Uffelmann, E. et al. Genome-wide association studies. Nat. Rev. Methods Prim. 1, 59 (2021).

CAS 

Google Scholar
 

Visscher, P. M. et al. 10 years of GWAS discovery: biology, function, and translation. Am. J. Hum. Genet 101, 5–22 (2017).

PubMed 
PubMed Central 
CAS 

Google Scholar
 

Chen, Z. et al. China Kadoorie Biobank of 0.5 million people: survey methods, baseline characteristics and long-term follow-up. Int J. Epidemiol. 40, 1652–1666 (2011).

PubMed 
PubMed Central 

Google Scholar
 

Keaton, J. M. et al. Genome-wide analysis in over 1 million individuals of European ancestry yields improved polygenic risk scores for blood pressure traits. Nat. Genet. 56, 778–791 (2024).

PubMed 
PubMed Central 
CAS 

Google Scholar
 

Haines, J. L. et al. Complement factor H variant increases the risk of age-related macular degeneration. Science 308, 419–421 (2005).

PubMed 
CAS 

Google Scholar
 

Kurki, M. I. et al. FinnGen provides genetic insights from a well-phenotyped isolated population. Nature 613, 508–518 (2023).

PubMed 
PubMed Central 
CAS 

Google Scholar
 

Leitsalu, L. et al. Cohort profile: Estonian Biobank of the Estonian Genome Center, University of Tartu. Int. J. Epidemiol. 44, 1137–1147 (2014).

PubMed 

Google Scholar
 

Lippert, C. et al. FaST linear mixed models for genome-wide association studies. Nat. Methods 8, 833–835 (2011).

PubMed 
CAS 

Google Scholar
 

Zhou, X. & Stephens, M. Efficient multivariate linear mixed model algorithms for genome-wide association studies. Nat. Methods 11, 407–409 (2014).

PubMed 
PubMed Central 
CAS 

Google Scholar
 

Yang, J., Zaitlen, N. A., Goddard, M. E., Visscher, P. M. & Price, A. L. Advantages and pitfalls in the application of mixed-model association methods. Nat. Genet. 46, 100–106 (2014).

PubMed 
PubMed Central 

Google Scholar
 

Svishcheva, G. R., Axenovich, T. I., Belonogova, N. M., van Duijn, C. M. & Aulchenko, Y. S. Rapid variance components–based method for whole-genome association analysis. Nat. Genet. 44, 1166–1170 (2012).

PubMed 
CAS 

Google Scholar
 

Loh, P.-R. et al. Efficient Bayesian mixed-model analysis increases association power in large cohorts. Nat. Genet. 47, 284–290 (2015).

PubMed 
PubMed Central 
CAS 

Google Scholar
 

Mbatchou, J. et al. Computationally efficient whole-genome regression for quantitative and binary traits. Nat. Genet. 53, 1097–1103 (2021).

PubMed 
CAS 

Google Scholar
 

Zhou, W. et al. Efficiently controlling for case-control imbalance and sample relatedness in large-scale genetic association studies. Nat. Genet. 50, 1335–1341 (2018).

PubMed 
PubMed Central 
CAS 

Google Scholar
 

Loh, P. Mixed-model association for biobank-scale datasets. Nat. Genet. 50, 906–908 (2018).

PubMed 
PubMed Central 
CAS 

Google Scholar
 

Campos, A. I. et al. Boosting the power of genome-wide association studies within and across ancestries by using polygenic scores. Nat. Genet. 55, 1769–1776 (2023).

PubMed 
CAS 

Google Scholar
 

Bycroft, C. et al. The UK Biobank resource with deep phenotyping and genomic data. Nature https://doi.org/10.1038/s41586-018-0579-z (2018).

Sudlow, C. et al. The UK Biobank resource with deep phenotyping and genomic data. PLoS Med. 12, e1001779 (2015).

PubMed 
PubMed Central 

Google Scholar
 

Jiang, L. et al. A resource-efficient tool for mixed model association analysis of large-scale data. Nat. Genet. 51, 1749–1755 (2019).

PubMed 
CAS 

Google Scholar
 

Berrandou, T., Balding, D. & Speed, D. LDAK-GBAT: fast and powerful gene-based association testing using summary statistics. Am. J. Hum. Genet. 110, 23–29 (2023).

PubMed 
CAS 

Google Scholar
 

MacKay, D. J. Information Theory, Inference and Learning Algorithms (Cambridge Univ. Press, 2003).

Dey, R., Schmidt, E. M., Abecasis, G. R. & Lee, S. A fast and accurate algorithm to test for binary phenotypes and its application to PheWAS. Am. J. Hum. Genet 101, 37–49 (2017).

PubMed 
PubMed Central 
CAS 

Google Scholar
 

Ma, Y., Bi, W. & Zhang, J.-F. Empirical saddlepoint approximation and its application to genome-wide association studies. In 2021 40th Chinese Control Conference (CCC) 6380–6385 (IEEE, 2021).

