Schubeler, D. Function and information content of DNA methylation. Nature 517, 321–326 (2015).

Article 
CAS 
PubMed 

Google Scholar
 

Jurkowska, R. Z., Jurkowski, T. P. & Jeltsch, A. Structure and function of mammalian DNA methyltransferases. ChemBioChem 12, 206–222 (2011).

Article 
CAS 
PubMed 

Google Scholar
 

Bogdanovic, O. & Veenstra, G. J. DNA methylation and methyl-CpG binding proteins: developmental requirements and function. Chromosoma 118, 549–565 (2009).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Yin, Y. et al. Impact of cytosine methylation on DNA binding specificities of human transcription factors. Science 356, eaaj2239 (2017).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Ross, S. E. & Bogdanovic, O. TET enzymes, DNA demethylation and pluripotency. Biochem. Soc. Trans. 47, 875–885 (2019).

Article 
CAS 
PubMed 

Google Scholar
 

Pastor, W. A., Aravind, L. & Rao, A. TETonic shift: biological roles of TET proteins in DNA demethylation and transcription. Nat. Rev. Mol. Cell Biol. 14, 341–356 (2013).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Kohli, R. M. & Zhang, Y. TET enzymes, TDG and the dynamics of DNA demethylation. Nature 502, 472–479 (2013).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Li, E., Bestor, T. H. & Jaenisch, R. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 69, 915–926 (1992).

Article 
CAS 
PubMed 

Google Scholar
 

Xu, G. L. et al. Chromosome instability and immunodeficiency syndrome caused by mutations in a DNA methyltransferase gene. Nature 402, 187–191 (1999).

Article 
CAS 
PubMed 

Google Scholar
 

Hendrich, B., Guy, J., Ramsahoye, B., Wilson, V. A. & Bird, A. Closely related proteins MBD2 and MBD3 play distinctive but interacting roles in mouse development. Genes Dev. 15, 710–723 (2001).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Guy, J., Hendrich, B., Holmes, M., Martin, J. E. & Bird, A. A mouse Mecp2-null mutation causes neurological symptoms that mimic Rett syndrome. Nat. Genet. 27, 322–326 (2001).

Article 
CAS 
PubMed 

Google Scholar
 

Dai, H. Q. et al. TET-mediated DNA demethylation controls gastrulation by regulating Lefty–Nodal signalling. Nature 538, 528–532 (2016).

Article 
PubMed 

Google Scholar
 

Bogdanovic, O. et al. Active DNA demethylation at enhancers during the vertebrate phylotypic period. Nat. Genet. 48, 417–26 (2016).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Li, C. et al. Overlapping requirements for Tet2 and Tet3 in normal development and hematopoietic stem cell emergence. Cell Rep. 12, 1133–1143 (2015).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Robertson, K. D. DNA methylation, methyltransferases, and cancer. Oncogene 20, 3139–3155 (2001).

Article 
CAS 
PubMed 

Google Scholar
 

Nishiyama, A. & Nakanishi, M. Navigating the DNA methylation landscape of cancer. Trends Genet. 37, 1012–1027 (2021).

Article 
CAS 
PubMed 

Google Scholar
 

Reichard, J. & Zimmer-Bensch, G. The epigenome in neurodevelopmental disorders. Front. Neurosci. 15, 776809 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Ciptasari, U. & van Bokhoven, H. The phenomenal epigenome in neurodevelopmental disorders. Hum. Mol. Genet. 29, R42–R50 (2020).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Ballestar, E., Sawalha, A. H. & Lu, Q. Clinical value of DNA methylation markers in autoimmune rheumatic diseases. Nat. Rev. Rheumatol. 16, 514–524 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Mazzone, R. et al. The emerging role of epigenetics in human autoimmune disorders. Clin. Epigenetics 11, 34 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Horvath, S. & Raj, K. DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nat. Rev. Genet. 19, 371–384 (2018).

Article 
CAS 
PubMed 

Google Scholar
 

Bird, A. DNA methylation patterns and epigenetic memory. Genes Dev. 16, 6–21 (2002).

Article 
CAS 
PubMed 

Google Scholar
 

de Mendoza, A., Lister, R. & Bogdanovic, O. Evolution of DNA methylome diversity in eukaryotes. J. Mol. Biol. 432, 1687–1705 (2019).

Article 
PubMed 

Google Scholar
 

Zhang, H., Lang, Z. & Zhu, J. K. Dynamics and function of DNA methylation in plants. Nat. Rev. Mol. Cell Biol. 19, 489–506 (2018).

