Global Health Data Exchange (GHDx) (Institute of Health Metrics and Evaluation, accessed 1 November 2023); https://vizhub.healthdata.org/gbd-results

Mental Health (World Health Organization, 2022); https://www.who.int/news-room/fact-sheets/detail/mental-health-strengthening-our-response

Patel, V. et al. The Lancet Commission on global mental health and sustainable development. Lancet 392, 1553–1598 (2018).

Article 
PubMed 

Google Scholar
 

Mak, H. W. et al. Hobby engagement and mental wellbeing among people aged 65 years and older in 16 countries. Nat. Med. 29, 2233–2240 (2023).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Wickham, S. Hobbies for mental health. Nat. Med. 29, 2179–2180 (2023).

Article 
PubMed 
CAS 

Google Scholar
 

Transforming Our World: The 2030 Agenda for Sustainable Development (United Nations, 2015).

Comprehensive Mental Health Action Plan 2013–2030 (World Health Organization, 2021).

Sieck, C. J. et al. Digital inclusion as a social determinant of health. npj Digit. Med. 4, 52 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Hunsaker, A. & Hargittai, E. A review of Internet use among older adults. N. Media Soc. 20, 3937–3954 (2018).

Article 

Google Scholar
 

Forsman, A. K. & Nordmyr, J. Psychosocial links between Internet use and mental health in later life: a systematic review of quantitative and qualitative evidence. J. Appl. Gerontol. 36, 1471–1518 (2017).

Article 
PubMed 

Google Scholar
 

Aggarwal, B., Xiong, Q. & Schroeder-Butterfill, E. Impact of the use of the Internet on quality of life in older adults: review of literature. Prim. Health Care Res. Dev. 21, e55 (2020).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Hülür, G. & Macdonald, B. Rethinking social relationships in old age: digitalization and the social lives of older adults. Am. Psychol. 75, 554–566 (2020).

Article 
PubMed 

Google Scholar
 

Cotten, S. R., Schuster, A. M. & Seifert, A. Social media use and well-being among older adults. Curr. Opin. Psychol. 45, 101293 (2022).

Article 
PubMed 

Google Scholar
 

Cotten, S. R., Ford, G., Ford, S. & Hale, T. M. Internet use and depression among older adults. Comput. Hum. Behav. 28, 496–499 (2012).

Article 

Google Scholar
 

Cotten, S. R., Ford, G., Ford, S. & Hale, T. M. Internet use and depression among retired older adults in the United States: a longitudinal analysis. J. Gerontol. B 69, 763–771 (2014).

Article 

Google Scholar
 

Lam, S. S. M., Jivraj, S. & Scholes, S. Exploring the relationship between Internet use and mental health among older adults in England: longitudinal observational study. J. Med. Internet Res. 22, e15683 (2020).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Kung, C. S. J. & Steptoe, A. Internet use and psychological wellbeing among older adults in England: a difference-in-differences analysis over the COVID-19 pandemic. Psychol. Med. 53, 5356–5358 (2023).

Article 
PubMed 

Google Scholar
 

Wen, W., Zhang, Y., Shi, W. & Li, J. Association between Internet use and physical health, mental health, and subjective health in middle-aged and older adults: nationally representative cross-sectional survey in China. J. Med. Internet Res. 25, e40956 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Liao, S., Zhou, Y., Liu, Y. & Wang, R. Variety, frequency, and type of Internet use and its association with risk of depression in middle- and older-aged Chinese: a cross-sectional study. J. Affect. Disord. 273, 280–290 (2020).

Article 
PubMed 

Google Scholar
 

Nakagomi, A. et al. Internet use and subsequent health and well-being in older adults: an outcome-wide analysis. Comput. Hum. Behav. 130, 107156 (2022).

