de Magalhaes, J. P. How ageing processes influence cancer. Nat. Rev. Cancer 13, 357–365 (2013).

Article 
PubMed 

Google Scholar
 

Temko, D., Tomlinson, I. P. M., Severini, S., Schuster-Böckler, B. & Graham, T. A. The effects of mutational processes and selection on driver mutations across cancer types. Nat. Commun. 9, 1857 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Sinkala, M. Mutational landscape of cancer-driver genes across human cancers. Sci. Rep. 13, 12742 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Iranzo, J., Martincorena, I. & Koonin, E. V. Cancer-mutation network and the number and specificity of driver mutations. Proc. Natl Acad. Sci. USA 115, E6010–E6019 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Martincorena, I. et al. Universal patterns of selection in cancer and somatic tissues. Cell 171, 1029–1041.e21 (2017).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Tomasetti, C., Marchionni, L., Nowak, M. A., Parmigiani, G. & Vogelstein, B. Only three driver gene mutations are required for the development of lung and colorectal cancers. Proc. Natl Acad. Sci. USA 112, 118–123 (2015).

Article 
PubMed 

Google Scholar
 

Tomasetti, C., Vogelstein, B. & Parmigiani, G. Half or more of the somatic mutations in cancers of self-renewing tissues originate prior to tumor initiation. Proc. Natl Acad. Sci. USA 110, 1999–2004 (2013).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Xie, M. et al. Age-related mutations associated with clonal hematopoietic expansion and malignancies. Nat. Med. 20, 1472–1478 (2014).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Armitage, P. & Doll, R. The age distribution of cancer and a multi-stage theory of carcinogenesis. Br. J. Cancer 8, 1–12 (1954).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Martincorena, I. et al. Somatic mutant clones colonize the human esophagus with age. Science 362, 911–917 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Martincorena, I. et al. Tumor evolution. High burden and pervasive positive selection of somatic mutations in normal human skin. Science 348, 880–886 (2015).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Moore, L. et al. The mutational landscape of human somatic and germline cells. Nature 597, 381–386 (2021).

Article 
PubMed 

Google Scholar
 

Li, R. et al. A body map of somatic mutagenesis in morphologically normal human tissues. Nature 597, 398–403 (2021).

Article 
PubMed 

Google Scholar
 

Lodato, M. A. et al. Aging and neurodegeneration are associated with increased mutations in single human neurons. Science 359, 555–559 (2018).

Article 
PubMed 

Google Scholar
 

Tang, J. et al. The genomic landscapes of individual melanocytes from human skin. Nature 586, 600–605 (2020).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Brunner, S. F. et al. Somatic mutations and clonal dynamics in healthy and cirrhotic human liver. Nature 574, 538–542 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Yokoyama, A. et al. Age-related remodelling of oesophageal epithelia by mutated cancer drivers. Nature 565, 312–317 (2019).

Article 
PubMed 

Google Scholar
 

Lee-Six, H. et al. The landscape of somatic mutation in normal colorectal epithelial cells. Nature 574, 532–537 (2019).

Article 
PubMed 

Google Scholar
 

Yizhak, K. et al. RNA sequence analysis reveals macroscopic somatic clonal expansion across normal tissues. Science 364, eaaw0726 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Chatsirisupachai, K. & de Magalhães, J. P. Somatic mutations in human ageing: new insights from DNA sequencing and inherited mutations. Ageing Res. Rev. 96, 102268 (2024).

Article 
PubMed 

Google Scholar
 

Manders, F., van Boxtel, R. & Middelkamp, S. The dynamics of somatic mutagenesis during life in humans. Front. Aging 2, 802407 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Laconi, E., Marongiu, F. & DeGregori, J. Cancer as a disease of old age: changing mutational and microenvironmental landscapes. Br. J. Cancer 122, 943–952 (2020).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Sikder, S., Arunkumar, G., Melters, D. P. & Dalal, Y. Breaking the aging epigenetic barrier. Front. Cell Dev. Biol. 10, 943519 (2022).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Johnstone, S. E. et al. Large-scale topological changes restrain malignant progression in colorectal cancer. Cell 182, 1474–1489.e23 (2020).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Zhou, W. & Reizel, Y. On correlative and causal links of replicative epimutations. Trends Genet. 41, 60–75 (2024).

Article 
PubMed 

Google Scholar
 

Bisht, S., Mao, Y. & Easwaran, H. Epigenetic dynamics of aging and cancer development: current concepts from studies mapping aging and cancer epigenomes. Curr. Opin. Oncol. 36, 82–92 (2024).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Wang, K. et al. Epigenetic regulation of aging: implications for interventions of aging and diseases. Signal Transduct. Target. Ther. 7, 374 (2022).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Jung, M. & Pfeifer, G. P. Aging and DNA methylation. BMC Biol. 13, 7 (2015).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Gaudet, F. et al. Induction of tumors in mice by genomic hypomethylation. Science 300, 489–492 (2003).

Article 
PubMed 

Google Scholar
 

Jaenisch, R. & Bird, A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat. Genet. 33, 245–254 (2003).

Article 
PubMed 

Google Scholar
 

Chen, X., Agustinus, A. S., Li, J., DiBona, M. & Bakhoum, S. F. Chromosomal instability as a driver of cancer progression. Nat. Rev. Genet. 26, 31–46 (2025).

Article 
PubMed 

Google Scholar
 

Lu, Y. R., Tian, X. & Sinclair, D. A. The information theory of aging. Nat. Aging 3, 1486–1499 (2023).

Article 
PubMed 

Google Scholar
 

Feser, J. et al. Elevated histone expression promotes life span extension. Mol. Cell 39, 724–735 (2010).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Liu, Z. et al. Large-scale chromatin reorganization reactivates placenta-specific genes that drive cellular aging. Dev. Cell 57, 1347–1368.e12 (2022).

Article 
PubMed 

Google Scholar
 

Guo, J. et al. Aging and aging-related diseases: from molecular mechanisms to interventions and treatments. Signal Transduct. Target. Ther. 7, 391 (2022).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Zhao, S., Allis, C. D. & Wang, G. G. The language of chromatin modification in human cancers. Nat. Rev. Cancer 21, 413–430 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Lee, J.-H., Kim, E. W., Croteau, D. L. & Bohr, V. A. Heterochromatin: an epigenetic point of view in aging. Exp. Mol. Med. 52, 1466–1474 (2020).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Yang, N. et al. A hyper-quiescent chromatin state formed during aging is reversed by regeneration. Mol. Cell 83, 1659–1676.e11 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Chen, T. & Dent, S. Y. R. Chromatin modifiers and remodellers: regulators of cellular differentiation. Nat. Rev. Genet. 15, 93–106 (2014).

