Richards, B. A. & Frankland, P. W. The persistence and transience of memory. Neuron 94, 1071–1084 (2017).

Article 
PubMed 
CAS 

Google Scholar
 

Zlotnik, G. & Vansintjan, A. Memory: an extended definition. Front Psychol. 10, 2523 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Kukushkin, N. V., Carney, R. E., Tabassum, T. & Carew, T. J. The massed-spaced learning effect in non-neural human cells. Nat. Commun. 15, 9635 (2024).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Witzany, G. in Memory and Learning in Plants (eds Frantisek, B. et al.) 1–16 (Springer, 2018); https://doi.org/10.1007/978-3-319-75596-0_1

De la Fuente, I. M. et al. Evidence of conditioned behavior in amoebae. Nat. Commun. 10, 3690 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Saigusa, T., Tero, A., Nakagaki, T. & Kuramoto, Y. Amoebae anticipate periodic events. Phys. Rev. Lett. 100, 018101 (2008).

Article 
PubMed 

Google Scholar
 

Nakagaki, T., Yamada, H. & Tóth, Á Maze-solving by an amoeboid organism. Nature 407, 470–470 (2000).

Article 
PubMed 
CAS 

Google Scholar
 

Vermeersch, L. et al. Do microbes have a memory? History-dependent behavior in the adaptation to variable environments. Front. Microbiol. 13, 1004488 (2022).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Solopova, A. et al. Bet-hedging during bacterial diauxic shift. Proc. Natl Acad. Sci. USA 111, 7427–7432 (2014).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Mitchell, A. et al. Adaptive prediction of environmental changes by microorganisms. Nature 460, 220–224 (2009).

Article 
PubMed 
CAS 

Google Scholar
 

Lambert, G. et al. Correction: Memory and fitness optimization of bacteria under fluctuating environments. PLoS Genet. 10, e1004793 (2014).

Article 

Google Scholar
 

Casadesús, J. & Low, D. Epigenetic gene regulation in the bacterial world. Microbiol. Mol. Biol. Rev. 70, 830–856 (2006).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Letourneau, J. et al. Ecological memory of prior nutrient exposure in the human gut microbiome. ISME J. 16, 2479–2490 (2022).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Globus, R. & Qimron, U. Crystal-clear memories of a bacterium. Science 357, 1096–1097 (2017).

Article 
PubMed 
CAS 

Google Scholar
 

Harvey, Z. H., Chen, Y. & Jarosz, D. F. Protein-based inheritance: epigenetics beyond the chromosome. Mol. Cell 69, 195–202 (2018).

Article 
PubMed 
CAS 

Google Scholar
 

Lambert, G. & Kussell, E. Memory and fitness optimization of bacteria under fluctuating environments. PLoS Genet. 10, e1004556 (2014).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Mitchell, A. & Pilpel, Y. A mathematical model for adaptive prediction of environmental changes by microorganisms. Proc. Natl Acad. Sci. USA 108, 7271–7276 (2011).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Veening, J.-W., Smits, W. K. & Kuipers, O. P. Bistability, epigenetics, and bet-hedging in bacteria. Annu Rev. Microbiol 62, 193–210 (2008).

Article 
PubMed 
CAS 

Google Scholar
 

Grimbergen, A. J., Siebring, J., Solopova, A. & Kuipers, O. P. Microbial bet-hedging: the power of being different. Curr. Opin. Microbiol. 25, 67–72 (2015).

Article 
PubMed 

Google Scholar
 

Mahilkar, A., Venkataraman, P., Mall, A. & Saini, S. Experimental evolution of anticipatory regulation in Escherichia coli. Front. Microbiol. 12, 796228 (2022).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Rai, N., Kim, M. & Tagkopoulos, I. Understanding the formation and mechanism of anticipatory responses in Escherichia coli. Int. J. Mol. Sci. 23, 5985 (2022).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Tagkopoulos, I., Liu, Y.-C. & Tavazoie, S. Predictive behavior within microbial genetic networks. Science 320, 1313–1317 (2008).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Delaney, J. M. Requirement of the Escherichia coli dnaK gene for thermotolerance and protection against H2O2. J. Gen. Microbiol. 136, 2113–2118 (1990).

