Giovannoni, S., Britschgi, T., Moyer, C. & Field, K. Genetic diversity in Sargasso sea bacterioplankton. Nature 345, 60–63 (1990).

Article 
PubMed 

Google Scholar
 

Ward, D. M., Weller, R. & Bateson, M. M. 16S rRNA sequences reveal numerous uncultured microorganisms in a natural community. Nature 345, 63–65 (1990).

Article 
PubMed 

Google Scholar
 

Stein, J. L., Marsh, T. L., Wu, K. Y., Shizuya, H. & DeLong, E. F. Characterization of uncultivated prokaryotes: isolation and analysis of a 40-kilobase-pair genome fragment from a planktonic marine archaeon. J. Bacteriol. 178, 591–599 (1996).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Béjà, O. et al. Bacterial rhodopsin: evidence for a new type of phototrophy in the sea. Science 289, 1902–1906 (2000).

Article 
PubMed 

Google Scholar
 

Handelsman, J., Rondon, M. R., Brady, S. F., Clardy, J. & Goodman, R. M. Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chem. Biol. 5, R245–R249 (1998).

Article 
PubMed 

Google Scholar
 

Tyson, G. W. et al. Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature 428, 37–43 (2004).

Article 
PubMed 

Google Scholar
 

Venter, J. C. et al. Environmental genome shotgun sequencing of the Sargasso sea. Science 304, 66–74 (2004).

Article 
PubMed 

Google Scholar
 

Albertsen, M. et al. Genome sequences of rare, uncultured bacteria obtained by differential coverage binning of multiple metagenomes. Nat. Biotechnol. 31, 533–538 (2013).

Article 
PubMed 

Google Scholar
 

Nayfach, S. et al. A genomic catalog of Earth’s microbiomes. Nat. Biotechnol. 39, 499–509 (2021).

Article 
PubMed 

Google Scholar
 

Pinto, Y. & Bhatt, A. S. Sequencing-based analysis of microbiomes. Nat. Rev. Genet. 25, 829–845 (2024).

Article 
PubMed 

Google Scholar
 

Sunagawa, S. et al. Ocean plankton. Structure and function of the global ocean microbiome. Science 348, 1261359 (2015).

Article 
PubMed 

Google Scholar
 

Saary, P., Mitchell, A. L. & Finn, R. D. Estimating the quality of eukaryotic genomes recovered from metagenomic analysis with EukCC. Genome Biol. 21, 244 (2020).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Lind, A. L. & Pollard, K. S. Accurate and sensitive detection of microbial eukaryotes from whole metagenome shotgun sequencing. Microbiome 9, 58 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Call, L., Nayfach, S. & Kyrpides, N. C. Illuminating the virosphere through global metagenomics. Annu. Rev. Biomed. Data Sci. 4, 369–391 (2021).

Article 
PubMed 

Google Scholar
 

Woyke, T., Doud, D. F. R. & Schulz, F. The trajectory of microbial single-cell sequencing. Nat. Methods 14, 1045–1054 (2017).

Article 
PubMed 

Google Scholar
 

Neri, U. et al. Expansion of the global RNA virome reveals diverse clades of bacteriophages. Cell 185, 4023–4037.e18 (2022).

Article 
PubMed 

Google Scholar
 

Rinke, C. et al. Insights into the phylogeny and coding potential of microbial dark matter. Nature 499, 431–437 (2013).

Article 
PubMed 

Google Scholar
 

Brown, C. T. et al. Unusual biology across a group comprising more than 15% of domain bacteria. Nature 523, 208–211 (2015).

Article 
PubMed 

Google Scholar
 

Hug, L. A. et al. A new view of the tree of life. Nat. Microbiol. 1, 16048 (2016).

Article 

Google Scholar
 

Parks, D. H. et al. Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life. Nat. Microbiol. 2, 1533–1542 (2017).

Article 
PubMed 

Google Scholar
 

Baker, B. J. et al. Diversity, ecology and evolution of Archaea. Nat. Microbiol. 5, 887–900 (2020).

Article 
PubMed 

Google Scholar
 

Tahon, G., Geesink, P. & Ettema, T. J. G. Expanding archaeal diversity and phylogeny: past, present, and future. Annu. Rev. Microbiol. 75, 359–381 (2021).

Article 
PubMed 

Google Scholar
 

Delmont, T. O. et al. Heterotrophic bacterial diazotrophs are more abundant than their cyanobacterial counterparts in metagenomes covering most of the sunlit ocean. ISME J. 16, 927–936 (2022).

Article 
PubMed 

Google Scholar
 

Collingro, A., Köstlbacher, S. & Horn, M. Chlamydiae in the environment. Trends Microbiol. 28, 877–888 (2020).

Article 
PubMed 

Google Scholar
 

Schön, M. E., Martijn, J., Vosseberg, J., Köstlbacher, S. & Ettema, T. J. G. The evolutionary origin of host association in the Rickettsiales. Nat. Microbiol. 7, 1189–1199 (2022).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Greening, C. & Grinter, R. Microbial oxidation of atmospheric trace gases. Nat. Rev. Microbiol. 20, 513–528 (2022).

Article 
PubMed 

Google Scholar
 

Zheng, D., Liwinski, T. & Elinav, E. Interaction between microbiota and immunity in health and disease. Cell Res. 30, 492–506 (2020).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Fan, Y. & Pedersen, O. Gut microbiota in human metabolic health and disease. Nat. Rev. Microbiol. 19, 55–71 (2021).

Article 
PubMed 

Google Scholar
 

Loman, N. J. & Pallen, M. J. Twenty years of bacterial genome sequencing. Nat. Rev. Microbiol. 13, 787–794 (2015).

Article 
PubMed 

Google Scholar
 

Steen, A. D. et al. High proportions of bacteria and archaea across most biomes remain uncultured. ISME J. 13, 3126–3130 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Wu, D., Seshadri, R., Kyrpides, N. C. & Ivanova, N. N. A metagenomic perspective on the microbial prokaryotic genome census. Sci. Adv. 11, eadq2166 (2025).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Dharamshi, J. E. et al. Gene gain facilitated endosymbiotic evolution of Chlamydiae. Nat. Microbiol. 8, 40–54 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Parks, D. H. et al. GTDB: an ongoing census of bacterial and archaeal diversity through a phylogenetically consistent, rank normalized and complete genome-based taxonomy. Nucleic Acids Res. 50, D785–D794 (2022).

Article 
PubMed 

Google Scholar
 

Chen, I.-M. A. et al. The IMG/M data management and analysis system v.7: content updates and new features. Nucleic Acids Res. 51, D723–D732 (2023).

Article 
PubMed 

Google Scholar
 

Richardson, L. et al. MGnify: the microbiome sequence data analysis resource in 2023. Nucleic Acids Res. 51, D753–D759 (2023).