Article 
PubMed 

Google Scholar
 

Wang, M., Sunkel, B. D., Ray, W. C. & Stanton, B. Z. Chromatin structure in cancer. BMC Mol. Cell Biol. 23, 35 (2022).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Morgan, M. A. & Shilatifard, A. Chromatin signatures of cancer. Genes Dev. 29, 238–249 (2015).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Pal, S. & Tyler, J. K. Epigenetics and aging. Sci. Adv. 2, e1600584 (2016).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Emerson, F. J. & Lee, S. S. Chromatin: the old and young of it. Front. Mol. Biosci. 10, 1270285 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Sun, D. et al. Epigenomic profiling of young and aged HSCs reveals concerted changes during aging that reinforce self-renewal. Cell Stem Cell 14, 673–688 (2014).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Shah, P. P. et al. Lamin B1 depletion in senescent cells triggers large-scale changes in gene expression and the chromatin landscape. Genes Dev. 27, 1787–1799 (2013).

Article 
PubMed 
PubMed Central 

Google Scholar
 

McCauley, B. S. et al. Altered chromatin states drive cryptic transcription in aging mammalian stem cells. Nat. Aging 1, 684–697 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Dalla, E. et al. Lung-resident alveolar macrophages regulate the timing of breast cancer metastasis. Cell 187, 6631–6648.e20 (2024).

Article 
PubMed 

Google Scholar
 

Fane, M. E. et al. Stromal changes in the aged lung induce an emergence from melanoma dormancy. Nature 606, 396–405 (2022).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Tao, Y. et al. Aging-like spontaneous epigenetic silencing facilitates Wnt activation, stemness, and Braf(V600E)-induced tumorigenesis. Cancer Cell 35, 315–328.e6 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Ren, P., Dong, X. & Vijg, J. Age-related somatic mutation burden in human tissues. Front. Aging 3, 1018119 (2022).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Fabre, M. A. et al. The longitudinal dynamics and natural history of clonal haematopoiesis. Nature 606, 335–342 (2022).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Lee-Six, H. et al. Population dynamics of normal human blood inferred from somatic mutations. Nature 561, 473–478 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Yoshida, K. et al. Tobacco smoking and somatic mutations in human bronchial epithelium. Nature 578, 266–272 (2020).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Suda, K. et al. Clonal expansion and diversification of cancer-associated mutations in endometriosis and normal endometrium. Cell Rep. 24, 1777–1789 (2018).

Article 
PubMed 

Google Scholar
 

Anglesio, M. S. et al. Cancer-associated mutations in endometriosis without cancer. N. Engl. J. Med. 376, 1835–1848 (2017).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Lawson, A. R. J. et al. Extensive heterogeneity in somatic mutation and selection in the human bladder. Science 370, 75–82 (2020).

Article 
PubMed 

Google Scholar
 

Lopez-Otin, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. The hallmarks of aging. Cell 153, 1194–1217 (2013).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Milholland, B., Auton, A., Suh, Y. & Vijg, J. Age-related somatic mutations in the cancer genome. Oncotarget 6, 24627–24635 (2015).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Abascal, F. et al. Somatic mutation landscapes at single-molecule resolution. Nature 593, 405–410 (2021).

Article 
PubMed 

Google Scholar
 

Tomasetti, C. & Vogelstein, B. Cancer etiology. Variation in cancer risk among tissues can be explained by the number of stem cell divisions. Science 347, 78–81 (2015).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Wang, Y. et al. APOBEC mutagenesis is a common process in normal human small intestine. Nat. Genet. 55, 246–254 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Moody, S. et al. Mutational signatures in esophageal squamous cell carcinoma from eight countries with varying incidence. Nat. Genet. 53, 1553–1563 (2021).

Article 
PubMed 

Google Scholar
 

Blokzijl, F. et al. Tissue-specific mutation accumulation in human adult stem cells during life. Nature 538, 260–264 (2016).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Siegel, R. L., Miller, K. D., Fuchs, H. E. & Jemal, A. Cancer statistics, 2021. CA Cancer J. Clin. 71, 7–33 (2021).

PubMed 

Google Scholar
 

Arike, L. et al. Protein turnover in epithelial cells and mucus along the gastrointestinal tract is coordinated by the spatial location and microbiota. Cell Rep. 30, 1077–1087.e3 (2020).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Potten, C. S., Gandara, R., Mahida, Y. R., Loeffler, M. & Wright, N. A. The stem cells of small intestinal crypts: where are they? Cell Prolif. 42, 731–750 (2009).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Sender, R. & Milo, R. The distribution of cellular turnover in the human body. Nat. Med. 27, 45–48 (2021).

Article 
PubMed 

Google Scholar
 

Gehart, H. & Clevers, H. Tales from the crypt: new insights into intestinal stem cells. Nat. Rev. Gastroenterol. Hepatol. 16, 19–34 (2019).

Article 
PubMed 

Google Scholar
 

Schrock, A. B. et al. Genomic profiling of small-bowel adenocarcinoma. JAMA Oncol. 3, 1546–1553 (2017).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Aparicio, T. et al. Genomic profiling of small bowel adenocarcinoma: a pooled analysis from 3 databases. Br. J. Cancer 131, 49–62 (2024).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Pinaev, G. P. Change in the shape and size of actomyosin particles of striated muscles in ontogenesis. Biokhimiia 30, 20–32 (1965).

PubMed 

Google Scholar
 

Hinoi, T. et al. Mouse model of colonic adenoma-carcinoma progression based on somatic Apc inactivation. Cancer Res. 67, 9721–9730 (2007).

Article 
PubMed 

Google Scholar
 

Wu, S. et al. A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses. Nat. Med. 15, 1016–1022 (2009).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Allen, J. et al. Colon tumors in enterotoxigenic Bacteroides fragilis (ETBF)-colonized mice do not display a unique mutational signature but instead possess host-dependent alterations in the APC gene. Microbiol. Spectr. 10, e0105522 (2022).

Article 
PubMed 

Google Scholar
 

O’Hagan, H. M. et al. Oxidative damage targets complexes containing DNA methyltransferases, SIRT1, and polycomb members to promoter CpG islands. Cancer Cell 20, 606–619 (2011).

Article 
PubMed 
PubMed Central 

Google Scholar
 

DeStefano Shields, C. E. et al. Bacterial-driven inflammation and mutant braf expression combine to promote murine colon tumorigenesis that is sensitive to immune checkpoint therapy. Cancer Discov. 11, 1792–1807 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Ritchie, K. J., Walsh, S., Sansom, O. J., Henderson, C. J. & Wolf, C. R. Markedly enhanced colon tumorigenesis in Apc(Min) mice lacking glutathione S-transferase Pi. Proc. Natl Acad. Sci. USA 106, 20859–20864 (2009).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Evans, E. J. & DeGregori, J. Cells with cancer-associated mutations overtake our tissues as we age. Aging Cancer 2, 82–97 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Jaiswal, S. et al. Age-related clonal hematopoiesis associated with adverse outcomes. N. Engl. J. Med. 371, 2488–2498 (2014).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Genovese, G. et al. Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N. Engl. J. Med. 371, 2477–2487 (2014).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Steensma, D. P. Clinical consequences of clonal hematopoiesis of indeterminate potential. Hematol. Am. Soc. Hematol. Educ. Program. 2018, 264–269 (2018).

Article 

Google Scholar
 

Young, A. L., Challen, G. A., Birmann, B. M. & Druley, T. E. Clonal haematopoiesis harbouring AML-associated mutations is ubiquitous in healthy adults. Nat. Commun. 7, 12484 (2016).