Article 
CAS 
PubMed 

Google Scholar
 

Kumar, S. & Mohapatra, T. Dynamics of DNA methylation and its functions in plant growth and development. Front. Plant Sci. 12, 596236 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Salomon, R. & Kaye, A. M. Methylation of mouse DNA in vivo: di- and tripyrimidine sequences containing 5-methylcytosine. Biochim. Biophys. Acta 204, 340–351 (1970).

Article 
CAS 
PubMed 

Google Scholar
 

Grafstrom, R. H., Yuan, R. & Hamilton, D. L. The characteristics of DNA methylation in an in vitro DNA synthesizing system from mouse fibroblasts. Nucleic Acids Res. 13, 2827–2842 (1985).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Patil, V., Ward, R. L. & Hesson, L. B. The evidence for functional non-CpG methylation in mammalian cells. Epigenetics 9, 823–828 (2014).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Ziller, M. J. et al. Genomic distribution and inter-sample variation of non-CpG methylation across human cell types. PLoS Genet. 7, e1002389 (2011).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Cokus, S. J. et al. Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature 452, 215–219 (2008).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Lister, R. et al. Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell 133, 523–536 (2008).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Lister, R. et al. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462, 315–322 (2009).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Shirane, K. et al. Mouse oocyte methylomes at base resolution reveal genome-wide accumulation of non-CpG methylation and role of DNA methyltransferases. PLoS Genet. 9, e1003439 (2013).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Kubo, N. et al. DNA methylation and gene expression dynamics during spermatogonial stem cell differentiation in the early postnatal mouse testis. BMC Genomics 16, 624 (2015).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Lister, R. et al. Global epigenomic reconfiguration during mammalian brain development. Science 341, 1237905 (2013).

Article 
PubMed 
PubMed Central 

Google Scholar
 

De Mendoza, A. et al. The emergence of the brain non-CpG methylation system in vertebrates. Nat. Ecol. Evol. 5, 369–378 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Ross, S. E., Angeloni, A., Geng, F. S., de Mendoza, A. & Bogdanovic, O. Developmental remodelling of non-CG methylation at satellite DNA repeats. Nucleic Acids Res. 48, 12675–12688 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Ross, S. E. et al. Evolutionary conservation of embryonic DNA methylome remodelling in distantly related teleost species. Nucleic Acids Res. 51, 9658–9671 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Bonasio, R. et al. Genome-wide and caste-specific DNA methylomes of the ants Camponotus floridanus and Harpegnathos saltator. Curr. Biol. 22, 1755–1764 (2012).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Klughammer, J. et al. Comparative analysis of genome-scale, base-resolution DNA methylation profiles across 580 animal species. Nat. Commun. 14, 232 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Ross, S. E., Hesselson, D. & Bogdanovic, O. Developmental accumulation of gene body and transposon non-CpG methylation in the zebrafish brain. Front. Cell Dev. Biol. 9, 643603 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Fu, Y., Timp, W. & Sedlazeck, F. J. Computational analysis of DNA methylation from long-read sequencing. Nat. Rev. Genet. 26, 620–634 (2025).

Article 
PubMed 

Google Scholar
 

Liu, T. & Conesa, A. Profiling the epigenome using long-read sequencing. Nat. Genet. 57, 27–41 (2025).

Article 
CAS 
PubMed 

Google Scholar
 

Schultz, M. D. et al. Human body epigenome maps reveal noncanonical DNA methylation variation. Nature 523, 212–216 (2015).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

He, Y. & Ecker, J. R. Non-CG methylation in the human genome. Annu Rev. Genomics Hum. Genet. 16, 55–77 (2015).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Tan, H. K. et al. DNMT3B shapes the mCA landscape and regulates mCG for promoter bivalency in human embryonic stem cells. Nucleic Acids Res. 47, 7460–7475 (2019).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Lister, R. et al. Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells. Nature 471, 68–73 (2011).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006).

Article 
CAS 
PubMed 

Google Scholar
 

Kim, K. et al. Donor cell type can influence the epigenome and differentiation potential of human induced pluripotent stem cells. Nat. Biotechnol. 29, 1117–1119 (2011).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Ohi, Y. et al. Incomplete DNA methylation underlies a transcriptional memory of somatic cells in human iPS cells. Nat. Cell Biol. 13, 541–549 (2011).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Yamanaka, S. & Blau, H. M. Nuclear reprogramming to a pluripotent state by three approaches. Nature 465, 704–712 (2010).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Liu, X. et al. Comprehensive characterization of distinct states of human naive pluripotency generated by reprogramming. Nat. Methods 14, 1055–1062 (2017).

