Harries, L. W. RNA biology provides new therapeutic targets for human disease. Front. Genet. 10, 205 (2019).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Zhu, Y., Zhu, L., Wang, X. & Jin, H. RNA-based therapeutics: an overview and prospectus. Cell Death Dis. 13, 644 (2022).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Yu, A.-M., Choi, Y. H. & Tu, M.-J. RNA drugs and RNA targets for small molecules: principles, progress, and challenges. Pharmacol. Rev. 72, 862–898 (2020).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Lightfoot, H. L. & Smith, G. F. Targeting RNA with small molecules-a safety perspective. Br. J. Pharmacol. 182, 4201–4220 (2023).

Bennett, C. F. Therapeutic antisense oligonucleotides are coming of age. Annu. Rev. Med. 70, 307–321 (2019).

CAS 
PubMed 

Google Scholar
 

Luther, D., Lee, Y., Nagaraj, H., Scaletti, F. & Rotello, V. Delivery approaches for crispr/cas9 therapeutics in vivo: advances and challenges. Expert Opin. Drug Deliv. 15, 905–913 (2018).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Wu, P. Inhibition of RNA-binding proteins with small molecules. Nat. Rev. Chem. 4, 441–458 (2020).

CAS 
PubMed 

Google Scholar
 

Childs-Disney, J. L. et al. Targeting RNA structures with small molecules. Nat. Rev. Drug Discov. 21, 736–762 (2022).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Howe, J. A. et al. Selective small-molecule inhibition of an RNA structural element. Nature 526, 672–677 (2015).

CAS 
PubMed 

Google Scholar
 

Dibrov, S. M. et al. Hepatitis C virus translation inhibitors targeting the internal ribosomal entry site: miniperspective. J. Med. Chem. 57, 1694–1707 (2014).

CAS 
PubMed 

Google Scholar
 

Palacino, J. et al. Smn2 splice modulators enhance u1–pre-mRNA association and rescue sma mice. Nat. Chem. Biol. 11, 511–517 (2015).

CAS 
PubMed 

Google Scholar
 

Ratni, H. et al. Discovery of risdiplam, a selective survival of motor neuron-2 (smn2) gene splicing modifier for the treatment of spinal muscular atrophy (SMA). J Med Chem. 61, 6501–6517 (2018).

Gresh, N. et al. Addressing the issues of non-isotropy and non-additivity in the development of quantum chemistry-grounded polarizable molecular mechanics. in Quantum Modeling of Complex Molecular Systems, 1–49 (Springer, 2015).

Jing, Z. et al. Polarizable force fields for biomolecular simulations: recent advances and applications. Annu. Rev. Biophys. 48, 371–394 (2019).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Shi, Y., Ren, P., Schnieders, M. & Piquemal, J.-P. Polarizable force fields for biomolecular modeling. Rev. Comput. Chem. 28, 51–86 (2015).

Melcr, J. & Piquemal, J.-P. Accurate biomolecular simulations account for electronic polarization. Front. Mol. Biosci. 6, 143 (2019).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

El Khoury, L. et al. Computationally driven discovery of SARS-CoV-2 M pro inhibitors: from design to experimental validation. Chem. Sci. 13, 3674–3687 (2022).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Ponder, J. W. et al. Current status of the amoeba polarizable force field. J. Phys. Chem. B 114, 2549–2564 (2010).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Zhang, C. et al. Amoeba polarizable atomic multipole force field for nucleic acids. J. Chem. Theory Comput. 14, 2084–2108 (2018).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Gresh, N., Cisneros, G. A., Darden, T. A. & Piquemal, J.-P. Anisotropic, polarizable molecular mechanics studies of inter-and intramolecular interactions and ligand- macromolecule complexes. a bottom-up strategy. J. Chem. Theory Comput. 3, 1960–1986 (2007).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

El Hage, K., Piquemal, J.-P., Hobaika, Z., Maroun, R. G. & Gresh, N. Substituent-modulated affinities of halobenzene derivatives to the HIV-1 integrase recognition site. Analyses of the interaction energies by parallel quantum chemical and polarizable molecular mechanics. J. Phys. Chem. A 118, 9772–9782 (2014).

CAS 
PubMed 

Google Scholar
 

Adjoua, O. et al. Tinker-hp: Accelerating molecular dynamics simulations of large complex systems with advanced point dipole polarizable force fields using GPUs and multi-GPU systems. J. Chem. Theory Comput. 17, 2034–2053 (2021).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Lagardère, L., Aviat, F. & Piquemal, J.-P. Pushing the limits of multiple-time-step strategies for polarizable point dipole molecular dynamics. J. Phys. Chem. Lett. 10, 2593–2599 (2019).

PubMed 

Google Scholar
 

Jaffrelot-Inizan, T. et al. High-resolution mining of SARS-CoV-2 main protease conformational space: Supercomputer-driven unsupervised adaptive sampling. Chem. Sci. 12, 4889–4907 (2021).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Célerse, F. et al. An efficient Gaussian-accelerated molecular dynamics (GAMD) multilevel enhanced sampling strategy: application to polarizable force fields simulations of large biological systems. J. Chem. Theory Comput. 18, 968–977 (2022).

PubMed 

Google Scholar
 

Célerse, F., Lagardère, L., Derat, E. & Piquemal, J.-P. Massively parallel implementation of steered molecular dynamics in tinker-hp: Comparisons of polarizable and non-polarizable simulations of realistic systems. J. Chem. Theory Comput. 15, 3694–3709 (2019).

PubMed 

Google Scholar
 

Lagardère, L. et al. Lambda-abf: Simplified, portable, accurate, and cost-effective alchemical free-energy computation. J. Chem. Theory Comput. 20, 4481–4498 (2024).

PubMed 

Google Scholar
 

Blazhynska, M. et al. Water–glycan interactions drive the SARS-CoV-2 spike dynamics: insights into glycan-gate control and camouflage mechanisms. Chem. Sci. 15, 14177–14187 (2024).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Wang, L. et al. Accurate and reliable prediction of relative ligand binding potency in prospective drug discovery by way of a modern free-energy calculation protocol and force field. J. Am. Chem. Soc. 137, 2695–2703 (2015).

CAS 
PubMed 

Google Scholar
 

Zhang, C.-H. et al. Potent noncovalent inhibitors of the main protease of sars-cov-2 from molecular sculpting of the drug perampanel guided by free energy perturbation calculations. ACS Cent. Sci. 7, 467–475 (2021).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Chodera, J. D. et al. Alchemical free energy methods for drug discovery: progress and challenges. Curr. Opin. Struct. Biol. 21, 150–160 (2011).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

El Hage, K. et al. Targeting the major groove of the palindromic d (ggcgcc) 2 sequence by oligopeptide derivatives of anthraquinone intercalators. J. Chem. Inf. Model. 62, 6649–6666 (2022).

CAS 
PubMed 

Google Scholar
 

Gresh, N. et al. Enforcing local DNA kinks by sequence-selective trisintercalating oligopeptides of a tricationic porphyrin: a polarizable molecular dynamics study. ChemPhysChem 25, e202300776 (2024).

CAS 
PubMed 

Google Scholar
 

El Hage, K., Mondal, P. & Meuwly, M. Free energy simulations for protein ligand binding and stability. Mol. Sim. 44, 1044–1061 (2018).

CAS 

Google Scholar
 

Rasouli, A., Pickard IV, F. C., Sur, S., Grossfield, A. & Işık Bennett, M. Essential considerations for free energy calculations of RNA-small molecule complexes: lessons from the theophylline-binding RNA aptamer. J. Chem. Inf. Model. 65, 223–239 (2025).

Abramyan, A. M. et al. Accurate physics-based prediction of binding affinities of RNA- and DNA-targeting ligands. J. Chem. Inf. Model. 65, 1392–1403 (2025).

Clark, F., Robb, G., Cole, D. J. & Michel, J. Comparison of receptor–ligand restraint schemes for alchemical absolute binding free energy calculations. J. Chem. Theory Comput. 19, 3686–3704 (2023).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Salari, R., Joseph, T., Lohia, R., Hénin, J. & Brannigan, G. A streamlined, general approach for computing ligand binding free energies and its application to GPCR-bound cholesterol. J. Chem. Theory Comput. 14, 6560–6573 (2018).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Zhang, H. et al. Accurate estimation of the standard binding free energy of netropsin with DNA. Molecules 23, 228 (2018).

PubMed 
PubMed Central 

Google Scholar
 

Gapsys, V. et al. Accurate absolute free energies for ligand–protein binding based on non-equilibrium approaches. Commun. Chem. 4, 61 (2021).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Dibrov, S. M. et al. Structure of a hepatitis C virus RNA domain in complex with a translation inhibitor reveals a binding mode reminiscent of riboswitches. Proc. Natl Acad. Sci. 109, 5223–5228 (2012).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Seth, P. P. et al. Sar by ms: discovery of a new class of RNA-binding small molecules for the hepatitis C virus: internal ribosome entry site IIA subdomain. J. Med. Chem. 48, 7099–7102 (2005).

CAS 
PubMed 

Google Scholar
 

Wu, J. C., Chattree, G. & Ren, P. Automation of amoeba polarizable force field parameterization for small molecules. Theor. Chem. Acc. 131, 1–11 (2012).


Google Scholar
 

Shi, Y. et al. Polarizable atomic multipole-based amoeba force field for proteins. J. Chem. Theory Comput. 9, 4046–4063 (2013).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Yang, X., Liu, C., Kuo, Y.-A., Yeh, H.-C. & Ren, P. Computational study on the binding of mango-II RNA aptamer and fluorogen using the polarizable force field amoeba. Front. Mol. Biosci. 9, 946708 (2022).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Lagardère, L. et al. Tinker-hp: a massively parallel molecular dynamics package for multiscale simulations of large complex systems with advanced point dipole polarizable force fields. Chem. Sci. 9, 956–972 (2018).

PubMed 

Google Scholar
 

Jolly, L.-H. et al. Raising the performance of the tinker-hp molecular modeling package [article v1.0]. Living J. Comput. Mol. Sci. 1, 10409 (2019).


Google Scholar
 

Fiorin, G., Klein, M. L. & Hénin, J. Using collective variables to drive molecular dynamics simulations. Mol. Phys. 111, 3345–3362 (2013).

CAS 

Google Scholar
 

Bonati, L., Rizzi, V. & Parrinello, M. Data-driven collective variables for enhanced sampling. J. Phys. Chem. Lett. 11, 2998–3004 (2020).

CAS 
PubMed 

Google Scholar
 

Padroni, G., Patwardhan, N., Schapira, M. & Hargrove, A. Systematic analysis of the interactions driving small molecule–rna recognition. RSC Med. Chem. 11, 802–813 (2020).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Chen, W. et al. Enhancing hit discovery in virtual screening through absolute protein–ligand binding free-energy calculations. J. Chem. Inf. Model. 63, 3171–3185 (2023).

CAS 
PubMed 

Google Scholar
 

Parsons, J. et al. Conformational inhibition of the hepatitis C virus internal ribosome entry site RNA. Nat. Chem. Biol. 5, 823–825 (2009).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Santiago-McRae, E., Ebrahimi, M., Sandberg, J. W., Brannigan, G. & Hénin, J. Computing absolute binding affinities by streamlined alchemical free energy perturbation (safep)[article v1. 0]. Living J. Comput. Mol. Sci. 5, 2067–2067 (2023).


Google Scholar
 

Invernizzi, M. & Parrinello, M. Rethinking metadynamics: from bias potentials to probability distributions. J. Phys. Chem. Lett. 11, 2731–2736 (2020).

CAS 
PubMed 

Google Scholar
 

Invernizzi, M. & Parrinello, M. Exploration vs convergence speed in adaptive-bias enhanced sampling. J. Chem. Theory Comput. 18, 3988–3996 (2022).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Walker, B., Liu, C., Wait, E. & Ren, P. Automation of amoeba polarizable force field for small molecules: Poltype 2. J. Comput. Chem. 43, 1530–1542 (2022).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Turney, J. M. et al. Psi4: an open-source ab initio electronic structure program. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2, 556–565 (2012).

CAS 

Google Scholar
 

Stone, A. J. & Alderton, M. Distributed multipole analysis: methods and applications. Mol. Phys. 56, 1047–1064 (1985).

CAS 

Google Scholar
 

Rackers, J. A. et al. Tinker 8: software tools for molecular design. J. Chem. theory Comput. 14, 5273–5289 (2018).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Ren, P., Wu, C. & Ponder, J. W. Polarizable atomic multipole-based molecular mechanics for organic molecules. J. Chem. Theory Comput. 7, 3143–3161 (2011).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Zhang, C., Bell, D., Harger, M. & Ren, P. Polarizable multipole-based force field for aromatic molecules and nucleobases. J. Chem. Theory Comput. 13, 666–678 (2017).

CAS 
PubMed 

Google Scholar
 

Bannwarth, C. et al. Extended tight-binding quantum chemistry methods. Wiley Interdiscip. Rev. Comput. Mol. Sci. 11, e1493 (2021).

CAS 

Google Scholar
 

Bannwarth, C., Ehlert, S. & Grimme, S. Gfn2-xtb-an accurate and broadly parametrized self-consistent tight-binding quantum chemical method with multipole electrostatics and density-dependent dispersion contributions. J. Chem. Theory Comput. 15, 1652–1671 (2019).

CAS 
PubMed 

Google Scholar
 

Chai, J.-D. & Head-Gordon, M. Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys. Chem. Chem. Phys. 10, 6615–6620 (2008).

CAS 
PubMed 

Google Scholar
 

Tuckerman, M., Berne, B. J. & Martyna, G. J. Reversible multiple time scale molecular dynamics. J. Chem. Phys. 97, 1990–2001 (1992).

CAS 

Google Scholar
 

Bussi, G., Donadio, D. & Parrinello, M. Canonical sampling through velocity rescaling. J. Chem. Phys. 126, 014101 (2007).

Berendsen, H. J., Postma, J. V., Van Gunsteren, W. F., DiNola, A. & Haak, J. R. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81, 3684–3690 (1984).

CAS 

Google Scholar
 

Essmann, U. et al. A smooth particle mesh ewald method. J. Chem. Phys. 103, 8577–8593 (1995).

CAS 

Google Scholar
 

Lagardère, L. et al. Scalable evaluation of polarization energy and associated forces in polarizable molecular dynamics: Ii. toward massively parallel computations using smooth particle mesh ewald. J. Chem. Theory Comput. 11, 2589–2599 (2015).

PubMed 

Google Scholar
 

Laury, M. L., Wang, Z., Gordon, A. S. & Ponder, J. W. Absolute binding free energies for the sampl6 cucurbit [8] uril host–guest challenge via the amoeba polarizable force field. J. Comput. Aided Mol. Des. 32, 1087–1095 (2018).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Boresch, S., Tettinger, F., Leitgeb, M. & Karplus, M. Absolute binding free energies: a quantitative approach for their calculation. J. Phys. Chem. B 107, 9535–9551 (2003).

CAS 

Google Scholar
 

Hénin, J., Lopes, L. J. & Fiorin, G. Human learning for molecular simulations: the collective variables dashboard in VMD. J. Chem. Theory Comput. 18, 1945–1956 (2022).

PubMed 

Google Scholar
 

Humphrey, W., Dalke, A. & Schulten, K. Vmd: visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996).

CAS 
PubMed 

Google Scholar
 

Straatsma, T. P. & McCammon, J. A. Multiconfiguration thermodynamic integration. J. Chem. Phys. 95, 1175–1188 (1991).

CAS 

Google Scholar
 

Zwanzig, R. W. High-temperature equation of state by a perturbation method. i. nonpolar gases. J. Chem. Phys. 22, 1420–1426 (1954).

CAS 

Google Scholar
 

Jiang, W. & Roux, B. Free energy perturbation hamiltonian replica-exchange molecular dynamics (fep/h-remd) for absolute ligand binding free energy calculations. J. Chem. Theory Comput. 6, 2559–2565 (2010).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Lyubartsev, A., Martsinovski, A., Shevkunov, S. & Vorontsov-Velyaminov, P. New approach to Monte Carlo calculation of the free energy: method of expanded ensembles. J. Chem. Phys. 96, 1776–1783 (1992).

CAS 

Google Scholar
 

Thomas, J. R. & Hergenrother, P. J. Targeting RNA with small molecules. Chem. Rev. 108, 1171–1224 (2008).

CAS 
PubMed 

Google Scholar
 

Far, S. et al. Bis-and tris-DNA intercalating porphyrins designed to target the major groove: Synthesis of acridylbis-arginyl-porphyrins, molecular modelling of their DNA complexes, and experimental tests. Eur. J. Org. Chem. 2004, 1781–1797 (2004).


Google Scholar
 

Petrov, D., Perthold, J. W., Oostenbrink, C., de Groot, B. L. & Gapsys, V. Guidelines for free-energy calculations involving charge changes. J. Chem. Theory Comput. 20, 914–925 (2024).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Barducci, A., Bonomi, M. & Parrinello, M. Metadynamics. WIREs Comput. Mol. Sci. 1, 826–843 (2011).

CAS 

Google Scholar
 

Welling, M. Fisher Linear Discriminant Analysis. Tech. Rep., Dep. Comput. Sci. Univ. Toronto (2005).

Rizzi, V., Bonati, L., Ansari, N. & Parrinello, M. The role of water in host-guest interaction. Nat. Commun. 12, 93 (2021).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Ansari, N., Rizzi, V., Carloni, P. & Parrinello, M. Water-triggered, irreversible conformational change of SARS-CoV-2 main protease on passing from the solid state to aqueous solution. J. Am. Chem. Soc. 143, 12930–12934 (2021).

CAS 
PubMed 

Google Scholar
 

Ansari, N., Rizzi, V. & Parrinello, M. Water regulates the residence time of benzamidine in trypsin. Nat. Commun. 13, 5438 (2022).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Bjelobrk, Z. et al. Naphthalene crystal shape prediction from molecular dynamics simulations. Cryst. Eng. Comm. 21, 3280–3288 (2019).

CAS 

Google Scholar
 

Leontis, N. B., Stombaugh, J. & Westhof, E. The non–Watson–Crick base pairs and their associated isostericity matrices. Nucleic Acids Res. 30, 3497–3531 (2002).

CAS 
PubMed 
PubMed Central 

Google Scholar
Â