Article 
PubMed 
CAS 

Google Scholar
 

Badrinarayanan, A., Le, T. B. K. & Laub, M. T. Bacterial chromosome organization and segregation. Annu. Rev. Cell Dev. Biol. 31, 171–199 (2015).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Thompson, S. R., Wadhams, G. H. & Armitage, J. P. The positioning of cytoplasmic protein clusters in bacteria. Proc. Natl Acad. Sci. USA 103, 8209–8214 (2006).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Reyes-Lamothe, R. & Sherratt, D. J. The bacterial cell cycle, chromosome inheritance and cell growth. Nat. Rev. Microbiol. 17, 467–478 (2019).

Article 
PubMed 
CAS 

Google Scholar
 

Birky, W. C. & Skavaril, R. V. Random partitioning of cytoplasmic organelles at cell division: the effect of organelle and cell volume. J. Theor. Biol. 106, 441–447 (1984).

Article 
PubMed 
CAS 

Google Scholar
 

Ostovar, G. & Boedicker, J. Q. Phenotypic memory in quorum sensing. PLoS Comput. Biol. 20, e1011696 (2024).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Ishihama, A. Prokaryotic genome regulation: multifactor promoters, multitarget regulators and hierarchic networks. FEMS Microbiol. Rev. 34, 628–645 (2010).

Article 
PubMed 
CAS 

Google Scholar
 

Novick, A. & Weiner, M. Enzyme induction as an all-or-none phenomenon. Proc. Natl Acad. Sci. USA 43, 553–566 (1957).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Sourjik, V. & Wingreen, N. S. Responding to chemical gradients: bacterial chemotaxis. Curr. Opin. Cell Biol. 24, 262–268 (2012).

Article 
PubMed 
CAS 

Google Scholar
 

Macnab, R. M. & Koshland, D. E. The gradient-sensing mechanism in bacterial chemotaxis. Proc. Natl Acad. Sci. USA 69, 2509–2512 (1972).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Goy, M. F., Springer, M. S. & Adler, J. Sensory transduction in Escherichia coli: role of a protein methylation reaction in sensory adaptation. Proc. Natl Acad. Sci. USA 74, 4964–4968 (1977).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Stock, J. B. & Zhang, S. The biochemistry of memory. Curr. Biol. 23, R741–R745 (2013).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Krembel, A., Colin, R. & Sourjik, V. Importance of multiple methylation sites in Escherichia coli chemotaxis. PLoS ONE 10, e0145582 (2015).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Kalinin, Y. V., Jiang, L., Tu, Y. & Wu, M. Logarithmic sensing in Escherichia coli bacterial chemotaxis. Biophys. J. 96, 2439–2448 (2009).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Gosztolai, A. & Barahona, M. Cellular memory enhances bacterial chemotactic navigation in rugged environments. Commun. Phys. 3, 47 (2020).

Article 

Google Scholar
 

Govers, S. K., Mortier, J., Adam, A. & Aertsen, A. Protein aggregates encode epigenetic memory of stressful encounters in individual Escherichia coli cells. PLoS Biol. 16, e2003853 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Veening, J.-W. et al. Bet-hedging and epigenetic inheritance in bacterial cell development. Proc. Natl Acad. Sci. USA 105, 4393–4398 (2008).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Bhattacharyya, S. et al. A heritable iron memory enables decision-making in Escherichia coli. Proc. Natl Acad. Sci. USA 120, e2309082120 (2023).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Riber, L. & Hansen, L. H. Epigenetic memories: the hidden drivers of bacterial persistence? Trends Microbiol 29, 190–194 (2021).

Article 
PubMed 
CAS 

Google Scholar
 

Lim, H. N. & van Oudenaarden, A. A multistep epigenetic switch enables the stable inheritance of DNA methylation states. Nat. Genet. 39, 269–275 (2007).

Article 
PubMed 
CAS 

Google Scholar
 

Harms, A., Maisonneuve, E. & Gerdes, K. Mechanisms of bacterial persistence during stress and antibiotic exposure. Science 354, aaf4268 (2016).

Article 
PubMed 

Google Scholar
 

Niu, H., Gu, J. & Zhang, Y. Bacterial persisters: molecular mechanisms and therapeutic development. Signal Transduct. Target Ther. 9, 174 (2024).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Xu, Y., Liu, S., Zhang, Y. & Zhang, W. DNA adenine methylation is involved in persister formation in E. coli. Microbiol. Res. 246, 126709 (2021).