Article 
PubMed 

Google Scholar
 

Sayers, E. W. et al. Database resources of the national center for biotechnology information. Nucleic Acids Res. 50, D20–D26 (2022).

Article 
PubMed 

Google Scholar
 

Eloe-Fadrosh, E. A., Ivanova, N. N., Woyke, T. & Kyrpides, N. C. Metagenomics uncovers gaps in amplicon-based detection of microbial diversity. Nat. Microbiol. 1, 15032 (2016).

Article 
PubMed 

Google Scholar
 

New, F. N. & Brito, I. L. What is metagenomics teaching us, and what is missed? Annu. Rev. Microbiol. 74, 117–135 (2020).

Article 
PubMed 

Google Scholar
 

Gruber-Vodicka, H. R., Seah, B. K. B. & Pruesse, E. PhyloFlash: rapid small-subunit rRNA profiling and targeted assembly from metagenomes. mSystems 5, e00920 (2020).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Mise, K. & Iwasaki, W. Unexpected absence of ribosomal protein genes from metagenome-assembled genomes. ISME Commun. 2, 118 (2022).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Kim, C., Pongpanich, M. & Porntaveetus, T. Unraveling metagenomics through long-read sequencing: a comprehensive review. J. Transl. Med. 22, 111 (2024).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Agustinho, D. P. et al. Unveiling microbial diversity: harnessing long-read sequencing technology. Nat. Methods 21, 954–966 (2024).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Sevim, V. et al. Shotgun metagenome data of a defined mock community using Oxford Nanopore, PacBio and Illumina technologies. Sci. Data 6, 285 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Singleton, C. M. et al. Connecting structure to function with the recovery of over 1000 high-quality metagenome-assembled genomes from activated sludge using long-read sequencing. Nat. Commun. 12, 2009 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Trigodet, F., Sachdeva, R., Banfield, J. F. & Eren, A. M. Assemblies of long-read metagenomes suffer from diverse errors. Preprint at bioRxiv https://doi.org/10.1101/2025.04.22.649783 (2025).

Sánchez-Romero, M. A. & Casadesús, J. The bacterial epigenome. Nat. Rev. Microbiol. 18, 7–20 (2020).

Article 
PubMed 

Google Scholar
 

Nielsen, T. K. et al. Detection of nucleotide modifications in bacteria and bacteriophages: strengths and limitations of current technologies and software. Mol. Ecol. 32, 1236–1247 (2023).

Article 
PubMed 

Google Scholar
 

Beaulaurier, J. et al. Metagenomic binning and association of plasmids with bacterial host genomes using DNA methylation. Nat. Biotechnol. 36, 61–69 (2018).

Article 
PubMed 

Google Scholar
 

Hiraoka, S. et al. Metaepigenomic analysis reveals the unexplored diversity of DNA methylation in an environmental prokaryotic community. Nat. Commun. 10, 159 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Zhang, W., Foo, M., Eren, A. M. & Pan, T. tRNA modification dynamics from individual organisms to metaepitranscriptomics of microbiomes. Mol. Cell 82, 891–906 (2022).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Roux, S. et al. Ecology and evolution of viruses infecting uncultivated SUP05 bacteria as revealed by single-cell- and meta-genomics. eLife 3, e03125 (2014).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Jarett, J. K. et al. Insights into the dynamics between viruses and their hosts in a hot spring microbial mat. ISME J. 14, 2527–2541 (2020).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Bowers, R. M. et al. Dissecting the dominant hot spring microbial populations based on community-wide sampling at single-cell genomic resolution. ISME J. 16, 1337–1347 (2022).

Article 
PubMed 

Google Scholar
 

Marcy, Y. et al. Dissecting biological ‘dark matter’ with single-cell genetic analysis of rare and uncultivated TM7 microbes from the human mouth. Proc. Natl Acad. Sci. USA 104, 11889–11894 (2007).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Kashtan, N. et al. Single-cell genomics reveals hundreds of coexisting subpopulations in wild Prochlorococcus. Science 344, 416–420 (2014).

Article 
PubMed 

Google Scholar
 

Zheng, W. et al. High-throughput, single-microbe genomics with strain resolution, applied to a human gut microbiome. Science 376, eabm1483 (2022).

Article 
PubMed 

Google Scholar
 

Jarett, J. K. et al. Single-cell genomics of co-sorted Nanoarchaeota suggests novel putative host associations and diversification of proteins involved in symbiosis. Microbiome 6, 161 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Tyml, T., Date, S. V. & Woyke, T. A single-cell genome perspective on studying intracellular associations in unicellular eukaryotes. Philos. Trans. R. Soc. Lond. B Biol. Sci. 374, 20190082 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Schulz, F. et al. Protists as mediators of complex microbial and viral associations. Preprint at bioRxiv https://doi.org/10.1101/2024.12.29.630703 (2024).

Doud, D. F. R. & Woyke, T. Novel approaches in function-driven single-cell genomics. FEMS Microbiol. Rev. 41, 538–548 (2017).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Stepanauskas, R. et al. Improved genome recovery and integrated cell-size analyses of individual uncultured microbial cells and viral particles. Nat. Commun. 8, 84 (2017).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Doud, D. F. R. et al. Function-driven single-cell genomics uncovers cellulose-degrading bacteria from the rare biosphere. ISME J. 14, 659–675 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Pachiadaki, M. G. et al. Charting the complexity of the marine microbiome through single-cell genomics. Cell 179, 1623–1635.e11 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Džunková, M. et al. Synthase-selected sorting approach identifies a beta-lactone synthase in a nudibranch symbiotic bacterium. Microbiome 11, 130 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Martinez-Garcia, M. et al. Capturing single cell genomes of active polysaccharide degraders: an unexpected contribution of Verrucomicrobia. PLoS ONE 7, e35314 (2012).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Bowers, R. M. et al. scMicrobe PTA: near complete genomes from single bacterial cells. ISME Commun. 4, ycae085 (2024).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Leonaviciene, G., Leonavicius, K., Meskys, R. & Mazutis, L. Multi-step processing of single cells using semi-permeable capsules. Lab Chip 20, 4052–4062 (2020).

Article 
PubMed 

Google Scholar
 

Pavlopoulos, G. A. et al. Unraveling the functional dark matter through global metagenomics. Nature 622, 594–602 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Vanni, C. et al. Unifying the known and unknown microbial coding sequence space. eLife 11, e67667 (2022).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Salazar, G. et al. Gene expression changes and community turnover differentially shape the global ocean metatranscriptome. Cell 179, 1068–1083.e21 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Sieradzki, E. T., Nuccio, E. E., Pett-Ridge, J. & Firestone, M. K. Expression of macromolecular organic nitrogen degrading enzymes identifies potential mediators of soil organic N availability to an annual grass. ISME J. 17, 967–975 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Carini, P. et al. Relic DNA is abundant in soil and obscures estimates of soil microbial diversity. Nat. Microbiol. 2, 16242 (2016).