Article 
CAS 
PubMed 

Google Scholar
 

Giulitti, S. et al. Direct generation of human naive induced pluripotent stem cells from somatic cells in microfluidics. Nat. Cell Biol. 21, 275–286 (2019).

Article 
CAS 
PubMed 

Google Scholar
 

Pastor, W. A. et al. Naive human pluripotent cells feature a methylation landscape devoid of blastocyst or germline memory. Cell Stem Cell 18, 323–329 (2016).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Wang, Y. et al. Unique molecular events during reprogramming of human somatic cells to induced pluripotent stem cells (iPSCs) at naive state. eLife 7, e29518 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Buckberry, S. et al. Transient naive reprogramming corrects hiPS cells functionally and epigenetically. Nature 620, 863–872 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Guo, H. et al. The DNA methylation landscape of human early embryos. Nature 511, 606–610 (2014).

Article 
CAS 
PubMed 

Google Scholar
 

Wang, L. et al. Programming and inheritance of parental DNA methylomes in mammals. Cell 157, 979–991 (2014).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Arand, J. et al. In vivo control of CpG and non-CpG DNA methylation by DNA methyltransferases. PLoS Genet. 8, e1002750 (2012).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Butcher, L. M. et al. Non-CG DNA methylation is a biomarker for assessing endodermal differentiation capacity in pluripotent stem cells. Nat. Commun. 7, 10458 (2016).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Joe, S. & Nam, H. Prediction model construction of mouse stem cell pluripotency using CpG and non-CpG DNA methylation markers. BMC Bioinformatics 21, 175 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Ichiyanagi, T., Ichiyanagi, K., Miyake, M. & Sasaki, H. Accumulation and loss of asymmetric non-CpG methylation during male germ-cell development. Nucleic Acids Res. 41, 738–745 (2013).

Article 
CAS 
PubMed 

Google Scholar
 

Kobayashi, H. et al. High-resolution DNA methylome analysis of primordial germ cells identifies gender-specific reprogramming in mice. Genome Res. 23, 616–627 (2013).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Tomizawa, S. et al. Dynamic stage-specific changes in imprinted differentially methylated regions during early mammalian development and prevalence of non-CpG methylation in oocytes. Development 138, 811–820 (2011).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Demond, H., Khan, S., Castillo-Fernandez, J., Hanna, C. W. & Kelsey, G. Transcriptome and DNA methylation profiling during the NSN to SN transition in mouse oocytes. BMC Mol. Cell Biol. 26, 2 (2025).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Kubo, N. et al. Combined and differential roles of ADD domains of DNMT3A and DNMT3L on DNA methylation landscapes in mouse germ cells. Nat. Commun. 15, 3266 (2024).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Yu, B. et al. Single-cell analysis of transcriptome and DNA methylome in human oocyte maturation. PLoS ONE 15, e0241698 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Castillo-Fernandez, J. et al. Increased transcriptome variation and localised DNA methylation changes in oocytes from aged mice revealed by parallel single-cell analysis. Aging Cell 19, e13278 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Lee, J. H., Park, S. J. & Nakai, K. Differential landscape of non-CpG methylation in embryonic stem cells and neurons caused by DNMT3s. Sci. Rep. 7, 11295 (2017).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Jeltsch, A., Adam, S., Dukatz, M., Emperle, M. & Bashtrykov, P. Deep enzymology studies on DNA methyltransferases reveal novel connections between flanking sequences and enzyme activity. J. Mol. Biol. 433, 167186 (2021).

Article 
CAS 
PubMed 

Google Scholar
 

Baubec, T. et al. Genomic profiling of DNA methyltransferases reveals a role for DNMT3B in genic methylation. Nature 520, 243–247 (2015).

Article 
CAS 
PubMed 

Google Scholar
 

Neri, F. et al. Intragenic DNA methylation prevents spurious transcription initiation. Nature 543, 72–77 (2017).

Article 
CAS 
PubMed 

Google Scholar
 

Otani, J. et al. Structural basis for recognition of H3K4 methylation status by the DNA methyltransferase 3A ATRX–DNMT3–DNMT3L domain. EMBO Rep. 10, 1235–1241 (2009).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Mo, A. et al. Epigenomic signatures of neuronal diversity in the mammalian brain. Neuron 86, 1369–1384 (2015).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Boxer, L. D. et al. MeCP2 represses the rate of transcriptional initiation of highly methylated long genes. Mol. Cell 77, 294–309 (2020).