Article 

Google Scholar
 

Xie, L. et al. Does the Internet use improve the mental health of Chinese older adults? Front. Public Health 9, 673368 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Zhang, C., Wang, Y., Wang, J. & Liu, X. Does Internet use promote mental health among middle-aged and older adults in China? Front. Psychol. 13, 999498 (2022).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Mu, A., Yuan, S. & Liu, Z. Internet use and depressive symptoms among Chinese older adults: two sides of Internet use. Front. Public Health 11, 1149872 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Poushter, J. Internet Access Growing Worldwide but Remains Higher in Advanced Economies Global Attitudes Project (Pew Research Center, 2016); https://www.pewresearch.org/global/2016/02/22/internet-access-growing-worldwide-but-remains-higher-in-advanced-economies/

Ailshire, J. & Carr, D. Cross-national comparisons of social and economic contexts of aging. J. Gerontol. B 76, S1–S4 (2021).

Article 

Google Scholar
 

Lu, X., Yao, Y. & Jin, Y. Digital exclusion and functional dependence in older people: findings from five longitudinal cohort studies. eClinicalMedicine 54, 101708 (2022).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Ren, Z. et al. Internet use, cardiometabolic multimorbidity, and death in older adults: a multi-cohort study spanning developing and developed countries. Glob. Health 19, 81 (2023).

Article 

Google Scholar
 

Wang, Y. et al. Digital exclusion and cognitive impairment in older people: findings from five longitudinal studies. BMC Geriatr. 24, 406 (2024).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Li, L. Internet use and frailty in middle-aged and older adults: findings from developed and developing countries. Glob. Health 20, 53 (2024).

Article 

Google Scholar
 

Wong, K. et al. Who seeks help online? Comparing online and offline help-seeking preferences amongst youths with suicidal ideation. J. Affect. Disord. 292, 21–29 (2021).

Article 
PubMed 

Google Scholar
 

Assary, E., Vincent, J. P., Keers, R. & Pluess, M. Gene–environment interaction and psychiatric disorders: review and future directions. Semin. Cell Dev. Biol. 77, 133–143 (2018).

Article 
PubMed 
CAS 

Google Scholar
 

Ayorech, Z., Baldwin, J. R., Pingault, J.-B., Rimfeld, K. & Plomin, R. Gene–environment correlations and genetic confounding underlying the association between media use and mental health. Sci. Rep. 13, 1030 (2023).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Cerniglia, L., Cimino, S., Marzilli, E., Pascale, E. & Tambelli, R. Associations among Internet addiction, genetic polymorphisms, family functioning, and psychopathological risk: cross-sectional exploratory study. JMIR Ment. Health 7, e17341 (2020).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Bickman, L., Lyon, A. R. & Wolpert, M. Achieving precision mental health through effective assessment, monitoring, and feedback processes. Adm. Policy Ment. Health 43, 271–276 (2016).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Cho, G., Betensky, R. A. & Chang, V. W. Internet usage and the prospective risk of dementia: a population‐based cohort study. J. Am. Geriatr. Soc. 71, 2419–2429 (2023).

Article 
PubMed 

Google Scholar
 

Riley, R. D., Lambert, P. C. & Abo-Zaid, G. Meta-analysis of individual participant data: rationale, conduct, and reporting. BMJ 340, c221 (2010).

Article 
PubMed 

Google Scholar
 

Chang, S.-S. et al. The impact of 2003 SARS epidemic on suicide in Taiwan and Hong Kong. Psychiatry Clin. Neurosci. 76, 202–203 (2022).

Article 
PubMed 
CAS 

Google Scholar
 

Chen, Y.-Y., Yang, C.-T. & Yip, P. S. F. The increase in suicide risk in older adults in Taiwan during the COVID-19 outbreak. J. Affect. Disord. 327, 391–396 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Thoits, P. A. Mechanisms linking social ties and support to physical and mental health. J. Health Soc. Behav. 52, 145–161 (2011).

Article 
PubMed 

Google Scholar
 

Cotten, S. R., Anderson, W. A. & McCullough, B. M. Impact of Internet use on loneliness and contact with others among older adults: cross-sectional analysis. J. Med. Internet Res. 15, e2306 (2013).

Article 

Google Scholar
 

Loneliness as a health issue. Lancet 402, P79 (2023).