Article 
PubMed 

Google Scholar
 

Barnett, S. E., Egan, R., Foster, B., Eloe-Fadrosh, E. A. & Buckley, D. H. Genomic features predict bacterial life history strategies in soil, as identified by metagenomic stable isotope probing. mBio 14, e0358422 (2023).

Article 
PubMed 

Google Scholar
 

Pett-Ridge, J. & Weber, P. K. NanoSIP: NanoSIMS applications for microbial biology. Methods Mol. Biol. 2349, 91–136 (2022).

Article 
PubMed 

Google Scholar
 

Nuccio, E. E. et al. Community RNA-seq: multi-kingdom responses to living versus decaying roots in soil. ISME Commun. 1, 72 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Franzosa, E. A. et al. Relating the metatranscriptome and metagenome of the human gut. Proc. Natl Acad. Sci. USA 111, E2329–E2338 (2014).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Ojala, T., Kankuri, E. & Kankainen, M. Understanding human health through metatranscriptomics. Trends Mol. Med. 29, 376–389 (2023).

Article 
PubMed 

Google Scholar
 

Caron, D. A. et al. Probing the evolution, ecology and physiology of marine protists using transcriptomics. Nat. Rev. Microbiol. 15, 6–20 (2017).

Article 
PubMed 

Google Scholar
 

Yergeau, E. et al. Soil contamination alters the willow root and rhizosphere metatranscriptome and the root–rhizosphere interactome. ISME J. 12, 869–884 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Chuckran, P. F. et al. Codon bias, nucleotide selection, and genome size predict in situ bacterial growth rate and transcription in rewetted soil. Proc. Natl Acad. Sci. USA 122, e2413032122 (2025).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Liu, Y., Beyer, A. & Aebersold, R. On the dependency of cellular protein levels on mRNA abundance. Cell 165, 535–550 (2016).

Article 
PubMed 

Google Scholar
 

Zhang, Y., Thompson, K. N., Huttenhower, C. & Franzosa, E. A. Statistical approaches for differential expression analysis in metatranscriptomics. Bioinformatics 37, i34–i41 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Blazewicz, S. J., Barnard, R. L., Daly, R. A. & Firestone, M. K. Evaluating rRNA as an indicator of microbial activity in environmental communities: limitations and uses. ISME J. 7, 2061–2068 (2013).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Gifford, S. M., Sharma, S., Rinta-Kanto, J. M. & Moran, M. A. Quantitative analysis of a deeply sequenced marine microbial metatranscriptome. ISME J. 5, 461–472 (2011).

Article 
PubMed 

Google Scholar
 

Shakya, M., Lo, C.-C. & Chain, P. S. G. Advances and challenges in metatranscriptomic analysis. Front. Genet. 10, 904 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Nuccio, E. E. et al. Niche differentiation is spatially and temporally regulated in the rhizosphere. ISME J. 14, 999–1014 (2020).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Integrative HMP (iHMP) Research Network Consortium. The integrative human microbiome project. Nature 569, 641–648 (2019).

Article 

Google Scholar
 

Almeida, A. et al. A unified catalog of 204,938 reference genomes from the human gut microbiome. Nat. Biotechnol. 39, 105–114 (2021).

Article 
PubMed 

Google Scholar
 

Chen, Y. & Murrell, J. C. When metagenomics meets stable-isotope probing: progress and perspectives. Trends Microbiol. 18, 157–163 (2010).

Article 
PubMed 

Google Scholar
 

Stable Isotope Probing: Methods and Protocols (eds Dumont, M. G. & Hernández García, M.) (Humana Press, 2019).

Pepe-Ranney, C., Campbell, A. N., Koechli, C. N., Berthrong, S. & Buckley, D. H. Unearthing the ecology of soil microorganisms using a high resolution DNA-SIP approach to explore cellulose and xylose metabolism in soil. Front. Microbiol. 7, 703 (2016).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Fischer, A., Manefield, M. & Bombach, P. Application of stable isotope tools for evaluating natural and stimulated biodegradation of organic pollutants in field studies. Curr. Opin. Biotechnol. 41, 99–107 (2016).

Article 
PubMed 

Google Scholar
 

Buckley, D. H., Huangyutitham, V., Hsu, S.-F. & Nelson, T. A. Stable isotope probing with 15N2 reveals novel noncultivated diazotrophs in soil. Appl. Environ. Microbiol. 73, 3196–3204 (2007).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Blazewicz, S. J., Schwartz, E. & Firestone, M. K. Growth and death of bacteria and fungi underlie rainfall-induced carbon dioxide pulses from seasonally dried soil. Ecology 95, 1162–1172 (2014).

Article 
PubMed 

Google Scholar
 

Hungate, B. A. et al. The functional significance of bacterial predators. mBio 12, e00466-21 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Hungate, B. A. et al. Quantitative microbial ecology through stable isotope probing. Appl. Environ. Microbiol. 81, 7570–7581 (2015).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Koch, B. J. et al. Estimating taxon-specific population dynamics in diverse microbial communities. Ecosphere 9, e02090 (2018).

Article 

Google Scholar
 

Foley, M. M. et al. Growth rate as a link between microbial diversity and soil biogeochemistry. Nat. Ecol. Evol. 8, 2018–2026 (2024).

Article 
PubMed 

Google Scholar
 

Morrissey, E. M. et al. Evolutionary history constrains microbial traits across environmental variation. Nat. Ecol. Evol. 3, 1064–1069 (2019).

Article 
PubMed 

Google Scholar
 

Stone, B. W. G. et al. Life history strategies among soil bacteria-dichotomy for few, continuum for many. ISME J. 17, 611–619 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Barnett, S. E., Youngblut, N. D., Koechli, C. N. & Buckley, D. H. Multisubstrate DNA stable isotope probing reveals guild structure of bacteria that mediate soil carbon cycling. Proc. Natl Acad. Sci. USA 118, e2115292118 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Hestrin, R. et al. Plant-associated fungi support bacterial resilience following water limitation. ISME J. 16, 2752–2762 (2022).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Sul, W. J. et al. DNA-stable isotope probing integrated with metagenomics for retrieval of biphenyl dioxygenase genes from polychlorinated biphenyl-contaminated river sediment. Appl. Environ. Microbiol. 75, 5501–5506 (2009).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Wilhelm, R. C., Singh, R., Eltis, L. & Mohn, W. Bacterial contributions to delignification and lignocellulose degradation in forest soils with metagenomic and quantitative stable isotope probing. ISME J. 13, 413–429 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Sieradzki, E. T., Morando, M. & Fuhrman, J. A. Metagenomics and quantitative stable isotope probing offer insights into metabolism of polycyclic aromatic hydrocarbon degraders in chronically polluted seawater. mSystems 6, e00245-21 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Starr, E. P. et al. Stable-isotope-informed, genome-resolved metagenomics uncovers potential cross-kingdom interactions in rhizosphere soil. mSphere 6, e0008521 (2021).

Article 
PubMed 

Google Scholar
 

Eyice, Ö et al. SIP metagenomics identifies uncultivated Methylophilaceae as dimethylsulphide degrading bacteria in soil and lake sediment. ISME J. 9, 2336–2348 (2015).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Trubl, G. et al. Active virus–host interactions at sub-freezing temperatures in arctic peat soil. Microbiome 9, 208 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar
 

López-Mondéjar, R. et al. Metagenomics and stable isotope probing reveal the complementary contribution of fungal and bacterial communities in the recycling of dead biomass in forest soil. Soil Biol. Biochem. 148, 107875 (2020).

Article 

Google Scholar
 

Metze, D. et al. Microbial growth under drought is confined to distinct taxa and modified by potential future climate conditions. Nat. Commun. 14, 5895 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Greenlon, A. et al. Quantitative stable-isotope probing (qSIP) with metagenomics links microbial physiology and activity to soil moisture in Mediterranean-climate grassland ecosystems. mSystems 7, e0041722 (2022).

Article 
PubMed 

Google Scholar
 

Penev, P. I. et al. The active subset of grassland soil microbiomes changes with soil depth, water availability and prominently features predatory bacteria and episymbionts. Preprint at bioRxiv https://doi.org/10.1101/2024.12.19.629468 (2024).

Youngblut, N. D. & Buckley, D. H. Intra-genomic variation in G + C content and its implications for DNA stable isotope probing. Environ. Microbiol. Rep. 6, 767–775 (2014).

Article 
PubMed 

Google Scholar
 

Nuccio, E. E. et al. HT-SIP: a semi-automated stable isotope probing pipeline identifies cross-kingdom interactions in the hyphosphere of arbuscular mycorrhizal fungi. Microbiome 10, 199 (2022).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Barnett, S. E., Youngblut, N. D. & Buckley, D. H. Data analysis for DNA stable isotope probing experiments using multiple window high-resolution SIP. Methods Mol. Biol. 2046, 109–128 (2019).

Article 
PubMed 

Google Scholar
 

Vyshenska, D. et al. A standardized quantitative analysis strategy for stable isotope probing metagenomics. mSystems 8, e0128022 (2023).

Article 
PubMed 

Google Scholar
 

Hernández Medina, R. et al. Machine learning and deep learning applications in microbiome research. ISME Commun. 2, 98 (2022).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Liu, Y. et al. Expanded diversity of Asgard archaea and their relationships with eukaryotes. Nature 593, 553–557 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Coleman, G. A. et al. A rooted phylogeny resolves early bacterial evolution. Science 372, eabe0511 (2021).

Article 
PubMed 

Google Scholar
 

Gabaldón, T. Origin and early evolution of the eukaryotic cell. Annu. Rev. Microbiol. 75, 631–647 (2021).

Article 
PubMed 

Google Scholar
 

Megrian, D., Taib, N., Jaffe, A. L., Banfield, J. F. & Gribaldo, S. Ancient origin and constrained evolution of the division and cell wall gene cluster in bacteria. Nat. Microbiol. 7, 2114–2127 (2022).

Article 
PubMed 

Google Scholar
 

Sibbald, S. J. & Archibald, J. M. Genomic insights into plastid evolution. Genome Biol. Evol. 12, 978–990 (2020).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Dutkiewicz, Z. et al. Proposal of Patescibacterium danicum gen. nov., sp. nov. in the ubiquitous ultrasmall bacterial phylum Patescibacteriota phyl. nov. ISME Commun. 5, ycae147 (2024).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Hedlund, B. P. et al. SeqCode: a nomenclatural code for prokaryotes described from sequence data. Nat. Microbiol. 7, 1702–1708 (2022).

PubMed 
PubMed Central 

Google Scholar
 

Nakajima, M. et al. Minisyncoccus archaeiphilus gen. nov., sp. nov., a mesophilic, obligate parasitic bacterium and proposal of Minisyncoccaceae fam. nov., Minisyncoccales ord. nov., Minisyncoccia class. nov. and Minisyncoccota phyl. nov. formerly referred to as Candidatus Patescibacteria or candidate phyla radiation. Int. J. Syst. Evol. Microbiol. 75, 006668 (2025).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Leng, H., Wang, Y., Zhao, W., Sievert, S. M. & Xiao, X. Identification of a deep-branching thermophilic clade sheds light on early bacterial evolution. Nat. Commun. 14, 4354 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Hashimi, A. & Tocheva, E. I. Cell envelope diversity and evolution across the bacterial tree of life. Nat. Microbiol. 9, 2475–2487 (2024).

Article 
PubMed 

Google Scholar
 

Megrian, D., Taib, N., Witwinowski, J., Beloin, C. & Gribaldo, S. One or two membranes? Diderm Firmicutes challenge the Gram-positive/Gram-negative divide. Mol. Microbiol. 113, 659–671 (2020).

Article 
PubMed 

Google Scholar
 

Witwinowski, J. et al. An ancient divide in outer membrane tethering systems in bacteria suggests a mechanism for the diderm-to-monoderm transition. Nat. Microbiol. 7, 411–422 (2022).

Article 
PubMed 

Google Scholar
 

Beaud Benyahia, B., Taib, N., Beloin, C. & Gribaldo, S. Terrabacteria: redefining bacterial envelope diversity, biogenesis and evolution. Nat. Rev. Microbiol. 23, 41–56 (2024).

Article 
PubMed 

Google Scholar
 

Spang, A. et al. Complex archaea that bridge the gap between prokaryotes and eukaryotes. Nature 521, 173–179 (2015).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Bäckström, D. et al. Virus genomes from deep sea sediments expand the ocean megavirome and support independent origins of viral gigantism. mBio 10, e02497–18 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Roux, S. et al. Cryptic inoviruses revealed as pervasive in bacteria and archaea across Earth’s biomes. Nat. Microbiol. 4, 1895–1906 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Paez-Espino, D. et al. Diversity, evolution, and classification of virophages uncovered through global metagenomics. Microbiome 7, 157 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Schulz, F. et al. Giant virus diversity and host interactions through global metagenomics. Nature 578, 432–436 (2020).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Moniruzzaman, M., Martinez-Gutierrez, C. A., Weinheimer, A. R. & Aylward, F. O. Dynamic genome evolution and complex virocell metabolism of globally-distributed giant viruses. Nat. Commun. 11, 1710 (2020).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Al-Shayeb, B. et al. Borgs are giant genetic elements with potential to expand metabolic capacity. Nature 610, 731–736 (2022).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Camargo, A. P. et al. Identification of mobile genetic elements with geNomad. Nat. Biotechnol. 42, 1303–1312 (2024).

