Harries, L. W. RNA biology provides new therapeutic targets for human disease. Front. Genet. 10, 205 (2019).
Zhu, Y., Zhu, L., Wang, X. & Jin, H. RNA-based therapeutics: an overview and prospectus. Cell Death Dis. 13, 644 (2022).
Yu, A.-M., Choi, Y. H. & Tu, M.-J. RNA drugs and RNA targets for small molecules: principles, progress, and challenges. Pharmacol. Rev. 72, 862–898 (2020).
Lightfoot, H. L. & Smith, G. F. Targeting RNA with small molecules-a safety perspective. Br. J. Pharmacol. 182, 4201–4220 (2023).
Bennett, C. F. Therapeutic antisense oligonucleotides are coming of age. Annu. Rev. Med. 70, 307–321 (2019).
Luther, D., Lee, Y., Nagaraj, H., Scaletti, F. & Rotello, V. Delivery approaches for crispr/cas9 therapeutics in vivo: advances and challenges. Expert Opin. Drug Deliv. 15, 905–913 (2018).
Wu, P. Inhibition of RNA-binding proteins with small molecules. Nat. Rev. Chem. 4, 441–458 (2020).
Childs-Disney, J. L. et al. Targeting RNA structures with small molecules. Nat. Rev. Drug Discov. 21, 736–762 (2022).
Howe, J. A. et al. Selective small-molecule inhibition of an RNA structural element. Nature 526, 672–677 (2015).
Dibrov, S. M. et al. Hepatitis C virus translation inhibitors targeting the internal ribosomal entry site: miniperspective. J. Med. Chem. 57, 1694–1707 (2014).
Palacino, J. et al. Smn2 splice modulators enhance u1–pre-mRNA association and rescue sma mice. Nat. Chem. Biol. 11, 511–517 (2015).
Ratni, H. et al. Discovery of risdiplam, a selective survival of motor neuron-2 (smn2) gene splicing modifier for the treatment of spinal muscular atrophy (SMA). J Med Chem. 61, 6501–6517 (2018).
Gresh, N. et al. Addressing the issues of non-isotropy and non-additivity in the development of quantum chemistry-grounded polarizable molecular mechanics. in Quantum Modeling of Complex Molecular Systems, 1–49 (Springer, 2015).
Jing, Z. et al. Polarizable force fields for biomolecular simulations: recent advances and applications. Annu. Rev. Biophys. 48, 371–394 (2019).
Shi, Y., Ren, P., Schnieders, M. & Piquemal, J.-P. Polarizable force fields for biomolecular modeling. Rev. Comput. Chem. 28, 51–86 (2015).
Melcr, J. & Piquemal, J.-P. Accurate biomolecular simulations account for electronic polarization. Front. Mol. Biosci. 6, 143 (2019).
El Khoury, L. et al. Computationally driven discovery of SARS-CoV-2 M pro inhibitors: from design to experimental validation. Chem. Sci. 13, 3674–3687 (2022).
Ponder, J. W. et al. Current status of the amoeba polarizable force field. J. Phys. Chem. B 114, 2549–2564 (2010).
Zhang, C. et al. Amoeba polarizable atomic multipole force field for nucleic acids. J. Chem. Theory Comput. 14, 2084–2108 (2018).
Gresh, N., Cisneros, G. A., Darden, T. A. & Piquemal, J.-P. Anisotropic, polarizable molecular mechanics studies of inter-and intramolecular interactions and ligand- macromolecule complexes. a bottom-up strategy. J. Chem. Theory Comput. 3, 1960–1986 (2007).
El Hage, K., Piquemal, J.-P., Hobaika, Z., Maroun, R. G. & Gresh, N. Substituent-modulated affinities of halobenzene derivatives to the HIV-1 integrase recognition site. Analyses of the interaction energies by parallel quantum chemical and polarizable molecular mechanics. J. Phys. Chem. A 118, 9772–9782 (2014).
Adjoua, O. et al. Tinker-hp: Accelerating molecular dynamics simulations of large complex systems with advanced point dipole polarizable force fields using GPUs and multi-GPU systems. J. Chem. Theory Comput. 17, 2034–2053 (2021).