Article 
PubMed 
PubMed Central 

Google Scholar
 

van Zeventer, I. A. et al. Prevalence, predictors, and outcomes of clonal hematopoiesis in individuals aged ≥80 years. Blood Adv. 5, 2115–2122 (2021).

Article 
PubMed 

Google Scholar
 

Reed, S. C., Croessmann, S. & Park, B. H. CHIP happens: clonal hematopoiesis of indeterminate potential and its relationship to solid tumors. Clin. Cancer Res. 29, 1403–1411 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Park, S. J. & Bejar, R. Clonal hematopoiesis in cancer. Exp. Hematol. 83, 105–112 (2020).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Patel, S. A. et al. Natural history of clonal haematopoiesis seen in real-world haematology settings. Br. J. Haematol. 204, 1844–1855 (2024).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Crane, G. M., Jeffery, E. & Morrison, S. J. Adult haematopoietic stem cell niches. Nat. Rev. Immunol. 17, 573–590 (2017).

Article 
PubMed 

Google Scholar
 

Moerman, E. J., Teng, K., Lipschitz, D. A. & Lecka-Czernik, B. Aging activates adipogenic and suppresses osteogenic programs in mesenchymal marrow stroma/stem cells: the role of PPAR-γ2 transcription factor and TGF-β/BMP signaling pathways. Aging Cell 3, 379–389 (2004).

Article 
PubMed 

Google Scholar
 

Meunier, P., Aaron, J., Edouard, C. & Vignon, G. Osteoporosis and the replacement of cell populations of the marrow by adipose tissue. A quantitative study of 84 iliac bone biopsies. Clin. Orthop. Relat. Res. 80, 147–154 (1971).

Article 
PubMed 

Google Scholar
 

Pangrazzi, L. et al. ‘Inflamm-aging’ influences immune cell survival factors in human bone marrow. Eur. J. Immunol. 47, 481–492 (2017).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Caiado, F., Pietras, E. M. & Manz, M. G. Inflammation as a regulator of hematopoietic stem cell function in disease, aging, and clonal selection. J. Exp. Med. 218, e20201541 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Abegunde, S. O., Buckstein, R., Wells, R. A. & Rauh, M. J. An inflammatory environment containing TNFα favors Tet2-mutant clonal hematopoiesis. Exp. Hematol. 59, 60–65 (2018).

Article 
PubMed 

Google Scholar
 

SanMiguel, J. M. et al. Distinct tumor necrosis factor alpha receptors dictate stem cell fitness versus lineage output in Dnmt3a-mutant clonal hematopoiesis. Cancer Discov. 12, 2763–2773 (2022).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Zioni, N. et al. Inflammatory signals from fatty bone marrow support DNMT3A driven clonal hematopoiesis. Nat. Commun. 14, 2070 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Jakobsen, N. A. et al. Selective advantage of mutant stem cells in human clonal hematopoiesis is associated with attenuated response to inflammation and aging. Cell Stem Cell 31, 1127–1144.e17 (2024).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Liao, M. et al. Aging-elevated inflammation promotes DNMT3A R878H-driven clonal hematopoiesis. Acta Pharm. Sin. B 12, 678–691 (2022).

Article 
PubMed 

Google Scholar
 

Caiado, F. et al. Aging drives Tet2+/− clonal hematopoiesis via IL-1 signaling. Blood 141, 886–903 (2023).

Article 
PubMed 

Google Scholar
 

Quin, C. et al. Chronic TNF in the aging microenvironment exacerbates Tet2 loss-of-function myeloid expansion. Blood Adv. 8, 4169–4180 (2024).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Medyouf, H. et al. Myelodysplastic cells in patients reprogram mesenchymal stromal cells to establish a transplantable stem cell niche disease unit. Cell Stem Cell 14, 824–837 (2014).

Article 
PubMed 

Google Scholar
 

Martincorena, I. Somatic mutation and clonal expansions in human tissues. Genome Med. 11, 35 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Stoler, D. L. et al. The onset and extent of genomic instability in sporadic colorectal tumor progression. Proc. Natl Acad. Sci. USA 96, 15121–15126 (1999).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Tsao, J. L. et al. Genetic reconstruction of individual colorectal tumor histories. Proc. Natl Acad. Sci. USA 97, 1236–1241 (2000).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Braxton, A. M. et al. 3D genomic mapping reveals multifocality of human pancreatic precancers. Nature 629, 679–687 (2024).

Article 
PubMed 

Google Scholar
 

Fischer, C. G. et al. Intraductal papillary mucinous neoplasms arise from multiple independent clones, each with distinct mutations. Gastroenterology 157, 1123–1137.e22 (2019).

Article 
PubMed 

Google Scholar
 

Cooper, C. S. et al. Analysis of the genetic phylogeny of multifocal prostate cancer identifies multiple independent clonal expansions in neoplastic and morphologically normal prostate tissue. Nat. Genet. 47, 367–372 (2015).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Guerra, C. et al. Pancreatitis-induced inflammation contributes to pancreatic cancer by inhibiting oncogene-induced senescence. Cancer Cell 19, 728–739 (2011).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Zhou, R. W., Harpaz, N., Itzkowitz, S. H. & Parsons, R. E. Molecular mechanisms in colitis-associated colorectal cancer. Oncogenesis 12, 48 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Takeshima, H. & Ushijima, T. Accumulation of genetic and epigenetic alterations in normal cells and cancer risk. NPJ Precis. Oncol. 3, 7 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Buhigas, C. et al. The architecture of clonal expansions in morphologically normal tissue from cancerous and non-cancerous prostates. Mol. Cancer 21, 183 (2022).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Yates, J. et al. DNA-methylation variability in normal mucosa: a field cancerization marker in patients with adenomatous polyps. J. Natl Cancer Inst. 116, 974–982 (2024).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Bediaga, N. G. et al. DNA methylation epigenotypes in breast cancer molecular subtypes. Breast Cancer Res 12, R77 (Sep 29).

Chen, Y., Breeze, C. E., Zhen, S., Beck, S. & Teschendorff, A. E. Tissue-independent and tissue-specific patterns of DNA methylation alteration in cancer. Epigenetics Chromatin 9, 10 (2016).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Koka, H. et al. DNA methylation age in paired tumor and adjacent normal breast tissue in Chinese women with breast cancer. Clin. Epigenetics 15, 55 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Luo, J.-H. et al. Genome-wide methylation analysis of prostate tissues reveals global methylation patterns of prostate cancer. Am. J. Pathol. 182, 2028–2036 (2013).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Yang, B. et al. Methylation profiling defines an extensive field defect in histologically normal prostate tissues associated with prostate cancer. Neoplasia 15, 399–408 (2013).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Chandran, U. R. et al. Differences in gene expression in prostate cancer, normal appearing prostate tissue adjacent to cancer and prostate tissue from cancer free organ donors. BMC Cancer 5, 45 (2005).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Yu, Y. P. et al. Gene expression alterations in prostate cancer predicting tumor aggression and preceding development of malignancy. J. Clin. Oncol. 22, 2790–2799 (2004).