Article 
PubMed 

Google Scholar
 

Fogarty, E. C. et al. A cryptic plasmid is among the most numerous genetic elements in the human gut. Cell 187, 1206–1222.e16 (2024).

Article 
PubMed 
PubMed Central 

Google Scholar
 

West, P. T., Probst, A. J., Grigoriev, I. V., Thomas, B. C. & Banfield, J. F. Genome-reconstruction for eukaryotes from complex natural microbial communities. Genome Res. 28, 569–580 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Delmont, T. O. et al. Functional repertoire convergence of distantly related eukaryotic plankton lineages abundant in the sunlit ocean. Cell Genom. 2, 100123 (2022).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Saraiva, J. P., Bartholomäus, A., Toscan, R. B., Baldrian, P. & Nunes da Rocha, U. Recovery of 197 eukaryotic bins reveals major challenges for eukaryote genome reconstruction from terrestrial metagenomes. Mol. Ecol. Resour. 23, 1066–1076 (2023).

Article 
PubMed 

Google Scholar
 

Moniruzzaman, M., Weinheimer, A. R., Martinez-Gutierrez, C. A. & Aylward, F. O. Widespread endogenization of giant viruses shapes genomes of green algae. Nature 588, 141–145 (2020).

Article 
PubMed 

Google Scholar
 

Aylward, F. O. & Moniruzzaman, M. ViralRecall — a flexible command-line tool for the detection of giant virus signatures in ’omic data. Viruses 13, 150 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Pitot, T. M., Brůna, T. & Schulz, F. Conservative taxonomy and quality assessment of giant virus genomes with GVClass. npj Viruses 2, 1–7 (2024).

Article 

Google Scholar
 

Coclet, C., Camargo, A. P. & Roux, S. MVP: a modular viromics pipeline to identify, filter, cluster, annotate, and bin viruses from metagenomes. mSystems 9, e0088824 (2024).

Article 
PubMed 

Google Scholar
 

Wu, L.-Y. et al. Benchmarking bioinformatic virus identification tools using real-world metagenomic data across biomes. Genome Biol. 25, 97 (2024).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Roux, S. et al. iPHoP: an integrated machine learning framework to maximize host prediction for metagenome-derived viruses of archaea and bacteria. PLoS Biol. 21, e3002083 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Mougari, S., Sahmi-Bounsiar, D., Levasseur, A., Colson, P. & La Scola, B. Virophages of giant viruses: an update at eleven. Viruses 11, 733 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Kim, D., Song, L., Breitwieser, F. P. & Salzberg, S. L. Centrifuge: rapid and sensitive classification of metagenomic sequences. Genome Res. 26, 1721–1729 (2016).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Karlicki, M., Antonowicz, S. & Karnkowska, A. Tiara: deep learning-based classification system for eukaryotic sequences. Bioinformatics 38, 344–350 (2022).

Article 
PubMed 

Google Scholar
 

Muñoz-Marín, M. D. C., López-Lozano, A., Moreno-Cabezuelo, J. Á, Díez, J. & García-Fernández, J. M. Mixotrophy in cyanobacteria. Curr. Opin. Microbiol. 78, 102432 (2024).

Article 
PubMed 

Google Scholar
 

Ovchinnikov, S. et al. Protein structure determination using metagenome sequence data. Science 355, 294–298 (2017).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Zhang, Z., Ou, C., Cho, Y., Akiyama, Y. & Ovchinnikov, S. Artificial intelligence methods for protein folding and design. Curr. Opin. Struct. Biol. 93, 103066 (2025).

Article 
PubMed 

Google Scholar
 

Rozenberg, A., Inoue, K., Kandori, H. & Béjà, O. Microbial rhodopsins: the last two decades. Annu. Rev. Microbiol. 75, 427–447 (2021).

Article 
PubMed 

Google Scholar
 

Bulzu, P.-A. et al. Casting light on Asgardarchaeota metabolism in a sunlit microoxic niche. Nat. Microbiol. 4, 1129–1137 (2019).

Article 
PubMed 

Google Scholar
 

Pushkarev, A. et al. A distinct abundant group of microbial rhodopsins discovered using functional metagenomics. Nature 558, 595–599 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Farnelid, H. et al. Nitrogenase gene amplicons from global marine surface waters are dominated by genes of non-cyanobacteria. PLoS ONE 6, e19223 (2011).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Daims, H. et al. Complete nitrification by Nitrospira bacteria. Nature 528, 504–509 (2015).

Article 
PubMed 
PubMed Central 

Google Scholar
 

van Kessel, M. A. H. J. et al. Complete nitrification by a single microorganism. Nature 528, 555–559 (2015).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Koch, H., van Kessel, M. A. H. J. & Lücker, S. Complete nitrification: insights into the ecophysiology of comammox Nitrospira. Appl. Microbiol. Biotechnol. 103, 177–189 (2019).

Article 
PubMed 

Google Scholar
 

Zhu, G. et al. Towards a more labor-saving way in microbial ammonium oxidation: a review on complete ammonia oxidization (comammox). Sci. Total Environ. 829, 154590 (2022).

Article 
PubMed 

Google Scholar
 

Evans, P. N. et al. An evolving view of methane metabolism in the Archaea. Nat. Rev. Microbiol. 17, 219–232 (2019).

Article 
PubMed 

Google Scholar
 

Lynes, M. M. et al. Diversity and function of methyl-coenzyme M reductase-encoding archaea in yellowstone hot springs revealed by metagenomics and mesocosm experiments. ISME Commun. 3, 22 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Leung, P. M. et al. Trace gas oxidation sustains energy needs of a thermophilic archaeon at suboptimal temperatures. Nat. Commun. 15, 3219 (2024).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Ghannam, R. B. & Techtmann, S. M. Machine learning applications in microbial ecology, human microbiome studies, and environmental monitoring. Comput. Struct. Biotechnol. J. 19, 1092–1107 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Asnicar, F., Thomas, A. M., Passerini, A., Waldron, L. & Segata, N. Machine learning for microbiologists. Nat. Rev. Microbiol. 22, 191–205 (2024).

Article 
PubMed 

Google Scholar
 

Lin, Z. et al. Evolutionary-scale prediction of atomic-level protein structure with a language model. Science 379, 1123–1130 (2023).

Article 
PubMed 

Google Scholar
 

Abramson, J. et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 630, 493–500 (2024).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Kim, G. B., Gao, Y., Palsson, B. O. & Lee, S. Y. DeepTFactor: a deep learning-based tool for the prediction of transcription factors. Proc. Natl Acad. Sci. USA 118, e2021171118 (2021).

Article 
PubMed 

Google Scholar
 

Hannigan, G. D. et al. A deep learning genome-mining strategy for biosynthetic gene cluster prediction. Nucleic Acids Res. 47, e110 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Arango-Argoty, G. et al. DeepARG: a deep learning approach for predicting antibiotic resistance genes from metagenomic data. Microbiome 6, 23 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Ramoneda, J., Hoffert, M., Stallard-Olivera, E., Casamayor, E. O. & Fierer, N. Leveraging genomic information to predict environmental preferences of bacteria. ISME J. 18, wrae195 (2024).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Feldbauer, R., Schulz, F., Horn, M. & Rattei, T. Prediction of microbial phenotypes based on comparative genomics. BMC Bioinforma. 16, S1 (2015).

Article 

Google Scholar
 

Villada, J. C. et al. A genomic catalog of Earth’s bacterial and archaeal symbionts. Preprint at bioRxiv https://doi.org/10.1101/2025.05.29.656868 (2025).

Fierer, N. Embracing the unknown: disentangling the complexities of the soil microbiome. Nat. Rev. Microbiol. 15, 579–590 (2017).

Article 
PubMed 

Google Scholar
 

Chang, H.-X., Haudenshield, J. S., Bowen, C. R. & Hartman, G. L. Metagenome-wide association study and machine learning prediction of bulk soil microbiome and crop productivity. Front. Microbiol. 8, 519 (2017).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Ning, L. et al. Microbiome and metabolome features in inflammatory bowel disease via multi-omics integration analyses across cohorts. Nat. Commun. 14, 7135 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Sunagawa, S. et al. Tara oceans: towards global ocean ecosystems biology. Nat. Rev. Microbiol. 18, 428–445 (2020).

Article 
PubMed 

Google Scholar
 

Lauro, F. M. et al. The genomic basis of trophic strategy in marine bacteria. Proc. Natl Acad. Sci. USA 106, 15527–15533 (2009).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Ibarbalz, F. M. et al. Global trends in marine plankton diversity across kingdoms of life. Cell 179, 1084–1097.e21 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Gregory, A. C. et al. Marine DNA viral macro- and microdiversity from pole to pole. Cell 177, 1109–1123.e14 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Mende, D. R. et al. Environmental drivers of a microbial genomic transition zone in the ocean’s interior. Nat. Microbiol. 2, 1367–1373 (2017).

Article 
PubMed 

Google Scholar
 

Obiol, A. et al. A metagenomic assessment of microbial eukaryotic diversity in the global ocean. Mol. Ecol. Resour. 20, 718–731 (2020).

Article 

Google Scholar
 

Giovannoni, S. J., Cameron Thrash, J. & Temperton, B. Implications of streamlining theory for microbial ecology. ISME J. 8, 1553–1565 (2014).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Biller, S. J., Berube, P. M., Lindell, D. & Chisholm, S. W. Prochlorococcus: the structure and function of collective diversity. Nat. Rev. Microbiol. 13, 13–27 (2015).

Article 
PubMed 

Google Scholar
 

Batut, B., Knibbe, C., Marais, G. & Daubin, V. Reductive genome evolution at both ends of the bacterial population size spectrum. Nat. Rev. Microbiol. 12, 841–850 (2014).

Article 
PubMed 

Google Scholar
 

Noell, S. E., Hellweger, F. L., Temperton, B. & Giovannoni, S. J. A reduction of transcriptional regulation in aquatic oligotrophic microorganisms enhances fitness in nutrient-poor environments. Microbiol. Mol. Biol. Rev. 87, e0012422 (2023).

Article 
PubMed 

Google Scholar
 

Polz, M. F. & Cordero, O. X. The genetic law of the minimum. Science 370, 655–656 (2020).

Article 
PubMed 

Google Scholar
 

Shenhav, L. & Zeevi, D. Resource conservation manifests in the genetic code. Science 370, 683–687 (2020).

Article 
PubMed 

Google Scholar
 

VanInsberghe, D., Arevalo, P., Chien, D. & Polz, M. F. How can microbial population genomics inform community ecology? Philos. Trans. R. Soc. Lond. B Biol. Sci. 375, 20190253 (2020).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Muñoz-Marín, M. C. et al. Mixotrophy in marine picocyanobacteria: use of organic compounds by Prochlorococcus and Synechococcus. ISME J. 14, 1065–1073 (2020).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Ulloa, O. et al. The cyanobacterium Prochlorococcus has divergent light-harvesting antennae and may have evolved in a low-oxygen ocean. Proc. Natl Acad. Sci. USA 118, e2025638118 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Berube, P. et al. Single cell genomes of Prochlorococcus, Synechococcus, and sympatric microbes from diverse marine environments. Sci. Data 5, 180154 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Hackl, T. et al. Novel integrative elements and genomic plasticity in ocean ecosystems. Cell 186, 47–62.e16 (2023).

Article 
PubMed 

Google Scholar
 

Shapiro, B. J. et al. Population genomics of early events in the ecological differentiation of bacteria. Science 336, 48–51 (2012).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Hussain, F. A. et al. Rapid evolutionary turnover of mobile genetic elements drives bacterial resistance to phages. Science 374, 488–492 (2021).

Article 
PubMed 

Google Scholar
 

Kauffman, K. M. et al. Resolving the structure of phage–bacteria interactions in the context of natural diversity. Nat. Commun. 13, 372 (2022).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Crowther, T. W. et al. The global soil community and its influence on biogeochemistry. Science 365, eaav0550 (2019).

Article 
PubMed 

Google Scholar
 

Sokol, N. W. et al. Life and death in the soil microbiome: how ecological processes influence biogeochemistry. Nat. Rev. Microbiol. 20, 415–430 (2022).

Article 
PubMed 

Google Scholar
 

Hartmann, M. & Six, J. Soil structure and microbiome functions in agroecosystems. Nat. Rev. Earth Environ. 4, 4–18 (2022).

Article 

Google Scholar
 

Riley, R. et al. Terabase-scale coassembly of a tropical soil microbiome. Microbiol. Spectr. 11, e0020023 (2023).

Article 
PubMed 

Google Scholar
 

Kazarina, A., Wiechman, H., Sarkar, S., Richie, T. & Lee, S. T. M. Recovery of 679 metagenome-assembled genomes from different soil depths along a precipitation gradient. Sci. Data 12, 521 (2025).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Bardgett, R. D. & Caruso, T. Soil microbial community responses to climate extremes: resistance, resilience and transitions to alternative states. Philos. Trans. R. Soc. Lond. B Biol. Sci. 375, 20190112 (2020).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Knight, C. G. et al. Soil microbiomes show consistent and predictable responses to extreme events. Nature 636, 690–696 (2024).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Woodcroft, B. J. et al. Genome-centric view of carbon processing in thawing permafrost. Nature 560, 49–54 (2018).

Article 
PubMed 

Google Scholar
 

Emerson, J. B. et al. Host-linked soil viral ecology along a permafrost thaw gradient. Nat. Microbiol. 3, 870–880 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Bahram, M. et al. Structure and function of the global topsoil microbiome. Nature 560, 233–237 (2018).