Lagardère, L., Aviat, F. & Piquemal, J.-P. Pushing the limits of multiple-time-step strategies for polarizable point dipole molecular dynamics. J. Phys. Chem. Lett. 10, 2593–2599 (2019).
Jaffrelot-Inizan, T. et al. High-resolution mining of SARS-CoV-2 main protease conformational space: Supercomputer-driven unsupervised adaptive sampling. Chem. Sci. 12, 4889–4907 (2021).
Célerse, F. et al. An efficient Gaussian-accelerated molecular dynamics (GAMD) multilevel enhanced sampling strategy: application to polarizable force fields simulations of large biological systems. J. Chem. Theory Comput. 18, 968–977 (2022).
Célerse, F., Lagardère, L., Derat, E. & Piquemal, J.-P. Massively parallel implementation of steered molecular dynamics in tinker-hp: Comparisons of polarizable and non-polarizable simulations of realistic systems. J. Chem. Theory Comput. 15, 3694–3709 (2019).
Lagardère, L. et al. Lambda-abf: Simplified, portable, accurate, and cost-effective alchemical free-energy computation. J. Chem. Theory Comput. 20, 4481–4498 (2024).
Blazhynska, M. et al. Water–glycan interactions drive the SARS-CoV-2 spike dynamics: insights into glycan-gate control and camouflage mechanisms. Chem. Sci. 15, 14177–14187 (2024).
Wang, L. et al. Accurate and reliable prediction of relative ligand binding potency in prospective drug discovery by way of a modern free-energy calculation protocol and force field. J. Am. Chem. Soc. 137, 2695–2703 (2015).
Zhang, C.-H. et al. Potent noncovalent inhibitors of the main protease of sars-cov-2 from molecular sculpting of the drug perampanel guided by free energy perturbation calculations. ACS Cent. Sci. 7, 467–475 (2021).
Chodera, J. D. et al. Alchemical free energy methods for drug discovery: progress and challenges. Curr. Opin. Struct. Biol. 21, 150–160 (2011).
El Hage, K. et al. Targeting the major groove of the palindromic d (ggcgcc) 2 sequence by oligopeptide derivatives of anthraquinone intercalators. J. Chem. Inf. Model. 62, 6649–6666 (2022).
Gresh, N. et al. Enforcing local DNA kinks by sequence-selective trisintercalating oligopeptides of a tricationic porphyrin: a polarizable molecular dynamics study. ChemPhysChem 25, e202300776 (2024).
El Hage, K., Mondal, P. & Meuwly, M. Free energy simulations for protein ligand binding and stability. Mol. Sim. 44, 1044–1061 (2018).
Rasouli, A., Pickard IV, F. C., Sur, S., Grossfield, A. & Işık Bennett, M. Essential considerations for free energy calculations of RNA-small molecule complexes: lessons from the theophylline-binding RNA aptamer. J. Chem. Inf. Model. 65, 223–239 (2025).
Abramyan, A. M. et al. Accurate physics-based prediction of binding affinities of RNA- and DNA-targeting ligands. J. Chem. Inf. Model. 65, 1392–1403 (2025).
Clark, F., Robb, G., Cole, D. J. & Michel, J. Comparison of receptor–ligand restraint schemes for alchemical absolute binding free energy calculations. J. Chem. Theory Comput. 19, 3686–3704 (2023).
Salari, R., Joseph, T., Lohia, R., Hénin, J. & Brannigan, G. A streamlined, general approach for computing ligand binding free energies and its application to GPCR-bound cholesterol. J. Chem. Theory Comput. 14, 6560–6573 (2018).
Zhang, H. et al. Accurate estimation of the standard binding free energy of netropsin with DNA. Molecules 23, 228 (2018).
Gapsys, V. et al. Accurate absolute free energies for ligand–protein binding based on non-equilibrium approaches. Commun. Chem. 4, 61 (2021).
Dibrov, S. M. et al. Structure of a hepatitis C virus RNA domain in complex with a translation inhibitor reveals a binding mode reminiscent of riboswitches. Proc. Natl Acad. Sci. 109, 5223–5228 (2012).
Seth, P. P. et al. Sar by ms: discovery of a new class of RNA-binding small molecules for the hepatitis C virus: internal ribosome entry site IIA subdomain. J. Med. Chem. 48, 7099–7102 (2005).
Wu, J. C., Chattree, G. & Ren, P. Automation of amoeba polarizable force field parameterization for small molecules. Theor. Chem. Acc. 131, 1–11 (2012).
Shi, Y. et al. Polarizable atomic multipole-based amoeba force field for proteins. J. Chem. Theory Comput. 9, 4046–4063 (2013).
Yang, X., Liu, C., Kuo, Y.-A., Yeh, H.-C. & Ren, P. Computational study on the binding of mango-II RNA aptamer and fluorogen using the polarizable force field amoeba. Front. Mol. Biosci. 9, 946708 (2022).
Lagardère, L. et al. Tinker-hp: a massively parallel molecular dynamics package for multiscale simulations of large complex systems with advanced point dipole polarizable force fields. Chem. Sci. 9, 956–972 (2018).
Jolly, L.-H. et al. Raising the performance of the tinker-hp molecular modeling package [article v1.0]. Living J. Comput. Mol. Sci. 1, 10409 (2019).
Fiorin, G., Klein, M. L. & Hénin, J. Using collective variables to drive molecular dynamics simulations. Mol. Phys. 111, 3345–3362 (2013).
Bonati, L., Rizzi, V. & Parrinello, M. Data-driven collective variables for enhanced sampling. J. Phys. Chem. Lett. 11, 2998–3004 (2020).
Padroni, G., Patwardhan, N., Schapira, M. & Hargrove, A. Systematic analysis of the interactions driving small molecule–rna recognition. RSC Med. Chem. 11, 802–813 (2020).
Chen, W. et al. Enhancing hit discovery in virtual screening through absolute protein–ligand binding free-energy calculations. J. Chem. Inf. Model. 63, 3171–3185 (2023).
Parsons, J. et al. Conformational inhibition of the hepatitis C virus internal ribosome entry site RNA. Nat. Chem. Biol. 5, 823–825 (2009).
Santiago-McRae, E., Ebrahimi, M., Sandberg, J. W., Brannigan, G. & Hénin, J. Computing absolute binding affinities by streamlined alchemical free energy perturbation (safep)[article v1. 0]. Living J. Comput. Mol. Sci. 5, 2067–2067 (2023).
Invernizzi, M. & Parrinello, M. Rethinking metadynamics: from bias potentials to probability distributions. J. Phys. Chem. Lett. 11, 2731–2736 (2020).
Invernizzi, M. & Parrinello, M. Exploration vs convergence speed in adaptive-bias enhanced sampling. J. Chem. Theory Comput. 18, 3988–3996 (2022).
Walker, B., Liu, C., Wait, E. & Ren, P. Automation of amoeba polarizable force field for small molecules: Poltype 2. J. Comput. Chem. 43, 1530–1542 (2022).
Turney, J. M. et al. Psi4: an open-source ab initio electronic structure program. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2, 556–565 (2012).
Stone, A. J. & Alderton, M. Distributed multipole analysis: methods and applications. Mol. Phys. 56, 1047–1064 (1985).
Rackers, J. A. et al. Tinker 8: software tools for molecular design. J. Chem. theory Comput. 14, 5273–5289 (2018).
Ren, P., Wu, C. & Ponder, J. W. Polarizable atomic multipole-based molecular mechanics for organic molecules. J. Chem. Theory Comput. 7, 3143–3161 (2011).
Zhang, C., Bell, D., Harger, M. & Ren, P. Polarizable multipole-based force field for aromatic molecules and nucleobases. J. Chem. Theory Comput. 13, 666–678 (2017).
Bannwarth, C. et al. Extended tight-binding quantum chemistry methods. Wiley Interdiscip. Rev. Comput. Mol. Sci. 11, e1493 (2021).
Bannwarth, C., Ehlert, S. & Grimme, S. Gfn2-xtb-an accurate and broadly parametrized self-consistent tight-binding quantum chemical method with multipole electrostatics and density-dependent dispersion contributions. J. Chem. Theory Comput. 15, 1652–1671 (2019).
Chai, J.-D. & Head-Gordon, M. Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys. Chem. Chem. Phys. 10, 6615–6620 (2008).
Tuckerman, M., Berne, B. J. & Martyna, G. J. Reversible multiple time scale molecular dynamics. J. Chem. Phys. 97, 1990–2001 (1992).