Bi, W., Fritsche, L. G., Mukherjee, B., Kim, S. & Lee, S. A fast and accurate method for genome-wide time-to-event data analysis and its application to UK Biobank. Am. J. Hum. Genet. 107, 222–233 (2020).

PubMed 
PubMed Central 
CAS 

Google Scholar
 

Speed, D., Holmes, J. & Balding, D. Evaluating and improving heritability models using summary statistics. Nat. Genet. 52, 458–462 (2020).

PubMed 
CAS 

Google Scholar
 

Zhang, Q., Privé, F., Vilhjálmsson, B. & Speed, D. Improved genetic prediction of complex traits from individual-level data or summary statistics. Nat. Commun. 12, 4192 (2021).

PubMed 
PubMed Central 
CAS 

Google Scholar
 

Speed, D. et al. Reevaluation of SNP heritability in complex human traits. Nat. Genet. 49, 986–992 (2017).

PubMed 
PubMed Central 
CAS 

Google Scholar
 

Speed, D. & Balding, D. SumHer better estimates the SNP heritability of complex traits from summary statistics. Nat. Genet. 51, 277–284 (2019).

PubMed 
CAS 

Google Scholar
 

Zou, H. & Hastie, T. Regularization and variable selection via the elastic net. J. R. Stat. Soc. B 67, 301–320 (2005).


Google Scholar
 

The ICD-10 Classification of Mental and Behavioural Disorders: Clinical Descriptions and Diagnostic Guidelines, Vol. 1 (World Health Organization, 1992).

de Leeuw, C. A., Mooij, J. M., Heskes, T. & Posthuma, D. MAGMA: generalized gene-set analysis of GWAS data. PLoS Comput. Biol. 11, e1004219 (2015).

PubMed 
PubMed Central 

Google Scholar
 

Bakshi, A. et al. Fast set-based association analysis using summary data from GWAS identifies novel gene loci for human complex traits. Sci. Rep. 6, 32894 (2016).

PubMed 
PubMed Central 
CAS 

Google Scholar
 

Momin, M. M. et al. A method for an unbiased estimate of cross-ancestry genetic correlation using individual-level data. Nat. Commun. 14, 722 (2023).

PubMed 
PubMed Central 
CAS 

Google Scholar
 

Zeng, J. et al. Signatures of negative selection in the genetic architecture of human complex traits. Nat. Genet. 50, 746–753 (2018).

PubMed 
CAS 

Google Scholar
 

Schoech, A. et al. Quantification of frequency-dependent genetic architectures and action of negative selection in 25 UK Biobank traits. Nat. Commun. 10, 790 (2019).

Nagai, A. et al. Overview of the BioBank Japan Project: study design and profile. J. Epidemiol. 27, S2–S8 (2017).

PubMed 
PubMed Central 

Google Scholar
 

Pruitt, K. D., Tatusova, T. & Maglott, D. R. NCBI reference sequences (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res. 35, D61–D65 (2007).

PubMed 
CAS 

Google Scholar
 

Pain, O. et al. Evaluation of polygenic prediction methodology within a reference-standardized framework. PLoS Genet. 17, e1009021 (2021).

PubMed 
PubMed Central 
CAS 

Google Scholar
 

Pain, O., Al-Chalabi, A. & Lewis, C. M. The GenoPred pipeline: a comprehensive and scalable pipeline for polygenic scoring. Bioinformatics 40, btae551 (2024).

PubMed 
PubMed Central 
CAS 

Google Scholar
 

Mak, T., Porsch, R., Choi, S., Zhou, X. & Sham, P. Polygenic scores via penalized regression on summary statistics. Genet. Epidemiol. 41, 469–480 (2017).

PubMed 

Google Scholar
 

Yang, S. & Zhou, X. Accurate and scalable construction of polygenic scores in large biobank data sets. Am. J. Hum. Genet. 106, 679–693 (2020).

PubMed 
PubMed Central 
CAS 

Google Scholar
 

Privé, F., Arbel, J. & Vilhjálmsson, B. LDpred2: better, faster, stronger. Bioinformatics 36, 5424–5431 (2021).

Ge, T., Chen, C.-Y., Ni, Y., Feng, Y.-C. A. & Smoller, J. W. Polygenic prediction via Bayesian regression and continuous shrinkage priors. Nat. Commun. 10, 1776 (2019).

PubMed 
PubMed Central 

Google Scholar
 

Pazokitoroudi, A. et al. Efficient variance components analysis across millions of genomes. Nat. Commun. 11, 4020 (2020).

PubMed 
PubMed Central 
CAS 

Google Scholar
 

Tseng, P. Convergence of a block coordinate descent method for nondifferentiable minimization. J. Optim. Theory Appl. 109, 475–494 (2001).


Google Scholar
 

Hof, J. P. & Speed, D. LDAK 6.1. Zenodo https://doi.org/10.5281/zenodo.15747229 (2025).