Article 
PubMed 

Google Scholar
 

Jansson, J. K., McClure, R. & Egbert, R. G. Soil microbiome engineering for sustainability in a changing environment. Nat. Biotechnol. 41, 1716–1728 (2023).

Article 
PubMed 

Google Scholar
 

Hiis, E. G. et al. Unlocking bacterial potential to reduce farmland N2O emissions. Nature 630, 421–428 (2024).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Shu, W.-S. & Huang, L.-N. Microbial diversity in extreme environments. Nat. Rev. Microbiol. 20, 219–235 (2022).

Article 
PubMed 

Google Scholar
 

Cowan, D. A., Ramond, J.-B., Makhalanyane, T. P. & De Maayer, P. Metagenomics of extreme environments. Curr. Opin. Microbiol. 25, 97–102 (2015).

Article 
PubMed 

Google Scholar
 

Baker, B. J. et al. Genomic inference of the metabolism of cosmopolitan subsurface Archaea, Hadesarchaea. Nat. Microbiol. 1, 16002 (2016).

Article 
PubMed 

Google Scholar
 

Eloe-Fadrosh, E. A. et al. Global metagenomic survey reveals a new bacterial candidate phylum in geothermal springs. Nat. Commun. 7, 10476 (2016).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Narasingarao, P. et al. De novo metagenomic assembly reveals abundant novel major lineage of Archaea in hypersaline microbial communities. ISME J. 6, 81–93 (2012).

Article 
PubMed 

Google Scholar
 

Inskeep, W. P. et al. The YNP metagenome project: environmental parameters responsible for microbial distribution in the Yellowstone geothermal ecosystem. Front. Microbiol. 4, 67 (2013).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Colman, D. R. et al. Covariation of hot spring geochemistry with microbial genomic diversity, function, and evolution. Nat. Commun. 15, 7506 (2024).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Qi, Y.-L. et al. Analysis of nearly 3000 archaeal genomes from terrestrial geothermal springs sheds light on interconnected biogeochemical processes. Nat. Commun. 15, 4066 (2024).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Rappaport, H. B. & Oliverio, A. M. Lessons from extremophiles: functional adaptations and genomic innovations across the eukaryotic tree of life. Genome Biol. Evol. 16, evae160 (2024).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Verma, D., Joshi, S., Ghimire, P., Mishra, A. & Kumar, V. Developments in extremophilic bacterial genomics: a post next generation sequencing era. Ecol. Genet. Genom. 32, 100255 (2024).


Google Scholar
 

Catchpole, R. J. & Forterre, P. The evolution of reverse gyrase suggests a nonhyperthermophilic last universal common ancestor. Mol. Biol. Evol. 36, 2737–2747 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Pierpont, C. L., Baroch, J. J., Church, M. J. & Miller, S. R. Idiosyncratic genome evolution of the thermophilic cyanobacterium Synechococcus at the limits of phototrophy. ISME J. 18, wrae184 (2024).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Munson-McGee, J. H. et al. Nanoarchaeota, their Sulfolobales host, and Nanoarchaeota virus distribution across Yellowstone National Park hot springs. Appl. Environ. Microbiol. 81, 7860–7868 (2015).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Tierney, B. T. et al. Longitudinal multi-omics analysis of host microbiome architecture and immune responses during short-term spaceflight. Nat. Microbiol. 9, 1661–1675 (2024).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Fuhrman, J. A., Cram, J. A. & Needham, D. M. Marine microbial community dynamics and their ecological interpretation. Nat. Rev. Microbiol. 13, 133–146 (2015).

Article 
PubMed 

Google Scholar
 

Faust, K., Lahti, L., Gonze, D., de Vos, W. M. & Raes, J. Metagenomics meets time series analysis: unraveling microbial community dynamics. Curr. Opin. Microbiol. 25, 56–66 (2015).

Article 
PubMed 

Google Scholar
 

Rohwer, R. R. et al. Two decades of bacterial ecology and evolution in a freshwater lake. Nat. Microbiol. 10, 246–257 (2025).

Article 
PubMed 

Google Scholar
 

Oliver, T. et al. Coassembly and binning of a twenty-year metagenomic time-series from Lake Mendota. Sci. Data 11, 966 (2024).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Coclet, C. et al. Virus diversity and activity is driven by snowmelt and host dynamics in a high-altitude watershed soil ecosystem. Microbiome 11, 237 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Nyholm, S. V. & McFall-Ngai, M. J. A lasting symbiosis: how the Hawaiian bobtail squid finds and keeps its bioluminescent bacterial partner. Nat. Rev. Microbiol. 19, 666–679 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Castelle, C. J. et al. Biosynthetic capacity, metabolic variety and unusual biology in the CPR and DPANN radiations. Nat. Rev. Microbiol. 16, 629–645 (2018).

Article 
PubMed 

Google Scholar
 

Dombrowski, N., Lee, J.-H., Williams, T. A., Offre, P. & Spang, A. Genomic diversity, lifestyles and evolutionary origins of DPANN archaea. FEMS Microbiol. Lett. 366, fnz008 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Hamm, J. N. et al. Unexpected host dependency of Antarctic Nanohaloarchaeota. Proc. Natl Acad. Sci. USA 116, 14661–14670 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Beam, J. P. et al. Ancestral absence of electron transport chains in Patescibacteria and DPANN. Front. Microbiol. 11, 1848 (2020).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Utter, D. R., He, X., Cavanaugh, C. M., McLean, J. S. & Bor, B. The saccharibacterium TM7x elicits differential responses across its host range. ISME J. 14, 3054–3067 (2020).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Sakai, H. D. et al. Insight into the symbiotic lifestyle of DPANN archaea revealed by cultivation and genome analyses. Proc. Natl Acad. Sci. USA 119, e2115449119 (2022).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Kuroda, K. et al. Microscopic and metatranscriptomic analyses revealed unique cross-domain parasitism between phylum Candidatus Patescibacteria/candidate phyla radiation and methanogenic archaea in anaerobic ecosystems. mBio 15, e0310223 (2024).

Article 
PubMed 

Google Scholar
 

Zhang, B., Xiao, L., Lyu, L., Zhao, F. & Miao, M. Exploring the landscape of symbiotic diversity and distribution in unicellular ciliated protists. Microbiome 12, 96 (2024).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Esser, S. P. et al. A predicted CRISPR-mediated symbiosis between uncultivated archaea. Nat. Microbiol. 8, 1619–1633 (2023).