Bussi, G., Donadio, D. & Parrinello, M. Canonical sampling through velocity rescaling. J. Chem. Phys. 126, 014101 (2007).
Berendsen, H. J., Postma, J. V., Van Gunsteren, W. F., DiNola, A. & Haak, J. R. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81, 3684–3690 (1984).
Essmann, U. et al. A smooth particle mesh ewald method. J. Chem. Phys. 103, 8577–8593 (1995).
Lagardère, L. et al. Scalable evaluation of polarization energy and associated forces in polarizable molecular dynamics: Ii. toward massively parallel computations using smooth particle mesh ewald. J. Chem. Theory Comput. 11, 2589–2599 (2015).
Laury, M. L., Wang, Z., Gordon, A. S. & Ponder, J. W. Absolute binding free energies for the sampl6 cucurbit [8] uril host–guest challenge via the amoeba polarizable force field. J. Comput. Aided Mol. Des. 32, 1087–1095 (2018).
Boresch, S., Tettinger, F., Leitgeb, M. & Karplus, M. Absolute binding free energies: a quantitative approach for their calculation. J. Phys. Chem. B 107, 9535–9551 (2003).
Hénin, J., Lopes, L. J. & Fiorin, G. Human learning for molecular simulations: the collective variables dashboard in VMD. J. Chem. Theory Comput. 18, 1945–1956 (2022).
Humphrey, W., Dalke, A. & Schulten, K. Vmd: visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996).
Straatsma, T. P. & McCammon, J. A. Multiconfiguration thermodynamic integration. J. Chem. Phys. 95, 1175–1188 (1991).
Zwanzig, R. W. High-temperature equation of state by a perturbation method. i. nonpolar gases. J. Chem. Phys. 22, 1420–1426 (1954).
Jiang, W. & Roux, B. Free energy perturbation hamiltonian replica-exchange molecular dynamics (fep/h-remd) for absolute ligand binding free energy calculations. J. Chem. Theory Comput. 6, 2559–2565 (2010).
Lyubartsev, A., Martsinovski, A., Shevkunov, S. & Vorontsov-Velyaminov, P. New approach to Monte Carlo calculation of the free energy: method of expanded ensembles. J. Chem. Phys. 96, 1776–1783 (1992).
Thomas, J. R. & Hergenrother, P. J. Targeting RNA with small molecules. Chem. Rev. 108, 1171–1224 (2008).
Far, S. et al. Bis-and tris-DNA intercalating porphyrins designed to target the major groove: Synthesis of acridylbis-arginyl-porphyrins, molecular modelling of their DNA complexes, and experimental tests. Eur. J. Org. Chem. 2004, 1781–1797 (2004).
Petrov, D., Perthold, J. W., Oostenbrink, C., de Groot, B. L. & Gapsys, V. Guidelines for free-energy calculations involving charge changes. J. Chem. Theory Comput. 20, 914–925 (2024).
Barducci, A., Bonomi, M. & Parrinello, M. Metadynamics. WIREs Comput. Mol. Sci. 1, 826–843 (2011).
Welling, M. Fisher Linear Discriminant Analysis. Tech. Rep., Dep. Comput. Sci. Univ. Toronto (2005).
Rizzi, V., Bonati, L., Ansari, N. & Parrinello, M. The role of water in host-guest interaction. Nat. Commun. 12, 93 (2021).
Ansari, N., Rizzi, V., Carloni, P. & Parrinello, M. Water-triggered, irreversible conformational change of SARS-CoV-2 main protease on passing from the solid state to aqueous solution. J. Am. Chem. Soc. 143, 12930–12934 (2021).
Ansari, N., Rizzi, V. & Parrinello, M. Water regulates the residence time of benzamidine in trypsin. Nat. Commun. 13, 5438 (2022).
Bjelobrk, Z. et al. Naphthalene crystal shape prediction from molecular dynamics simulations. Cryst. Eng. Comm. 21, 3280–3288 (2019).
Leontis, N. B., Stombaugh, J. & Westhof, E. The non–Watson–Crick base pairs and their associated isostericity matrices. Nucleic Acids Res. 30, 3497–3531 (2002).