Article 
CAS 
PubMed 

Google Scholar
 

Hamagami, N. et al. NSD1 deposits histone H3 lysine 36 dimethylation to pattern non-CG DNA methylation in neurons. Mol. Cell 83, 1412–1428 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Angeloni, A. et al. Extensive DNA methylome rearrangement during early lamprey embryogenesis. Nat. Commun. 15, 1977 (2024).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Lagger, S. et al. MeCP2 recognizes cytosine methylated tri-nucleotide and di-nucleotide sequences to tune transcription in the mammalian brain. PLoS Genet. 13, e1006793 (2017).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Tillotson, R. & Bird, A. The molecular basis of MeCP2 function in the brain. J. Mol. Biol. 432, 1602–1623 (2019).

Article 
PubMed 

Google Scholar
 

Skene, P. J. et al. Neuronal MeCP2 is expressed at near histone-octamer levels and globally alters the chromatin state. Mol. Cell 37, 457–468 (2010).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Rube, H. T. et al. Sequence features accurately predict genome-wide MeCP2 binding in vivo. Nat. Commun. 7, 11025 (2016).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Amir, R. E. et al. Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat. Genet. 23, 185–188 (1999).

Article 
CAS 
PubMed 

Google Scholar
 

Lyst, M. J. et al. Rett syndrome mutations abolish the interaction of MeCP2 with the NCoR/SMRT co-repressor. Nat. Neurosci. 16, 898–902 (2013).

Article 
CAS 
PubMed 

Google Scholar
 

Tillotson, R. et al. Neuronal non-CG methylation is an essential target for MeCP2 function. Mol. Cell 81, 1260–1275 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Lavery, L. A. et al. Losing Dnmt3a dependent methylation in inhibitory neurons impairs neural function by a mechanism impacting Rett syndrome. eLife 9, e52981 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Li, J. et al. Dnmt3a knockout in excitatory neurons impairs postnatal synapse maturation and increases the repressive histone modification H3K27me3. eLife 11, e66909 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Fuks, F., Burgers, W. A., Godin, N., Kasai, M. & Kouzarides, T. Dnmt3a binds deacetylases and is recruited by a sequence-specific repressor to silence transcription. EMBO J. 20, 2536–2544 (2001).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Liu, Y. et al. Exploring the complexity of MECP2 function in Rett syndrome. Nat. Rev. Neurosci. 26, 379–398 (2025).

Article 
CAS 
PubMed 

Google Scholar
 

Renthal, W. et al. Characterization of human mosaic Rett syndrome brain tissue by single-nucleus RNA sequencing. Nat. Neurosci. 21, 1670–1679 (2018).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Santistevan, N. J., Ford, C. T., Gilsdorf, C. S. & Grinblat, Y. Behavioral and transcriptomic analyses of mecp2 function in zebrafish. Am. J. Med. Genet. B Neuropsychiatr. Genet. 195, e32981 (2024).

Article 
CAS 
PubMed 

Google Scholar
 

Moore, J. R. et al. MeCP2 and non-CG DNA methylation stabilize the expression of long genes that distinguish closely related neuron types. Nat. Neurosci. 28, 1185–1198 (2025).

Article 
CAS 
PubMed 

Google Scholar
 

Tian, W. et al. Single-cell DNA methylation and 3D genome architecture in the human brain. Science 382, eadf5357 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Liu, H. et al. Single-cell DNA methylome and 3D multi-omic atlas of the adult mouse brain. Nature 624, 366–377 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Zhou, J. et al. Human body single-cell atlas of 3D genome organization and DNA methylation. Preprint at bioRxiv https://doi.org/10.1101/2025.03.23.644697 (2025).

Goll, M. G. & Halpern, M. E. DNA methylation in zebrafish. Prog. Mol. Biol. Transl. Sci. 101, 193–218 (2011).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Yin, L. M., Schnoor, M. & Jun, C. D. Structural characteristics, binding partners and related diseases of the calponin homology (CH) domain. Front. Cell Dev. Biol. 8, 342 (2020).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Wu, S. F., Zhang, H. & Cairns, B. R. Genes for embryo development are packaged in blocks of multivalent chromatin in zebrafish sperm. Genome Res. 21, 578–589 (2011).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Hong, Y. et al. Establishment of a normal medakafish spermatogonial cell line capable of sperm production in vitro. Proc. Natl Acad. Sci. USA 101, 8011–8016 (2004).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Harris, K. D., Lloyd, J. P. B., Domb, K., Zilberman, D. & Zemach, A. DNA methylation is maintained with high fidelity in the honey bee germline and exhibits global non-functional fluctuations during somatic development. Epigenetics Chromatin 12, 62 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Cingolani, P. et al. Intronic non-CG DNA hydroxymethylation and alternative mRNA splicing in honey bees. BMC Genomics 14, 666 (2013).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Royle, J. W., Hurwood, D., Sadowski, P. & Dudley, K. J. Non-CG DNA methylation marks the transition from pupa to adult in Helicoverpa armigera. Insect Mol. Biol. 33, 493–502 (2024).

Article 
CAS 
PubMed 

Google Scholar
 

Gu, Z. et al. Whole-genome bisulfite sequencing reveals the function of DNA methylation in the allotransplantation immunity of pearl oysters. Front. Immunol. 14, 1247544 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Yang, Y., Zheng, Y., Sun, L. & Chen, M. Genome-wide DNA methylation signatures of sea cucumber Apostichopus japonicus during environmental induced aestivation. Genes (Basel) 11, 1020 (2020).

Article 
CAS 
PubMed 

Google Scholar
 

Song, X. et al. Genome-wide DNA methylomes from discrete developmental stages reveal the predominance of non-CpG methylation in Tribolium castaneum. DNA Res. 24, 445–457 (2017).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Schulz, N. K. E. et al. Dnmt1 has an essential function despite the absence of CpG DNA methylation in the red flour beetle Tribolium castaneum. Sci. Rep. 8, 16462 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar
 

De Koning, A. P., Gu, W., Castoe, T. A., Batzer, M. A. & Pollock, D. D. Repetitive elements may comprise over two-thirds of the human genome. PLoS Genet. 7, e1002384 (2011).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Howe, K. et al. The zebrafish reference genome sequence and its relationship to the human genome. Nature 496, 498–503 (2013).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Schartl, M. et al. The genomes of all lungfish inform on genome expansion and tetrapod evolution. Nature 634, 96–103 (2024).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Du, J., Johnson, L. M., Jacobsen, S. E. & Patel, D. J. DNA methylation pathways and their crosstalk with histone methylation. Nat. Rev. Mol. Cell Biol. 16, 519–532 (2015).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Gouil, Q. & Baulcombe, D. C. DNA methylation signatures of the plant chromomethyltransferases. PLoS Genet. 12, e1006526 (2016).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Stroud, H. et al. Non-CG methylation patterns shape the epigenetic landscape in Arabidopsis. Nat. Struct. Mol. Biol. 21, 64–72 (2014).

Article 
CAS 
PubMed 

Google Scholar
 

Kazazian, H. H. Jr Mobile elements: drivers of genome evolution. Science 303, 1626–1632 (2004).

Article 
CAS 
PubMed 

Google Scholar
 

Tooley, K. B. et al. Differential usage of DNA modifications in neurons, astrocytes, and microglia. Epigenetics Chromatin 16, 45 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Derks, M. F. et al. Gene and transposable element methylation in great tit (Parus major) brain and blood. BMC Genomics 17, 332 (2016).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Muotri, A. R. et al. L1 retrotransposition in neurons is modulated by MeCP2. Nature 468, 443–446 (2010).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Novo, C. L. et al. Satellite repeat transcripts modulate heterochromatin condensates and safeguard chromosome stability in mouse embryonic stem cells. Nat. Commun. 13, 3525 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Guo, W., Zhang, M. Q. & Wu, H. Mammalian non-CG methylations are conserved and cell-type specific and may have been involved in the evolution of transposon elements. Sci. Rep. 6, 32207 (2016).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Olova, N. et al. Comparison of whole-genome bisulfite sequencing library preparation strategies identifies sources of biases affecting DNA methylation data. Genome Biol. 19, 33 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Vaisvila, R. et al. Enzymatic methyl sequencing detects DNA methylation at single-base resolution from picograms of DNA. Genome Res. 31, 1280–1289 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Liu, Y. et al. Bisulfite-free direct detection of 5-methylcytosine and 5-hydroxymethylcytosine at base resolution. Nat. Biotechnol. 37, 424–429 (2019).

Article 
CAS 
PubMed 

Google Scholar
 

Wang, M. et al. Engineered APOBEC3C sequencing enables bisulfite-free and direct detection of DNA methylation at a single-base resolution. Anal. Chem. 95, 1556–1565 (2023).