Article 
PubMed 

Google Scholar
 

Murali, R. et al. Physiological potential and evolutionary trajectories of syntrophic sulfate-reducing bacterial partners of anaerobic methanotrophic archaea. PLoS Biol. 21, e3002292 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Tschitschko, B. et al. Rhizobia-diatom symbiosis fixes missing nitrogen in the ocean. Nature 630, 899–904 (2024).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Nakayama, T. et al. Single-cell genomics unveiled a cryptic cyanobacterial lineage with a worldwide distribution hidden by a dinoflagellate host. Proc. Natl Acad. Sci. USA 116, 15973–15978 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Wang, Z. & Wu, M. Comparative genomic analysis of Acanthamoeba endosymbionts highlights the role of amoebae as a ‘melting pot’ shaping the Rickettsiales evolution. Genome Biol. Evol. 9, 3214–3224 (2017).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Ansorge, R. et al. Functional diversity enables multiple symbiont strains to coexist in deep-sea mussels. Nat. Microbiol. 4, 2487–2497 (2019).

Article 
PubMed 

Google Scholar
 

Engel, P., Stepanauskas, R. & Moran, N. A. Hidden diversity in honey bee gut symbionts detected by single-cell genomics. PLoS Genet. 10, e1004596 (2014).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Robbins, S. J. et al. A genomic view of the microbiome of coral reef demosponges. ISME J. 15, 1641–1654 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Perreau, J. & Moran, N. A. Genetic innovations in animal–microbe symbioses. Nat. Rev. Genet. 23, 23–39 (2022).

Article 
PubMed 

Google Scholar
 

McCutcheon, J. P., Boyd, B. M. & Dale, C. The life of an insect endosymbiont from the cradle to the grave. Curr. Biol. 29, R485–R495 (2019).

Article 
PubMed 

Google Scholar
 

Manzano-Marín, A. & Latorre, A. Snapshots of a shrinking partner: genome reduction in Serratia symbiotica. Sci. Rep. 6, 32590 (2016).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Bourguignon, T. et al. Increased mutation rate is linked to genome reduction in prokaryotes. Curr. Biol. 30, 3848–3855.e4 (2020).

Article 
PubMed 

Google Scholar
 

Siozios, S. et al. Genome dynamics across the evolutionary transition to endosymbiosis. Curr. Biol. 34, 5659–5670.e7 (2024).

Article 
PubMed 

Google Scholar
 

Chong, R. A., Park, H. & Moran, N. A. Genome evolution of the obligate endosymbiont Buchnera aphidicola. Mol. Biol. Evol. 36, 1481–1489 (2019).

Article 
PubMed 

Google Scholar
 

Sudakaran, S., Kost, C. & Kaltenpoth, M. Symbiont acquisition and replacement as a source of ecological innovation. Trends Microbiol. 25, 375–390 (2017).

Article 
PubMed 

Google Scholar
 

Husnik, F. & McCutcheon, J. P. Repeated replacement of an intrabacterial symbiont in the tripartite nested mealybug symbiosis. Proc. Natl Acad. Sci. USA 113, E5416–E5424 (2016).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Li, Y. et al. HGT is widespread in insects and contributes to male courtship in lepidopterans. Cell 185, 2975–2987.e10 (2022).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Eren, A. M. & Banfield, J. F. Modern microbiology: embracing complexity through integration across scales. Cell 187, 5151–5170 (2024).

Article 
PubMed 

Google Scholar
 

Woese, C. R. & Fox, G. E. Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc. Natl Acad. Sci. USA 74, 5088–5090 (1977).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Woese, C. R. Bacterial evolution. Microbiol. Rev. 51, 221–271 (1987).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Fleischmann, R. D. et al. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269, 496–512 (1995).

Article 
PubMed 

Google Scholar
 

Thompson, L. R. et al. A communal catalogue reveals Earth’s multiscale microbial diversity. Nature 551, 457–463 (2017).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Parks, D. H. et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat. Biotechnol. 36, 996–1004 (2018).

Article 
PubMed 

Google Scholar
 

Rinke, C. et al. A standardized archaeal taxonomy for the genome taxonomy database. Nat. Microbiol. 6, 946–959 (2021).

Article 
PubMed 

Google Scholar
 

Wilkinson, M. D. et al. The FAIR guiding principles for scientific data management and stewardship. Sci. Data 3, 160018 (2016).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Yilmaz, P. et al. Minimum information about a marker gene sequence (MIMARKS) and minimum information about any (x) sequence (MIxS) specifications. Nat. Biotechnol. 29, 415–420 (2011).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Eloe-Fadrosh, E. A. et al. A practical approach to using the genomic standards consortium MIxS reporting standard for comparative genomics and metagenomics. Methods Mol. Biol. 2802, 587–609 (2024).

Article 
PubMed 

Google Scholar
 

Field, D. et al. The minimum information about a genome sequence (MIGS) specification. Nat. Biotechnol. 26, 541–547 (2008).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Bowers, R. M. et al. Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea. Nat. Biotechnol. 35, 725–731 (2017).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Roux, S. et al. Minimum information about an uncultivated virus genome (MIUViG). Nat. Biotechnol. 37, 29–37 (2019).

Article 
PubMed 

Google Scholar
 

Zaremba-Niedzwiedzka, K. et al. Asgard archaea illuminate the origin of eukaryotic cellular complexity. Nature 541, 353–358 (2017).

Article 
PubMed 

Google Scholar
 

Tamarit, D. et al. Description of Asgardarchaeum abyssi gen. nov. spec. nov., a novel species within the class Asgardarchaeia and phylum Asgardarchaeota in accordance with the SeqCode. Syst. Appl. Microbiol. 47, 126525 (2024).

Article 
PubMed 

Google Scholar
 

Imachi, H. et al. Promethearchaeum syntrophicum gen. nov., sp. nov., an anaerobic, obligately syntrophic archaeon, the first isolate of the lineage ‘Asgard’ archaea, and proposal of the new archaeal phylum Promethearchaeota phyl. nov. and kingdom Promethearchaeati regn. nov. Int. J. Syst. Evol. Microbiol. 74, 006435 (2024).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Imachi, H. et al. Isolation of an archaeon at the prokaryote–eukaryote interface. Nature 577, 519–525 (2019).

Article 

Google Scholar
 

López-García, P. & Moreira, D. Cultured Asgard archaea shed light on eukaryogenesis. Cell 181, 232–235 (2020).

Article 
PubMed 

Google Scholar
 

Williams, T. A., Foster, P. G., Cox, C. J. & Embley, T. M. An archaeal origin of eukaryotes supports only two primary domains of life. Nature 504, 231–236 (2013).

Article 
PubMed 

Google Scholar
 

Eme, L. et al. Inference and reconstruction of the heimdallarchaeial ancestry of eukaryotes. Nature 618, 992–999 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Zhou, Z. et al. Unravelling viral ecology and evolution over 20 years in a freshwater lake. Nat. Microbiol. 10, 231–245 (2025).

Article 
PubMed 

Google Scholar
 

Krinos, A. I. et al. Time-series metagenomics reveals changing protistan ecology of a temperate dimictic lake. Microbiome 12, 133 (2024).

Article 
PubMed 
PubMed Central 

Google Scholar