Article 
PubMed 

Google Scholar
 

Kulinczak, M. et al. Endometrial cancer-adjacent tissues express higher levels of cancer-promoting genes than the matched tumors. Genes 13, 1611 (2022).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Zhao, H., Ramos, C. F., Brooks, J. D. & Peehl, D. M. Distinctive gene expression of prostatic stromal cells cultured from diseased versus normal tissues. J. Cell Physiol. 210, 111–121 (2007).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Magi-Galluzzi, C. et al. Gene expression in normal-appearing tissue adjacent to prostate cancers are predictive of clinical outcome: evidence for a biologically meaningful field effect. Oncotarget 7, 33855–33865 (2016).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Troester, M. A. et al. DNA defects, epigenetics, and gene expression in cancer-adjacent breast: a study from the cancer genome atlas. NPJ Breast Cancer 2, 16007 (2016).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Bhandari, Y. R. et al. Transcription factor expression repertoire basis for epigenetic and transcriptional subtypes of colorectal cancers. Proc. Natl Acad. Sci. USA 120, e2301536120 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Teschendorff, A. E. et al. Epigenetic variability in cells of normal cytology is associated with the risk of future morphological transformation. Genome Med. 4, 24 (2012).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Baba, Y. et al. Epigenetic field cancerization in gastrointestinal cancers. Cancer Lett. 375, 360–366 (2016).

Article 
PubMed 

Google Scholar
 

Teschendorff, A. E. et al. DNA methylation outliers in normal breast tissue identify field defects that are enriched in cancer. Nat. Commun. 7, 10478 (2016).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Yamashita, S. et al. Genetic and epigenetic alterations in normal tissues have differential impacts on cancer risk among tissues. Proc. Natl Acad. Sci. USA 115, 1328–1333 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Belshaw, N. J. et al. Profiling CpG island field methylation in both morphologically normal and neoplastic human colonic mucosa. Br. J. Cancer 99, 136–142 (2008).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Park, S.-K. et al. Field cancerization in sporadic colon cancer. Gut Liver 10, 773–780 (2016).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Yoshida, S. et al. Epigenetic inactivation of FAT4 contributes to gastric field cancerization. Gastric Cancer 20, 136–145 (2017).

Article 
PubMed 

Google Scholar
 

Zhang, B. et al. Helicobacter pylori CagA induces tumor suppressor gene hypermethylation by upregulating DNMT1 via AKT-NFκB pathway in gastric cancer development. Oncotarget 7, 9788–9800 (2016).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Spitzwieser, M. et al. Hypermethylation of CDKN2A exon 2 in tumor, tumor-adjacent and tumor-distant tissues from breast cancer patients. BMC Cancer 17, 260 (2017).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Majewski, T. et al. Whole-organ genomic characterization of mucosal field effects initiating bladder carcinogenesis. Cell Rep. 26, 2241–2256.e4 (2019).

Article 
PubMed 

Google Scholar
 

Vermeulen, L. et al. Defining stem cell dynamics in models of intestinal tumor initiation. Science 342, 995–998 (2013).

Article 
PubMed 

Google Scholar
 

Galandiuk, S. et al. Field cancerization in the intestinal epithelium of patients with Crohn’s ileocolitis. Gastroenterology 142, 855–864.e8 (2012).

Article 
PubMed 

Google Scholar
 

Hill, W. et al. Lung adenocarcinoma promotion by air pollutants. Nature 616, 159–167 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Alonso-Curbelo, D. et al. A gene-environment-induced epigenetic program initiates tumorigenesis. Nature 590, 642–648 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Braakhuis, B. J., Tabor, M. P., Kummer, J. A., Leemans, C. R. & Brakenhoff, R. H. A genetic explanation of Slaughter’s concept of field cancerization: evidence and clinical implications. Cancer Res. 63, 1727–1730 (2003).

PubMed 

Google Scholar
 

Ciwinska, M. et al. Mechanisms that clear mutations drive field cancerization in mammary tissue. Nature 633, 198–206 (2024).

Article 
PubMed 
PubMed Central 

Google Scholar
 

van Neerven, S. M. et al. Apc-mutant cells act as supercompetitors in intestinal tumour initiation. Nature 594, 436–441 (2021).

Article 
PubMed 

Google Scholar
 

Flanagan, D. J. et al. NOTUM from Apc-mutant cells biases clonal competition to initiate cancer. Nature 594, 430–435 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Colom, B. et al. Mutant clones in normal epithelium outcompete and eliminate emerging tumours. Nature 598, 510–514 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Abby, E. et al. Notch1 mutations drive clonal expansion in normal esophageal epithelium but impair tumor growth. Nat. Genet. 55, 232–245 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Marongiu, F. & DeGregori, J. The sculpting of somatic mutational landscapes by evolutionary forces and their impacts on aging-related disease. Mol. Oncol. 16, 3238–3258 (2022).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Schneider, G., Schmidt-Supprian, M., Rad, R. & Saur, D. Tissue-specific tumorigenesis: context matters. Nat. Rev. Cancer 17, 239–253 (2017).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Haigis, K. M., Cichowski, K. & Elledge, S. J. Tissue-specificity in cancer: the rule, not the exception. Science 363, 1150–1151 (2019).

Article 
PubMed 

Google Scholar
 

Shi, Q. et al. Notch signaling pathway in cancer: from mechanistic insights to targeted therapies. Signal Transduct. Target. Ther. 9, 128 (2024).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Teschendorff, A. E. et al. Age-dependent DNA methylation of genes that are suppressed in stem cells is a hallmark of cancer. Genome Res. 20, 440–446 (2010).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Maegawa, S. et al. Widespread and tissue specific age-related DNA methylation changes in mice. Genome Res. 20, 332–340 (2010).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Zhu, T., Zheng, S. C., Paul, D. S., Horvath, S. & Teschendorff, A. E. Cell and tissue type independent age-associated DNA methylation changes are not rare but common. Aging 10, 3541–3557 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Yang, L. et al. Functional characterization of age-dependent p16 epimutation reveals biological drivers and therapeutic targets for colorectal cancer. J. Exp. Clin. Cancer Res. 42, 113 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Fennell, L. et al. Braf mutation induces rapid neoplastic transformation in the aged and aberrantly methylated intestinal epithelium. Gut 71, 1127–1140 (2022).

Article 
PubMed 

Google Scholar
 

Pentinmikko, N. et al. Notum produced by Paneth cells attenuates regeneration of aged intestinal epithelium. Nature 571, 398–402 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Tian, Y. et al. APC and P53 mutations synergise to create a therapeutic vulnerability to NOTUM inhibition in advanced colorectal cancer. Gut 72, 2294–2306 (2023).

Article 
PubMed 

Google Scholar
 

Turrell, F. K. et al. Age-associated microenvironmental changes highlight the role of PDGF-C in ER+ breast cancer metastatic relapse. Nat. Cancer 4, 468–484 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Hayward, N. K. et al. Whole-genome landscapes of major melanoma subtypes. Nature 545, 175–180 (2017).

Article 
PubMed 

Google Scholar
 

Cancer Genome Atlas Network Genomic classification of cutaneous melanoma. Cell 161, 1681–1696 (2015).

Article 

Google Scholar
 

Shain, A. H. & Bastian, B. C. From melanocytes to melanomas. Nat. Rev. Cancer 16, 345–358 (2016).