Article 
PubMed 
CAS 

Google Scholar
 

Adam, M., Murali, B., Glenn, N. O. & Potter, S. S. Epigenetic inheritance based evolution of antibiotic resistance in bacteria. BMC Evol. Biol. 8, 52 (2008).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Jõers, A. & Tenson, T. Growth resumption from stationary phase reveals memory in Escherichia coli cultures. Sci. Rep. 6, 24055 (2016).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Miyaue, S. et al. Bacterial memory of persisters: bacterial persister cells can retain their phenotype for days or weeks after withdrawal from colony–biofilm culture. Front. Microbiol. 9, 1396 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Desmond, C., Stanton, C., Fitzgerald, G. F., Collins, K. & Paul Ross, R. Environmental adaptation of probiotic lactobacilli towards improvement of performance during spray drying. Int. Dairy J. 11, 801–808 (2001).

Article 

Google Scholar
 

Svenningsen, M. S., Svenningsen, S., Lo, Sørensen, M. A. & Mitarai, N. Existence of log-phase Escherichia coli persisters and lasting memory of a starvation pulse. Life Sci. Alliance 5, e202101076 (2022).

Article 
PubMed 
CAS 

Google Scholar
 

Shmidov, E. et al. Multigenerational proteolytic inactivation of restriction upon subtle genomic hypomethylation in Pseudomonas aeruginosa. Nat. Microbiol. 10, 2498–2510 (2025).

Article 
PubMed 
CAS 

Google Scholar
 

Holloway, B. W. Variations in restriction and modification of bacteriophage following increase of growth temperature of Pseudomonas aeruginosa. Virology 25, 634–642 (1965).

Article 
PubMed 
CAS 

Google Scholar
 

Ogle, K. et al. Quantifying ecological memory in plant and ecosystem processes. Ecol. Lett. 18, 221–235 (2015).

Article 
PubMed 

Google Scholar
 

Dethlefsen, L. & Relman, D. A. Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc. Natl Acad. Sci. USA 108, 4554–4561 (2011).

Article 
PubMed 
CAS 

Google Scholar
 

Thaiss, C. A. et al. Persistent microbiome alterations modulate the rate of post-dieting weight regain. Nature 540, 544–551 (2016).

Article 
PubMed 
CAS 

Google Scholar
 

Palleja, A. et al. Recovery of gut microbiota of healthy adults following antibiotic exposure. Nat. Microbiol 3, 1255–1265 (2018).

Article 
PubMed 
CAS 

Google Scholar
 

Canarini, A. et al. Ecological memory of recurrent drought modifies soil processes via changes in soil microbial community. Nat. Commun. 12, 5308 (2021).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Vompe, A. D. et al. Microbiome ecological memory and responses to repeated marine heatwaves clarify variation in coral bleaching and mortality. Glob. Change Biol. 30, e17088 (2024).

Article 

Google Scholar
 

Smith, M. B. et al. Natural bacterial communities serve as quantitative geochemical biosensors. mBio 6, e00326–15 (2015).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Kuster, S. P. et al. Previous antibiotic exposure and antimicrobial resistance in invasive pneumococcal disease: results from prospective surveillance. Clin. Infect. Dis. 59, 944–952 (2014).

Article 
PubMed 
CAS 

Google Scholar
 

Stacy, A. et al. Infection trains the host for microbiota-enhanced resistance to pathogens. Cell 184, 615–627.e17 (2021).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Carmody, R. N. et al. Diet dominates host genotype in shaping the murine gut microbiota. Cell Host Microbe 17, 72–84 (2015).

Article 
PubMed 
CAS 

Google Scholar
 

Salonen, A. et al. Impact of diet and individual variation on intestinal microbiota composition and fermentation products in obese men. ISME J. 8, 2218–2230 (2014).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Khazaei, T. et al. Metabolic multistability and hysteresis in a model aerobe–anaerobe microbiome community. Sci. Adv. 6, eaba0353 (2020).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Louca, S. & Doebeli, M. Transient dynamics of competitive exclusion in microbial communities. Environ. Microbiol. 18, 1863–1874 (2016).

Article 
PubMed 
CAS 

Google Scholar
 

Debray, R. et al. Priority effects in microbiome assembly. Nat. Rev. Microbiol. 20, 109–121 (2022).

Article 
PubMed 
CAS 

Google Scholar
 

Wallecha, A., Munster, V., Correnti, J., Chan, T. & van der Woude, M. Dam- and OxyR-dependent phase variation of agn43: essential elements and evidence for a new role of DNA methylation. J. Bacteriol. 184, 3338–3347 (2002).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar