. Massively parallel profiling and predictive modeling of the outcomes of CRISPR/Cas9-mediated double-strand break repair. Nucleic Acids Res. 47, 7989–8003 (2019).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Allen, F. et al. Predicting the mutations generated by repair of Cas9-induced double-strand breaks. Nat. Biotechnol. 37, 64–72 (2019).

Article 
CAS 

Google Scholar
 

Leenay, R. T. et al. Large dataset enables prediction of repair after CRISPR–Cas9 editing in primary T cells. Nat. Biotechnol. 37, 1034–1037 (2019).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Naert, T. et al. Precise, predictable genome integrations by deep-learning-assisted design of microhomology-based templates. Nat. Biotechnol. https://doi.org/10.1038/s41587-025-02771-0 (2025).

Article 
PubMed 

Google Scholar
 

Huang, T. P., Newby, G. A. & Liu, D. R. Precision genome editing using cytosine and adenine base editors in mammalian cells. Nat. Protoc. 16, 1089–1128 (2021).

Article 
PubMed 
CAS 

Google Scholar
 

Arbab, M. et al. Determinants of base editing outcomes from target library analysis and machine learning. Cell 182, 463–480.e30 (2020).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Song, M. et al. Sequence-specific prediction of the efficiencies of adenine and cytosine base editors. Nat. Biotechnol. 38, 1037–1043 (2020).

Article 
PubMed 
CAS 

Google Scholar
 

Marquart, K. F. et al. Predicting base editing outcomes with an attention-based deep learning algorithm trained on high-throughput target library screens. Nat. Commun. 12, 5114 (2021).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Koblan, L. W. et al. Efficient C*G-to-G*C base editors developed using CRISPRi screens, target-library analysis, and machine learning. Nat. Biotechnol. 39, 1414–1425 (2021).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Kim, N. et al. Deep learning models to predict the editing efficiencies and outcomes of diverse base editors. Nat. Biotechnol. 42, 484–497 (2024).

Article 
PubMed 
CAS 

Google Scholar
 

Zhou, X. et al. Comprehensive evaluation and prediction of editing outcomes for near-PAMless adenine and cytosine base editors. Commun. Biol. 7, 1389 (2024).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Walton, R. T., Christie, K. A., Whittaker, M. N. & Kleinstiver, B. P. Unconstrained genome targeting with near-PAMless engineered CRISPR–Cas9 variants. Science 368, 290–296 (2020).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Yuan, T. et al. Deep learning models incorporating endogenous factors beyond DNA sequences improve the prediction accuracy of base editing outcomes. Cell Discov. 10, 20 (2024).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Zhang, C. et al. Prediction of base editor off-targets by deep learning. Nat. Commun. 14, 5358 (2023).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Kim, H. K. et al. Predicting the efficiency of prime editing guide RNAs in human cells. Nat. Biotechnol. 39, 198–206 (2021).

Article 
PubMed 
CAS 

Google Scholar
 

Li, Y., Chen, J., Tsai, S. Q. & Cheng, Y. Easy-Prime: a machine learning-based prime editor design tool. Genome Biol. 22, 235 (2021).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Mathis, N. et al. Predicting prime editing efficiency and product purity by deep learning. Nat. Biotechnol. 41, 1151–1159 (2023).

Article 
PubMed 
CAS 

Google Scholar
 

Yu, G. et al. Prediction of efficiencies for diverse prime editing systems in multiple cell types. Cell 186, 2256–2272 e2223 (2023).

Article 
PubMed 
CAS 

Google Scholar
 

Mathis, N. et al. Machine learning prediction of prime editing efficiency across diverse chromatin contexts. Nat. Biotechnol. 43, 712–719 (2025).

Article 
PubMed 
CAS 

Google Scholar
 

Koeppel, J. et al. Prediction of prime editing insertion efficiencies using sequence features and DNA repair determinants. Nat. Biotechnol. 41, 1446–1456 (2023).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Liu, F. et al. Design of prime-editing guide RNAs with deep transfer learning. Nat. Mach. Intell. 5, 1261 (2023).

Article 

Google Scholar
 

Alipanahi, R., Safari, L. & Khanteymoori, A. DTMP-prime: a deep transformer-based model for predicting prime editing efficiency and pegRNA activity. Mol. Ther. Nucleic Acids 35, 102370 (2024).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Janssen, S. M. & Lorincz, M. C. Interplay between chromatin marks in development and disease. Nat. Rev. Genet. 23, 137–153 (2022).

Article 
PubMed 
CAS 

Google Scholar
 

McCutcheon, S. R., Rohm, D., Iglesias, N. & Gersbach, C. A. Epigenome editing technologies for discovery and medicine. Nat. Biotechnol. 42, 1199–1217 (2024).

Article 
PubMed 
CAS 

Google Scholar
 

Yang, Q. et al. EpiCas-DL: predicting sgRNA activity for CRISPR-mediated epigenome editing by deep learning. Comput. Struct. Biotechnol. J. 21, 202–211 (2023).

Article 
PubMed 
CAS 

Google Scholar
 

Mu, W. et al. Machine learning methods for predicting guide RNA effects in CRISPR epigenome editing experiments. Preprint at bioRxiv https://doi.org/10.1101/2024.04.18.590188 (2024).

Consortium, E. P. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012).

Article 

Google Scholar
 

Batra, S. S. et al. Predicting the effect of CRISPR–Cas9-based epigenome editing. Preprint at bioRxiv https://doi.org/10.1101/2023.10.03.560674 (2025).

Zhao, F. et al. A strategy for Cas13 miniaturization based on the structure and AlphaFold. Nat. Commun. 14, 5545 (2023).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Pan, L. et al. Optimization of CRISPR/Cas12f1 guide RNAs using AlphaFold3 for enhanced nucleic acid detection. Microchemical J. 212, 113194 (2025).

Article 
CAS 

Google Scholar
 

Leman, J. K. et al. Macromolecular modeling and design in Rosetta: recent methods and frameworks. Nat. Methods 17, 665–680 (2020).

Article 
PubMed 
CAS 

Google Scholar
 

Jurtz, V. et al. NetMHCpan-4.0: improved peptide–MHC class I interaction predictions integrating eluted ligand and peptide binding affinity data. J. Immunol. 199, 3360–3368 (2017).

Article 
PubMed 
CAS 

Google Scholar
 

Raghavan, R. et al. Rational engineering of minimally immunogenic nucleases for gene therapy. Nat. Commun. 16, 105 (2025).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Watson, J. L. et al. De novo design of protein structure and function with RFdiffusion. Nature 620, 1089–1100 (2023).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Park, J. C. et al. AI-generated MLH1 small binder improves prime editing efficiency. Cell 188, 5831–5846.e21 (2025).

Article 
PubMed 
CAS 

Google Scholar
 

Ruffolo, J. A. & Madani, A. Designing proteins with language models. Nat. Biotechnol. 42, 200–202 (2024).

Article 
PubMed 
CAS 

Google Scholar
 

He, Y. et al. Protein language models-assisted optimization of a uracil-N-glycosylase variant enables programmable T-to-G and T-to-C base editing. Mol. Cell 84, 1257–1270.e6 (2024).

Article 
PubMed 
CAS 

Google Scholar
 

Perrotta, R. M. et al. Machine learning and directed evolution of base editing enzymes. Preprint at bioRxiv https://doi.org/10.1101/2024.05.17.594556 (2024).

Silverstein, R. A. et al. Custom CRISPR–Cas9 PAM variants via scalable engineering and machine learning. Nature 643, 539–550 (2025).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Chen, K. et al. Lung and liver editing by lipid nanoparticle delivery of a stable CRISPR–Cas9 ribonucleoprotein. Nat. Biotechnol. 43, 1445–1457 (2025).

Article 
PubMed 

Google Scholar
 

Wang, Y. et al. Directed evolution: methodologies and applications. Chem. Rev. 121, 12384–12444 (2021).

Article 
PubMed 
CAS 

Google Scholar
 

Wittmann, B. J., Johnston, K. E., Wu, Z. & Arnold, F. H. Advances in machine learning for directed evolution. Curr. Opin. Struct. Biol. 69, 11–18 (2021).

Article 
PubMed 
CAS 

Google Scholar
 

Jiang, K. et al. Rapid in silico directed evolution by a protein language model with EVOLVEpro. Science 387, eadr6006 (2025).

Article 
PubMed 
CAS 

Google Scholar
 

Raftopoulou, O. & Barrangou, R. Mining microbial organisms to discover and characterize novel CRISPR–Cas systems. Curr. Opin. Biomed. Eng. 27, 100469 (2023).

Article 
CAS 

Google Scholar
 

Faure, G. et al. TIGR-Tas: a family of modular RNA-guided DNA-targeting systems in prokaryotes and their viruses. Science 388, eadv9789 (2025).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Saito, M. et al. Fanzor is a eukaryotic programmable RNA-guided endonuclease. Nature 620, 660–668 (2023).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Jiang, K. et al. Programmable RNA-guided DNA endonucleases are widespread in eukaryotes and their viruses. Sci. Adv. 9, eadk0171 (2023).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Huang, J. et al. Discovery of deaminase functions by structure-based protein clustering. Cell 186, 3182–3195.e14 (2023).

Article 
PubMed 
CAS 

Google Scholar
 

Xu, K. et al. Structure-guided discovery of highly efficient cytidine deaminases with sequence-context independence. Nat. Biomed. Eng. 9, 93–108 (2025).

Article 
PubMed 
CAS 

Google Scholar
 

Li, W. et al. Discovering CRISPR–Cas system with self-processing pre-crRNA capability by foundation models. Nat. Commun. 15, 10024 (2024).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Nguyen, E. et al. Sequence modeling and design from molecular to genome scale with EVO. Science 386, eado9336 (2024).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Nijkamp, E., Ruffolo, J. A., Weinstein, E. N., Naik, N. & Madani, A. ProGen2: exploring the boundaries of protein language models. Cell Syst. 14, 968–978.e3 (2023).

Article 
PubMed 
CAS 

Google Scholar
 

Ruffolo, J. A. et al. Design of highly functional genome editors by modelling CRISPR–Cas sequences. Nature 645, 518–525 (2025).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Nammi, B. et al. CasGen: a regularized generative model for CRISPR cas protein design with classification and margin-based optimization. Preprint at bioRxiv https://doi.org/10.1101/2025.02.28.640911 (2025).

Jiang, J. et al. A review of transformer models in drug discovery and beyond. J. Pharm. Anal. 15, 101081 (2025).

Article 
PubMed 

Google Scholar
 

Chen, Y. et al. All-RNA-mediated targeted gene integration in mammalian cells with rationally engineered R2 retrotransposons. Cell 187, 4674–4689.e18 (2024).

Article 
PubMed 
CAS 

Google Scholar
 

Fell, C. W. et al. Reprogramming site-specific retrotransposon activity to new DNA sites. Nature 642, 1080–1089 (2025).

Article 
PubMed 
CAS 

Google Scholar
 

Witte, I. P. et al. Programmable gene insertion in human cells with a laboratory-evolved CRISPR-associated transposase. Science 388, eadt5199 (2025).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Durrant, M. G. et al. Bridge RNAs direct programmable recombination of target and donor DNA. Nature 630, 984–993 (2024).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Perry, N. T. et al. Megabase-scale human genome rearrangement with programmable bridge recombinases. Science https://doi.org/10.1126/science.adz0276 (2025).

Rood, J. E., Hupalowska, A. & Regev, A. Toward a foundation model of causal cell and tissue biology with a perturbation cell and tissue atlas. Cell 187, 4520–4545 (2024).

Article 
PubMed 
CAS 

Google Scholar
 

Bunne, C. et al. How to build the virtual cell with artificial intelligence: priorities and opportunities. Cell 187, 7045–7063 (2024).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Roohani, Y. H. et al. Virtual cell challenge: toward a turing test for the virtual cell. Cell 188, 3370–3374 (2025).

Article 
PubMed 
CAS 

Google Scholar
 

Cui, H. et al. Towards multimodal foundation models in molecular cell biology. Nature 640, 623–633 (2025).

Article 
PubMed 
CAS 

Google Scholar
 

Qu, Y. et al. CRISPR-GPT for agentic automation of gene-editing experiments. Nat. Biomed. Eng. https://doi.org/10.1038/s41551-025-01463-z (2025).

Huang, K. et al. Biomni: a general-purpose biomedical AI agent. Preprint at bioRxiv https://doi.org/10.1101/2025.05.30.656746 (2025).

Canty, R. B. et al. Science acceleration and accessibility with self-driving labs. Nat. Commun. 16, 3856 (2025).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Frangoul, H. et al. CRISPR–Cas9 gene editing for sickle cell disease and beta-thalassemia. N. Engl. J. Med. 384, 252–260 (2021).

Article 
PubMed 
CAS 

Google Scholar
 

Raguram, A., Banskota, S. & Liu, D. R. Therapeutic in vivo delivery of gene editing agents. Cell 185, 2806–2827 (2022).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Tan, F., Dong, Y., Qi, J., Yu, W. & Chai, R. Artificial intelligence-based approaches for AAV vector engineering. Adv. Sci. 12, e2411062 (2025).

Article 

Google Scholar
 

Laxmi, B., Devi, P. U. M., Thanjavur, N. & Buddolla, V. The applications of artificial intelligence (AI)-driven tools in virus-like particles (VLPs) research. Curr. Microbiol. 81, 234 (2024).

Article 
PubMed 
CAS 

Google Scholar
 

Cui, H. et al. LUMI-lab: a foundation model-driven autonomous platform enabling discovery of new ionizable lipid designs for mRNA delivery. Preprint at bioRxiv https://doi.org/10.1101/2025.02.14.638383 (2025).

Wang, W. et al. Artificial intelligence-driven rational design of ionizable lipids for mRNA delivery. Nat. Commun. 15, 10804 (2024).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Witten, J. et al. Artificial intelligence-guided design of lipid nanoparticles for pulmonary gene therapy. Nat. Biotechnol. 43, 1790–1799 (2025).

Article 
PubMed 
CAS 

Google Scholar
 

Xu, Y. et al. AGILE platform: a deep learning powered approach to accelerate LNP development for mRNA delivery. Nat. Commun. 15, 6305 (2024).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Dorsey, P. J., Lau, C. L., Chang, T. C., Doerschuk, P. C. & D’Addio, S. M. Review of machine learning for lipid nanoparticle formulation and process development. J. Pharm. Sci. 113, 3413–3433 (2024).

Article 
PubMed 
CAS 

Google Scholar
 

Li, B. et al. Combinatorial design of nanoparticles for pulmonary mRNA delivery and genome editing. Nat. Biotechnol. 41, 1410–1415 (2023).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Zhang, H. et al. Algorithm for optimized mRNA design improves stability and immunogenicity. Nature 621, 396–403 (2023).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Chu, Y. et al. A 5\Prime; UTR language model for decoding untranslated regions of mRNA and function predictions. Nat. Mach. Intell. 6, 449–460 (2024).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Morrow, A. K. et al. ML-driven design of 3′ UTRs for mRNA stability. Preprint at bioRxiv https://doi.org/10.1101/2024.10.07.616676 (2024).

Castillo-Hair, S. et al. Optimizing 5′ UTRs for mRNA-delivered gene editing using deep learning. Nat. Commun. 15, 5284 (2024).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Mao, D. et al. AI-MARRVEL—a knowledge-driven AI system for diagnosing mendelian disorders. NEJM AI https://doi.org/10.1056/aioa2300009 (2024).

Avsec, Ž. et al. AlphaGenome: advancing regulatory variant effect prediction with a unified DNA sequence model. Preprint at bioRxiv https://doi.org/10.1101/2025.06.25.661532 (2025).

Birgmeier, J. et al. AMELIE speeds mendelian diagnosis by matching patient phenotype and genotype to primary literature. Sci. Transl. Med. 12, eaau9113 (2020).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Duong, D. & Solomon, B. D. Artificial intelligence in clinical genetics. Eur. J. Hum. Genet. 33, 281–288 (2025).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Teodoro, D., Naderi, N., Yazdani, A., Zhang, B. & Bornet, A. A scoping review of artificial intelligence applications in clinical trial risk assessment. NPJ Digit. Med. 8, 486 (2025).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Berman, H. M. et al. The Protein Data Bank. Nucleic Acids Res. 28, 235–242 (2000).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Burley, S. K. et al. Updated resources for exploring experimentally-determined PDB structures and computed structure models at the RCSB Protein Data Bank. Nucleic Acids Res. 53, D564–D574 (2025).

Article 
PubMed 

Google Scholar
 

Abolhasani, M. & Kumacheva, E. The rise of self-driving labs in chemical and materials sciences. Nat. Synth. 2, 483–492 (2023).

Article 
CAS 

Google Scholar
 

Szymanski, N. J. et al. An autonomous laboratory for the accelerated synthesis of novel materials. Nature 624, 86–91 (2023).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Greener, J. G., Kandathil, S. M., Moffat, L. & Jones, D. T. A guide to machine learning for biologists. Nat. Rev. Mol. Cell Biol. 23, 40–55 (2022).

Article 
PubMed 
CAS 

Google Scholar
 

Eraslan, G., Avsec, Z., Gagneur, J. & Theis, F. J. Deep learning: new computational modelling techniques for genomics. Nat. Rev. Genet. 20, 389–403 (2019).