Article 
PubMed 

Google Scholar
 

Stransky, N. et al. The mutational landscape of head and neck squamous cell carcinoma. Science 333, 1157–1160 (2011).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Meucci, S., Keilholz, U., Tinhofer, I. & Ebner, O. A. Mutational load and mutational patterns in relation to age in head and neck cancer. Oncotarget 7, 69188–69199 (2016).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Liu, Y. & Yang, Q. The roles of EZH2 in cancer and its inhibitors. Med. Oncol. 40, 167 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Chhabra, Y. et al. Sex-dependent effects in the aged melanoma tumor microenvironment influence invasion and resistance to targeted therapy. Cell 187, 6016–6034.e25 (2024).

Article 
PubMed 

Google Scholar
 

Harman, D. Aging: a theory based on free radical and radiation chemistry. J. Gerontol. 11, 298–300 (1956).

Article 
PubMed 

Google Scholar
 

Harman, D. The biologic clock: the mitochondria? J. Am. Geriatr. Soc. 20, 145–147 (1972).

Article 
PubMed 

Google Scholar
 

Bokov, A., Chaudhuri, A. & Richardson, A. The role of oxidative damage and stress in aging. Mech. Ageing Dev. 125, 811–826 (2004).

Article 
PubMed 

Google Scholar
 

Mockett, R. J., Sohal, B. H. & Sohal, R. S. Expression of multiple copies of mitochondrially targeted catalase or genomic Mn superoxide dismutase transgenes does not extend the life span of Drosophila melanogaster. Free Radic. Biol. Med. 49, 2028–2031 (2010).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Cabreiro, F. et al. Increased life span from overexpression of superoxide dismutase in Caenorhabditis elegans is not caused by decreased oxidative damage. Free Radic. Biol. Med. 51, 1575–1582 (2011).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Varadaraj, K., Gao, J., Mathias, R. T. & Kumari, S. S. GPX1 knockout, not catalase knockout, causes accelerated abnormal optical aberrations and cataract in the aging lens. Mol. Vis. 28, 11–20 (2022).

PubMed 
PubMed Central 

Google Scholar
 

Pollock, N. et al. Deletion of Sod1 in motor neurons exacerbates age-related changes in axons and neuromuscular junctions in mice. eNeuro 10, ENEURO.0086-22.2023 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Srinivas, U. S., Tan, B. W. Q., Vellayappan, B. A. & Jeyasekharan, A. D. ROS and the DNA damage response in cancer. Redox Biol. 25, 101084 (2019).

Article 
PubMed 

Google Scholar
 

Li, T.-S. & Marbán, E. Physiological levels of reactive oxygen species are required to maintain genomic stability in stem cells. Stem Cell 28, 1178–1185 (2010).

Article 

Google Scholar
 

van Soest, D. M. K. et al. Mitochondrial H2O2 release does not directly cause damage to chromosomal DNA. Nat. Commun. 15, 2725 (2024).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Tubbs, A. & Nussenzweig, A. Endogenous DNA damage as a source of genomic instability in cancer. Cell 168, 644–656 (2017).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Schulz, T. J. et al. Glucose restriction extends Caenorhabditis elegans life span by inducing mitochondrial respiration and increasing oxidative stress. Cell Metab. 6, 280–293 (2007).

Article 
PubMed 

Google Scholar
 

Ristow, M. & Zarse, K. How increased oxidative stress promotes longevity and metabolic health: the concept of mitochondrial hormesis (mitohormesis). Exp. Gerontol. 45, 410–418 (2010).

Article 
PubMed 

Google Scholar
 

Lapointe, J. & Hekimi, S. When a theory of aging ages badly. Cell Mol. Life Sci. 67, 1–8 (2010).

Article 
PubMed 

Google Scholar
 

Fisher, G. J. et al. Skin aging from the perspective of dermal fibroblasts: the interplay between the adaptation to the extracellular matrix microenvironment and cell autonomous processes. J. Cell Commun. Signal. 17, 523–529 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Kaur, A. et al. sFRP2 in the aged microenvironment drives melanoma metastasis and therapy resistance. Nature 532, 250–254 (2016).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Martinez-Outschoorn, U., Sotgia, F. & Lisanti, M. P. Tumor microenvironment and metabolic synergy in breast cancers: critical importance of mitochondrial fuels and function. Semin. Oncol. 41, 195–216 (2014).

Article 
PubMed 

Google Scholar
 

Lisanti, M. P. et al. Hydrogen peroxide fuels aging, inflammation, cancer metabolism and metastasis: the seed and soil also needs ‘fertilizer’. Cell Cycle 10, 2440–2449 (2011).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Martinez-Outschoorn, U. E. et al. Oxidative stress in cancer associated fibroblasts drives tumor-stroma co-evolution: a new paradigm for understanding tumor metabolism, the field effect and genomic instability in cancer cells. Cell Cycle 9, 3256–3276 (2010).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Wiley, C. D. & Campisi, J. The metabolic roots of senescence: mechanisms and opportunities for intervention. Nat. Metab. 3, 1290–1301 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Sun, N., Youle, R. J. & Finkel, T. The mitochondrial basis of aging. Mol. Cell 61, 654–666 (2016).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Gomes, A. P. et al. Declining NAD+ induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging. Cell 155, 1624–1638 (2013).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Bai, P. & Cantó, C. The role of PARP-1 and PARP-2 enzymes in metabolic regulation and disease. Cell Metab. 16, 290–295 (2012).

Article 
PubMed 

Google Scholar
 

Imai, S. & Guarente, L. NAD+ and sirtuins in aging and disease. Trends Cell Biol. 24, 464–471 (2014).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Camacho-Pereira, J. et al. CD38 dictates age-related NAD decline and mitochondrial dysfunction through an SIRT3-dependent mechanism. Cell Metab. 23, 1127–1139 (2016).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Chini, C. C. S., Tarragó, M. G. & Chini, E. N. NAD and the aging process: role in life, death and everything in between. Mol. Cell Endocrinol. 455, 62–74 (2017).

Article 
PubMed 

Google Scholar
 

Chini, C. et al. The NADase CD38 is induced by factors secreted from senescent cells providing a potential link between senescence and age-related cellular NAD+ decline. Biochem. Biophys. Res. Commun. 513, 486–493 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Bernasocchi, T. & Mostoslavsky, R. Subcellular one carbon metabolism in cancer, aging and epigenetics. Front. Epigenet. Epigenom. 2, 1451971 (2024).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Ducker, G. S. & Rabinowitz, J. D. One-carbon metabolism in health and disease. Cell Metab. 25, 27–42 (2017).

Article 
PubMed 

Google Scholar
 

Reid, M. A., Dai, Z. & Locasale, J. W. The impact of cellular metabolism on chromatin dynamics and epigenetics. Nat. Cell Biol. 19, 1298–1306 (2017).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Etchegaray, J.-P. & Mostoslavsky, R. Interplay between metabolism and epigenetics: a nuclear adaptation to environmental changes. Mol. Cell 62, 695–711 (2016).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Etoh, K. et al. Citrate metabolism controls the senescent microenvironment via the remodeling of pro-inflammatory enhancers. Cell Rep. 43, 114496 (2024).