Zhang, Q. Online health communities provide important support in China. Nat. Hum. Behav. https://doi.org/10.1038/s41562-023-01766-8 (2023).

Sharon, J. Programs Help Adults Upgrade Devices, Get Internet Access (AARP, 2021); https://www.aarp.org/home-family/personal-technology/info-2021/programs-older-adults-computers-internet-access.html

Helping Older People Improve Their Digital Skills (Age UK, 2023); https://www.ageuk.org.uk/our-impact/programmes/digital-skills/

European Union Agency for Fundamental Rights Fundamental Rights of Older People: Ensuring Access to Public Services in Digital Societies (Publications Office of the European Union, 2023).

Xinhua. China vows to help elderly with difficulties in using smart technologies. China Daily (25 November 2020); https://www.chinadaily.com.cn/a/202011/25/WS5fbdaa2da31024ad0ba963bb.html

Guillermo, S. & Heidi, U. Older adults in the digital age in Latin America: bridging the digital age divide. CEPAL Rev. 2019, 215–236 (2019).

Article 

Google Scholar
 

Ageing in a Digital World—From Vulnerable to Valuable (International Telecommunication Union, 2021).

Rochat, L. et al. Internet use and problematic use in seniors: a comparative study in Switzerland and Poland. Front. Psychiatry 12, 609190 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar
 

van Kessel, R., Wong, B. L. H., Clemens, T. & Brand, H. Digital health literacy as a super determinant of health: more than simply the sum of its parts. Internet Inter. 27, 100500 (2022).

Article 

Google Scholar
 

Yang, B. X. et al. Relationship between eHealth literacy and psychological status during COVID-19 pandemic: a survey of Chinese residents. J. Nurs. Manage. 29, 805–812 (2021).

Article 

Google Scholar
 

Yerrakalva, D., Yerrakalva, D., Hajna, S. & Griffin, S. Effects of mobile health app interventions on sedentary time, physical activity, and fitness in older adults: systematic review and meta-analysis. J. Med. Internet Res. 21, e14343 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Bond, R. R. et al. Digital transformation of mental health services. npj Ment. Health Res. 2, 13 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Wang, M.-J., Yogeeswaran, K., Andrews, N. P., Hawi, D. R. & Sibley, C. G. How common is cyberbullying among adults? Exploring gender, ethnic, and age differences in the prevalence of cyberbullying. Cyberpsychol. Behav. Soc. Netw. 22, 736–741 (2019).

Article 
PubMed 

Google Scholar
 

Kullgren, J. et al. National Poll on Healthy Aging: Experiences with Scams Among Older Adults (Institute for Healthcare Policy and Innovation, 2023); https://doi.org/10.7302/21735

Hermans, A. The Digital Era? Also My Era! Media and Information Literacy: A Key to Ensure Seniors’ Rights to Participate in the Digital Era (Council of Europe, 2022); https://edoc.coe.int/en/internet/11069-the-digital-era-also-my-era-media-and-information-literacy-a-key-to-ensure-seniors-rights-to-participate-in-the-digital-era.html

Zhou, J., Zhang, Q., Zhou, S., Li, X. & Zhang, X. M. Unintended emotional effects of online health communities: a text mining-supported empirical study. MIS Q. 47, 195–226 (2023).

Article 

Google Scholar
 

Fu, Z., Burger, H., Arjadi, R. & Bockting, C. L. H. Effectiveness of digital psychological interventions for mental health problems in low-income and middle-income countries: a systematic review and meta-analysis. Lancet Psychiatry 7, 851–864 (2020).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Sonnega, A. et al. Cohort profile: the Health and Retirement Study (HRS). Int. J. Epidemiol. 43, 576–585 (2014).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Steptoe, A., Breeze, E., Banks, J. & Nazroo, J. Cohort profile: the English Longitudinal Study of Ageing. Int. J. Epidemiol. 42, 1640–1648 (2013).