Article 
PubMed 
CAS 

Google Scholar
 

LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).

Article 
PubMed 
CAS 

Google Scholar
 

Bommasani, R. et al. On the opportunities and risks of foundation models. Preprint at https://doi.org/10.48550/arXiv.2108.07258 (2021).

Sengar, S. S., Hasan, A. B., Kumar, S. & Carroll, F. Generative artificial intelligence: a systematic review and applications. Multimed. Tools Appl. 84, 23661–23700 (2025).

Article 

Google Scholar
 

Hayes, T. et al. Simulating 500 million years of evolution with a language model. Science 387, 850–858 (2025).

Article 
PubMed 
CAS 

Google Scholar
 

Bock, C. et al. High-content CRISPR screening. Nat. Rev. Methods Primers 2, 9 (2022).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Baysoy, A., Bai, Z., Satija, R. & Fan, R. The technological landscape and applications of single-cell multi-omics. Nat. Rev. Mol. Cell Biol. 24, 695–713 (2023).

Article 
PubMed 
CAS 

Google Scholar
 

Dixit, A. et al. Perturb-Seq: dissecting molecular circuits with scalable single-cell RNA profiling of pooled genetic screens. Cell 167, 1853–1866.e17 (2016).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Jaitin, D. A. et al. Dissecting immune circuits by linking CRISPR-pooled screens with single-cell RNA-seq. Cell 167, 1883–1896.e15 (2016).

Article 
PubMed 
CAS 

Google Scholar
 

Datlinger, P. et al. Pooled CRISPR screening with single-cell transcriptome readout. Nat. Methods 14, 297–301 (2017).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Roohani, Y., Huang, K. & Leskovec, J. Predicting transcriptional outcomes of novel multigene perturbations with GEARS. Nat. Biotechnol. 42, 927–935 (2024).

Article 
PubMed 
CAS 

Google Scholar
 

Yu, H., Qian, W., Song, Y. & Welch, J. D. PerturbNet predicts single-cell responses to unseen chemical and genetic perturbations. Mol. Syst. Biol. 21, 960–982 (2025).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Toneyan, S. & Koo, P. K. Interpreting cis-regulatory interactions from large-scale deep neural networks. Nat. Genet. 56, 2517–2527 (2024).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Xing, H. & Yau, C. GPerturb: Gaussian process modelling of single-cell perturbation data. Nat. Commun. 16, 5423 (2025).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Cui, H. et al. scGPT: toward building a foundation model for single-cell multi-omics using generative AI. Nat. Methods 21, 1470–1480 (2024).

Article 
PubMed 
CAS 

Google Scholar
 

Theodoris, C. V. et al. Transfer learning enables predictions in network biology. Nature 618, 616–624 (2023).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Adduri, A. K. et al. Predicting cellular responses to perturbation across diverse contexts with State. Preprint at bioRxiv https://doi.org/10.1101/2025.06.26.661135 (2025).

Hao, M. et al. Large-scale foundation model on single-cell transcriptomics. Nat. Methods 21, 1481–1491 (2024).

Article 
PubMed 
CAS 

Google Scholar
 

Zeng, Y. et al. CellFM: a large-scale foundation model pre-trained on transcriptomics of 100 million human cells. Nat. Commun. 16, 4679 (2025).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Dhainaut, M. et al. Spatial CRISPR genomics identifies regulators of the tumor microenvironment. Cell 185, 1223–1239.e20 (2022).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Baysoy, A. et al. Spatially resolved in vivo CRISPR screen sequencing via perturb-DBiT. Preprint at bioRxiv https://doi.org/10.1101/2024.11.18.624106 (2024).

Saunders, R. A. et al. Perturb-Multimodal: A platform for pooled genetic screens with imaging and sequencing in intact mammalian tissue. Cell 188, 4790–4809.e22 (2025).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Binan, L. et al. Simultaneous CRISPR screening and spatial transcriptomics reveal intracellular, intercellular, and functional transcriptional circuits. Cell 188, 2141–2158.e18 (2025).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Megas, S. et al. Celcomen: spatial causal disentanglement for single-cell and tissue perturbation modeling. Preprint at https://doi.org/10.48550/arXiv.2409.05804 (2024).

Li, Y., Stanojevic, S. & Garmire, L. X. Emerging artificial intelligence applications in spatial transcriptomics analysis. Comput. Struct. Biotechnol. J. 20, 2895–2908 (2022).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
Â