Article 
PubMed 

Google Scholar
 

Kalluri, R. The biology and function of fibroblasts in cancer. Nat. Rev. Cancer 16, 582–598 (2016).

Article 
PubMed 

Google Scholar
 

Ahmadzadeh, H. et al. Modeling the two-way feedback between contractility and matrix realignment reveals a nonlinear mode of cancer cell invasion. Proc. Natl Acad. Sci. USA 114, E1617–E1626 (2017).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Wisdom, K. M. et al. Matrix mechanical plasticity regulates cancer cell migration through confining microenvironments. Nat. Commun. 9, 4144 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Kaur, A. et al. Remodeling of the collagen matrix in aging skin promotes melanoma metastasis and affects immune cell motility. Cancer Discov. 9, 64–81 (2019).

Article 
PubMed 

Google Scholar
 

Ecker, B. L. et al. Age-related changes in HAPLN1 increase lymphatic permeability and affect routes of melanoma metastasis. Cancer Discov. 9, 82–95 (2019).

Article 
PubMed 

Google Scholar
 

Francescone, R. et al. Netrin G1 promotes pancreatic tumorigenesis through cancer-associated fibroblast-driven nutritional support and immunosuppression. Cancer Discov. 11, 446–479 (2021).

Article 
PubMed 

Google Scholar
 

Dai, Q. et al. Aging aggravates liver fibrosis through downregulated hepatocyte SIRT1-induced liver sinusoidal endothelial cell dysfunction. Hepatol. Commun. 8, e0350 (2024).

Article 
PubMed 

Google Scholar
 

Huang, K. et al. Variation in senescent-dependent lung changes in inbred mouse strains. J. Appl. Physiol. 102, 1632–1639 (2007).

Article 
PubMed 

Google Scholar
 

Northcott, J. M., Dean, I. S., Mouw, J. K. & Weaver, V. M. Feeling stress: the mechanics of cancer progression and aggression. Front. Cell Dev. Biol. 6, 17 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Pickup, M. W., Mouw, J. K. & Weaver, V. M. The extracellular matrix modulates the hallmarks of cancer. EMBO Rep. 15, 1243–1253 (2014).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Lu, P., Weaver, V. M. & Werb, Z. The extracellular matrix: a dynamic niche in cancer progression. J. Cell Biol. 196, 395–406 (2012).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Levental, K. R. et al. Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 139, 891–906 (2009).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Marino-Bravante, G. E. et al. Age-dependent loss of HAPLN1 erodes vascular integrity via indirect upregulation of endothelial ICAM1 in melanoma. Nat. Aging 4, 350–363 (2024).

Article 
PubMed 

Google Scholar
 

Li, X. et al. Inflammation and aging: signaling pathways and intervention therapies. Signal Transduct. Target. Ther. 8, 239 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Chaudhary, J. K., Danga, A. K., Kumari, A., Bhardwaj, A. & Rath, P. C. Role of chemokines in aging and age-related diseases. Mech. Ageing Dev. 223, 112009 (2024).

Article 
PubMed 

Google Scholar
 

Oishi, Y. & Manabe, I. Macrophages in age-related chronic inflammatory diseases. NPJ Aging Mech. Dis. 2, 16018 (2016).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Trastus, L. A. & d’Adda di Fagagna, F. The complex interplay between aging and cancer. Nat. Aging 5, 350–365 (2025).

Article 
PubMed 

Google Scholar
 

Quail, D. F. & Dannenberg, A. J. The obese adipose tissue microenvironment in cancer development and progression. Nat. Rev. Endocrinol. 15, 139–154 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Reuter, S., Gupta, S. C., Chaturvedi, M. M. & Aggarwal, B. B. Oxidative stress, inflammation, and cancer: how are they linked? Free Radic. Biol. Med. 49, 1603–1616 (2010).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Grivennikov, S. I., Greten, F. R. & Karin, M. Immunity, inflammation, and cancer. Cell 140, 883–899 (2010).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Lucafò, M., Curci, D., Franzin, M., Decorti, G. & Stocco, G. Inflammatory bowel disease and risk of colorectal cancer: an overview from pathophysiology to pharmacological prevention. Front. Pharmacol. 12, 772101 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Zhao, H. et al. Inflammation and tumor progression: signaling pathways and targeted intervention. Signal Transduct. Target. Ther. 6, 263 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar
 

de Visser, K. E. & Joyce, J. A. The evolving tumor microenvironment: from cancer initiation to metastatic outgrowth. Cancer Cell 41, 374–403 (2023).

Article 
PubMed 

Google Scholar
 

Taniguchi, K. & Karin, M. NF-κB, inflammation, immunity and cancer: coming of age. Nat. Rev. Immunol. 18, 309–324 (2018).

Article 
PubMed 

Google Scholar
 

Karin, M. & Greten, F. R. NF-κB: linking inflammation and immunity to cancer development and progression. Nat. Rev. Immunol. 5, 749–759 (2005).

Article 
PubMed 

Google Scholar
 

Karin, M. & Clevers, H. Reparative inflammation takes charge of tissue regeneration. Nature 529, 307–315 (2016).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Greten, F. R. et al. IKKβ links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell 118, 285–296 (2004).

Article 
PubMed 

Google Scholar
 

De Simone, V. et al. Th17-type cytokines, IL-6 and TNF-α synergistically activate STAT3 and NF-kB to promote colorectal cancer cell growth. Oncogene 34, 3493–3503 (2015).

Article 
PubMed 

Google Scholar
 

Kaler, P., Godasi, B. N., Augenlicht, L. & Klampfer, L. The NF-κB/AKT-dependent Induction of Wnt signaling in colon cancer cells by macrophages and IL-1β. Cancer Microenviron. 2, 69–80 (2009).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Lee, G. et al. Phosphoinositide 3-kinase signaling mediates beta-catenin activation in intestinal epithelial stem and progenitor cells in colitis. Gastroenterology 139, 869–881 (2010).

Article 
PubMed 

Google Scholar
 

Schwitalla, S. et al. Intestinal tumorigenesis initiated by dedifferentiation and acquisition of stem-cell-like properties. Cell 152, 25–38 (2013).

Article 
PubMed 

Google Scholar
 

Lesina, M. et al. Stat3/Socs3 activation by IL-6 transsignaling promotes progression of pancreatic intraepithelial neoplasia and development of pancreatic cancer. Cancer Cell 19, 456–469 (2011).

Article 
PubMed 

Google Scholar
 

Zabransky, D. J. et al. Fibroblasts in the aged pancreas drive pancreatic cancer progression. Cancer Res. 84, 1221–1236 (2024).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Parikh, N., Shuck, R. L., Gagea, M., Shen, L. & Donehower, L. A. Enhanced inflammation and attenuated tumor suppressor pathways are associated with oncogene-induced lung tumors in aged mice. Aging Cell 17, e12691 (2018).

Article 
PubMed 

Google Scholar
 

Olafsson, S. et al. Somatic evolution in non-neoplastic IBD-affected colon. Cell 182, 672–684.e11 (2020).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Kakiuchi, N. et al. Frequent mutations that converge on the NFKBIZ pathway in ulcerative colitis. Nature 577, 260–265 (2020).

Article 
PubMed 

Google Scholar
 

Nanki, K. et al. Somatic inflammatory gene mutations in human ulcerative colitis epithelium. Nature 577, 254–259 (2020).

Article 
PubMed 

Google Scholar
 

Jain, N. et al. DNA methylation correlates of chronological age in diverse human tissue types. Epigenetics Chromatin 17, 25 (2024).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Tarkhov, A. E. et al. Nature of epigenetic aging from a single-cell perspective. Nat. Aging 4, 854–870 (2024).

Article 
PubMed 

Google Scholar
 

Slieker, R. C., Relton, C. L., Gaunt, T. R., Slagboom, P. E. & Heijmans, B. T. Age-related DNA methylation changes are tissue-specific with ELOVL2 promoter methylation as exception. Epigenetics Chromatin 11, 25 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Horvath, S. DNA methylation age of human tissues and cell types. Genome Biol. 14, R115 (2013).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Hannum, G. et al. Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol. Cell 49, 359–367 (2013).

Article 
PubMed 

Google Scholar
 

Bell, C. G. et al. DNA methylation aging clocks: challenges and recommendations. Genome Biol. 20, 249 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Lu, A. T. et al. Universal DNA methylation age across mammalian tissues. Nat. Aging 3, 1144–1166 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Wilkinson, G. S. et al. DNA methylation predicts age and provides insight into exceptional longevity of bats. Nat. Commun. 12, 1615 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Chen, B. H. et al. DNA methylation-based measures of biological age: meta-analysis predicting time to death. Aging 8, 1844–1865 (2016).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Marioni, R. E. et al. DNA methylation age of blood predicts all-cause mortality in later life. Genome Biol. 16, 25 (2015).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Lu, A. T. et al. DNA methylation GrimAge strongly predicts lifespan and healthspan. Aging 11, 303–327 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Yang, J.-H. et al. Loss of epigenetic information as a cause of mammalian aging. Cell 186, 305–326.e27 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Xie, W. et al. DNA methylation patterns separate senescence from transformation potential and indicate cancer risk. Cancer Cell 33, 309–321.e5 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Zhou, W. et al. DNA methylation loss in late-replicating domains is linked to mitotic cell division. Nat. Genet. 50, 591–602 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Cruickshanks, H. A. et al. Senescent cells harbour features of the cancer epigenome. Nat. Cell Biol. 15, 1495–1506 (2013).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Hong, T. et al. TET2 modulates spatial relocalization of heterochromatin in aged hematopoietic stem and progenitor cells. Nat. Aging 3, 1387–1400 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Zhu, X. et al. Inflammation, epigenetics, and metabolism converge to cell senescence and ageing: the regulation and intervention. Signal Transduct. Target. Ther. 6, 245 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Criscione, S. W. et al. Reorganization of chromosome architecture in replicative cellular senescence. Sci. Adv. 2, e1500882 (2016).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Sati, S. et al. 4D genome rewiring during oncogene-induced and replicative senescence. Mol. Cell 78, 522–538 (2020).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Zhang, X. et al. The loss of heterochromatin is associated with multiscale three-dimensional genome reorganization and aberrant transcription during cellular senescence. Genome Res. 31, 1121–1135 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Wang, B., Han, J., Elisseeff, J. H. & Demaria, M. The senescence-associated secretory phenotype and its physiological and pathological implications. Nat. Rev. Mol. Cell Biol. 25, 958–978 (2024).

Article 
PubMed 

Google Scholar
 

Schwartz, R. E. et al. Insights into epithelial cell senescence from transcriptome and secretome analysis of human oral keratinocytes. Aging 13, 4747–4777 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Abbadie, C., Pluquet, O. & Pourtier, A. Epithelial cell senescence: an adaptive response to pre-carcinogenic stresses? Cell Mol. Life Sci. 74, 4471–4509 (2017).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Demaria, M. et al. An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA. Dev. Cell 31, 722–733 (2014).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Wilkinson, H. N. & Hardman, M. J. Senescence in wound repair: emerging strategies to target chronic healing wounds. Front. Cell Dev. Biol. 8, 773 (2020).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Ruhland, M. K. et al. Stromal senescence establishes an immunosuppressive microenvironment that drives tumorigenesis. Nat. Commun. 7, 11762 (2016).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Campisi, J. Aging, cellular senescence, and cancer. Annu. Rev. Physiol. 75, 685–705 (2013).

Article 
PubMed 

Google Scholar
 

Ruhland, M. K. & Alspach, E. Senescence and immunoregulation in the tumor microenvironment. Front. Cell Dev. Biol. 9, 754069 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Schellenberg, A. et al. Replicative senescence of mesenchymal stem cells causes DNA-methylation changes which correlate with repressive histone marks. Aging 3, 873–888 (2011).

Article 
PubMed 
PubMed Central 

Google Scholar
 

De Cecco, M. et al. L1 drives IFN in senescent cells and promotes age-associated inflammation. Nature 566, 73–78 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Gorbunova, V. et al. The role of retrotransposable elements in ageing and age-associated diseases. Nature 596, 43–53 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Liu, X. et al. Resurrection of endogenous retroviruses during aging reinforces senescence. Cell 186, 287–304.e26 (2023).

Article 
PubMed 

Google Scholar
 

Wu, Z., Qu, J. & Liu, G.-H. Roles of chromatin and genome instability in cellular senescence and their relevance to ageing and related diseases. Nat. Rev. Mol. Cell Biol. 25, 979–1000 (2024).

Article 
PubMed 

Google Scholar
 

Pang, W. W. et al. Human bone marrow hematopoietic stem cells are increased in frequency and myeloid-biased with age. Proc. Natl Acad. Sci. USA 108, 20012–20017 (2011).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Sudo, K., Ema, H., Morita, Y. & Nakauchi, H. Age-associated characteristics of murine hematopoietic stem cells. J. Exp. Med. 192, 1273–1280 (2000).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Beerman, I. et al. Proliferation-dependent alterations of the DNA methylation landscape underlie hematopoietic stem cell aging. Cell Stem Cell 12, 413–425 (2013).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Kuribayashi, W. et al. Limited rejuvenation of aged hematopoietic stem cells in young bone marrow niche. J. Exp. Med. 218, e20192283 (2021).

Article 
PubMed 

Google Scholar
 

Adelman, E. R. et al. Aging human hematopoietic stem cells manifest profound epigenetic reprogramming of enhancers that may predispose to leukemia. Cancer Discov. 9, 1080–1101 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Djeghloul, D. et al. Age-associated decrease of the histone methyltransferase SUV39H1 in HSC perturbs heterochromatin and B lymphoid differentiation. Stem Cell Rep. 6, 970–984 (2016).

Article 

Google Scholar
 

Keenan, C. R. et al. Extreme disruption of heterochromatin is required for accelerated hematopoietic aging. Blood 135, 2049–2058 (2020).

Article 
PubMed 

Google Scholar
 

Park, M. D. et al. Hematopoietic aging promotes cancer by fueling IL-1α-driven emergency myelopoiesis. Science 386, eadn0327 (2024).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Itokawa, N. et al. Epigenetic traits inscribed in chromatin accessibility in aged hematopoietic stem cells. Nat. Commun. 13, 2691 (2022).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Wertheimer, A. M. et al. Aging and cytomegalovirus infection differentially and jointly affect distinct circulating T cell subsets in humans. J. Immunol. 192, 2143–2155 (2014).

Article 
PubMed 

Google Scholar
 

Zhang, H., Weyand, C. M. & Goronzy, J. J. Hallmarks of the aging T-cell system. FEBS J. 288, 7123–7142 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Kityo, C. et al. Lymphoid tissue fibrosis is associated with impaired vaccine responses. J. Clin. Invest. 128, 2763–2773 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Moskowitz, D. M. et al. Epigenomics of human CD8 T cell differentiation and aging. Sci. Immunol. 2, eaag0192 (2017).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Cao, W. et al. TRIB2 safeguards naive T cell homeostasis during aging. Cell Rep. 42, 112195 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Zhang, H. et al. Aging-associated HELIOS deficiency in naive CD4+ T cells alters chromatin remodeling and promotes effector cell responses. Nat. Immunol. 24, 96–109 (2023).

Article 
PubMed 

Google Scholar
 

Mogilenko, D. A. et al. Comprehensive profiling of an aging immune system reveals clonal GZMK+ CD8+ T cells as conserved hallmark of inflammaging. Immunity 54, 99–115.e12 (2021).

Article 
PubMed 

Google Scholar
 

Elinav, E. et al. Inflammation-induced cancer: crosstalk between tumours, immune cells and microorganisms. Nat. Rev. Cancer 13, 759–771 (2013).

Article 
PubMed 

Google Scholar
 

Greten, F. R. & Grivennikov, S. I. Inflammation and cancer: triggers, mechanisms, and consequences. Immunity 51, 27–41 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Chiba, T., Marusawa, H. & Ushijima, T. Inflammation-associated cancer development in digestive organs: mechanisms and roles for genetic and epigenetic modulation. Gastroenterology 143, 550–563 (2012).

Article 
PubMed 

Google Scholar
 

Jang, J.-H., Kim, D.-H. & Surh, Y.-J. Dynamic roles of inflammasomes in inflammatory tumor microenvironment. NPJ Precis. Oncol. 5, 18 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Guerra, C. et al. Chronic pancreatitis is essential for induction of pancreatic ductal adenocarcinoma by K-Ras oncogenes in adult mice. Cancer Cell 11, 291–302 (2007).

Article 
PubMed 

Google Scholar
 

Carrière, C., Young, A. L., Gunn, J. R., Longnecker, D. S. & Korc, M. Acute pancreatitis markedly accelerates pancreatic cancer progression in mice expressing oncogenic Kras. Biochem. Biophys. Res. Commun. 382, 561–565 (2009).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Burdziak, C. et al. Epigenetic plasticity cooperates with cell-cell interactions to direct pancreatic tumorigenesis. Science 380, eadd5327 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Gidekel Friedlander, S. Y. et al. Context-dependent transformation of adult pancreatic cells by oncogenic K-Ras. Cancer Cell 16, 379–389 (2009).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Gopalan, V. et al. A transcriptionally distinct subpopulation of healthy acinar cells exhibit features of pancreatic progenitors and pancreatic ductal adenocarcinoma. Cancer Res. 81, 3958–3970 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Zhu, L. et al. Multi-organ mapping of cancer risk. Cell 166, 1132–1146.e7 (2016).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Tao, Y. et al. Cell-free multi-omics analysis reveals potential biomarkers in gastrointestinal cancer patients’ blood. Cell Rep. Med. 4, 101281 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Fox-Fisher, I. et al. Remote immune processes revealed by immune-derived circulating cell-free DNA. eLife 10, e70520 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Pouli, D. et al. Imaging mitochondrial dynamics in human skin reveals depth-dependent hypoxia and malignant potential for diagnosis. Sci. Transl. Med. 8, 367ra169 (2016).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Pouli, D. et al. Label-free, high-resolution optical metabolic imaging of human cervical precancers reveals potential for intraepithelial neoplasia diagnosis. Cell Rep. Med. 1, 100017 (2020).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Teo, Y. V. et al. Cell-free DNA as a biomarker of aging. Aging Cell 18, e12890 (2019).

Article 
PubMed 

Google Scholar
 

Joo, J. E. et al. DNA methylation signatures and the contribution of age-associated methylomic drift to carcinogenesis in early-onset colorectal cancer. Cancers 13, 2589 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Roehrig, A. et al. Single-cell multiomics reveals the interplay of clonal evolution and cellular plasticity in hepatoblastoma. Nat. Commun. 15, 3031 (2024).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Chen, A. C. Y. et al. The aged tumor microenvironment limits T cell control of cancer. Nat. Immunol. 25, 1033–1045 (2024).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Franceschi, C. et al. Inflamm-aging. An evolutionary perspective on immunosenescence. Ann. N. Y. Acad. Sci. 908, 244–254 (2000).

Article 
PubMed 

Google Scholar
 

Fane, M. & Weeraratna, A. T. How the ageing microenvironment influences tumour progression. Nat. Rev. Cancer 20, 89–106 (2020).

Article 
PubMed 

Google Scholar
 

Franceschi, C., Garagnani, P., Parini, P., Giuliani, C. & Santoro, A. Inflammaging: a new immune-metabolic viewpoint for age-related diseases. Nat. Rev. Endocrinol. 14, 576–590 (2018).

Article 
PubMed 

Google Scholar
 

Cassetta, L. & Pollard, J. W. A timeline of tumour-associated macrophage biology. Nat. Rev. Cancer 23, 238–257 (2023).

Article 
PubMed 

Google Scholar
 

Soto-Heredero, G., Gómez de Las Heras, M. M., Escrig-Larena, J. I. & Mittelbrunn, M. Extremely differentiated T cell subsets contribute to tissue deterioration during aging. Annu. Rev. Immunol. 41, 181–205 (2023).

Article 
PubMed 

Google Scholar
 

Britanova, O. V. et al. Age-related decrease in TCR repertoire diversity measured with deep and normalized sequence profiling. J. Immunol. 192, 2689–2698 (2014).

Article 
PubMed 

Google Scholar
 

Solana, R. & Mariani, E. NK and NK/T cells in human senescence. Vaccine 18, 1613–1620 (2000).

Article 
PubMed 

Google Scholar
 

Hibino, S. et al. Inflammation-induced tumorigenesis and metastasis. Int. J. Mol. Sci. 22, 5421 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Wang, J., Li, D., Cang, H. & Guo, B. Crosstalk between cancer and immune cells: role of tumor-associated macrophages in the tumor microenvironment. Cancer Med. 8, 4709–4721 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Zhao, B. et al. Aging microenvironment and antitumor immunity for geriatric oncology: the landscape and future implications. J. Hematol. Oncol. 16, 28 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Fane, M. E. et al. sFRP2 supersedes VEGF as an age-related driver of angiogenesis in melanoma, affecting response to anti-VEGF therapy in older patients. Clin. Cancer Res. 26, 5709–5719 (2020).

Article 
PubMed 
PubMed Central 

Google Scholar