Article 
PubMed 

Google Scholar
 

Börsch-Supan, A. et al. Data resource profile: the Survey of Health, Ageing and Retirement in Europe (SHARE). Int. J. Epidemiol. 42, 992–1001 (2013).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Zhao, Y., Hu, Y., Smith, J. P., Strauss, J. & Yang, G. Cohort profile: the China Health and Retirement Longitudinal Study (CHARLS). Int. J. Epidemiol. 43, 61–68 (2014).

Article 
PubMed 

Google Scholar
 

Wong, R., Michaels-Obregon, A. & Palloni, A. Cohort profile: the Mexican Health and Aging Study (MHAS). Int J. Epidemiol. 46, e2 (2017).

Article 
PubMed 

Google Scholar
 

Lima-Costa, M. F. et al. Cohort profile: the Brazilian Longitudinal Study of Ageing (ELSI-Brazil). Int. J. Epidemiol. 52, e57–e65 (2023).

Article 
PubMed 

Google Scholar
 

Lee, J., Phillips, D., Wilkens, J. & Gateway to Global Aging Data Team. Gateway to Global Aging Data: resources for cross-national comparisons of family, social environment, and healthy aging. J. Gerontol. B 76, S5–S16 (2021).

Miilunpalo, S., Vuori, I., Oja, P., Pasanen, M. & Urponen, H. Self-rated health status as a health measure: the predictive value of self-reported health status on the use of physician services and on mortality in the working-age population. J. Clin. Epidemiol. 50, 517–528 (1997).

Article 
PubMed 
CAS 

Google Scholar
 

Ware, E., Gard, A., Schmitz, L. & Faul, J. HRS Polygenic Scores—Release 4.3 2006–2012 Genetic Data (Survey Research Center, Institute for Social Research, Univ. of Michigan, 2021).

NatCen Social Research ELSA Polygenic Scores, 2022 (UK Data Service, 2022); https://doi.org/10.5255/UKDA-SN-8773-2

Okbay, A. et al. Genetic variants associated with subjective well-being, depressive symptoms, and neuroticism identified through genome-wide analyses. Nat. Genet. 48, 624–633 (2016).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Lourida, I. et al. Association of lifestyle and genetic risk with incidence of dementia. JAMA 322, 430–437 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Tang, J., Sheng, C., Wu, Y. Y., Yan, L. L. & Wu, C. Association of joint genetic and social environmental risks with incident myocardial infarction: results from the Health and Retirement Study. J. Am. Heart Assoc. 12, e028200 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar
 

R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2024); https://www.R-project.org

van Buuren, S. & Groothuis-Oudshoorn, K. mice: multivariate imputation by chained equations in R. J. Stat. Softw. 45, 1–67 (2011).


Google Scholar
 

Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).

Article 

Google Scholar
 

Perraillon, M., Coca Reuter, A., Lindrooth, R. & Hedeker, D. Health Services Research and Program Evaluation: Causal Inference and Estimation (Cambridge Univ. Press, forthcoming); https://perraillon.com/PLH/

Norton, E. C., Dowd, B. E. & Maciejewski, M. L. Marginal effects—quantifying the effect of changes in risk factors in logistic regression models. JAMA 321, 1304–1305 (2019).

Article 
PubMed 

Google Scholar
 

Borenstein, M., Hedges, L. V., Higgins, J. P. T. & Rothstein, H. R. Introduction to Meta-analysis (John Wiley & Sons, 2021).

Ageing (United Nations, accessed 3 April 2024); https://www.un.org/en/global-issues/ageing

Li, K. H., Raghunathan, T. E. & Rubin, D. B. Large-sample significance levels from multiply imputed data using moment-based statistics and an F reference distribution. J. Am. Stat. Assoc. 86, 1065–1073 (1991).


Google Scholar
 

van Buuren, S. Flexible Imputation of Missing Data 2nd edn (CRC Press, 2018).

Young, J. G., Cain, L. E., Robins, J. M., O’Reilly, E. J. & Hernán, M. A. Comparative effectiveness of dynamic treatment regimes: an application of the parametric g-formula. Stat. Biosci. 3, 119–143 (2011).

Article 
PubMed 
PubMed Central 

Google Scholar