CAS 
PubMed 

Google Scholar
 

Wang, T. et al. Bisulfite-free sequencing of 5-hydroxymethylcytosine with APOBEC-coupled epigenetic sequencing (ACE-seq). Methods Mol. Biol. 2198, 349–367 (2021).

Article 
CAS 
PubMed 

Google Scholar
 

Han, Y. et al. Comparison of EM-seq and PBAT methylome library methods for low-input DNA. Epigenetics 17, 1195–1204 (2022).

Article 
PubMed 

Google Scholar
 

Liu, Y. et al. DNA methylation-calling tools for Oxford Nanopore sequencing: a survey and human epigenome-wide evaluation. Genome Biol. 22, 295 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Angeloni, A., Ferguson, J. & Bogdanovic, O. Nanopore sequencing and data analysis for base-resolution genome-wide 5-methylcytosine profiling. Methods Mol. Biol. 2458, 75–94 (2022).

Article 
CAS 
PubMed 

Google Scholar
 

Goldsmith, C. et al. Low biological fluctuation of mitochondrial CpG and non-CpG methylation at the single-molecule level. Sci. Rep. 11, 8032 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Liau, Y. et al. Low-pass nanopore sequencing for measurement of global methylation levels in plants. BMC Genomics 25, 1235 (2024).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Kong, Y. et al. Critical assessment of nanopore sequencing for the detection of multiple forms of DNA modifications. Preprint at bioRxiv https://doi.org/10.1101/2024.11.19.624260 (2024).

Ni, P. et al. Genome-wide detection of cytosine methylations in plant from Nanopore data using deep learning. Nat. Commun. 12, 5976 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Chen, H. X. et al. Accurate cross-species 5mC detection for Oxford Nanopore sequencing in plants with DeepPlant. Nat. Commun. 16, 3227 (2025).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Holmes, E. E. et al. Performance evaluation of kits for bisulfite-conversion of DNA from tissues, cell lines, FFPE tissues, aspirates, lavages, effusions, plasma, serum, and urine. PLoS ONE 9, e93933 (2014).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Hong, E. E., Okitsu, C. Y., Smith, A. D. & Hsieh, C. L. Regionally specific and genome-wide analyses conclusively demonstrate the absence of CpG methylation in human mitochondrial DNA. Mol. Cell. Biol. 33, 2683–2690 (2013).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Kint, S., De Spiegelaere, W., De Kesel, J., Vandekerckhove, L. & Van Criekinge, W. Evaluation of bisulfite kits for DNA methylation profiling in terms of DNA fragmentation and DNA recovery using digital PCR. PLoS ONE 13, e0199091 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Dou, X. et al. The strand-biased mitochondrial DNA methylome and its regulation by DNMT3A. Genome Res. 29, 1622–1634 (2019).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Guitton, R., Nido, G. S. & Tzoulis, C. No evidence of extensive non-CpG methylation in mtDNA. Nucleic Acids Res. 50, 9190–9194 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Urich, M. A., Nery, J. R., Lister, R., Schmitz, R. J. & Ecker, J. R. MethylC-seq library preparation for base-resolution whole-genome bisulfite sequencing. Nat. Protoc. 10, 475–483 (2015).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Gong, W. et al. Benchmarking DNA methylation analysis of 14 alignment algorithms for whole genome bisulfite sequencing in mammals. Comput Struct. Biotechnol. J. 20, 4704–4716 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Treangen, T. J. & Salzberg, S. L. Repetitive DNA and next-generation sequencing: computational challenges and solutions. Nat. Rev. Genet. 13, 36–46 (2011).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Teissandier, A., Servant, N., Barillot, E. & Bourc’his, D. Tools and best practices for retrotransposon analysis using high-throughput sequencing data. Mob. DNA 10, 52 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Mizuguchi, T. et al. Detecting a long insertion variant in SAMD12 by SMRT sequencing: implications of long-read whole-genome sequencing for repeat expansion diseases. J. Hum. Genet. 64, 191–197 (2019).

Article 
CAS 
PubMed 

Google Scholar
 

Stevanovski, I. et al. Comprehensive genetic diagnosis of tandem repeat expansion disorders with programmable targeted nanopore sequencing. Sci. Adv. 8, eabm5386 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Karst, S. M. et al. High-accuracy long-read amplicon sequences using unique molecular identifiers with Nanopore or PacBio sequencing. Nat. Methods 18, 165–169 (2021).

Article 
CAS 
PubMed 

Google Scholar
 

Delahaye, C. & Nicolas, J. Sequencing DNA with nanopores: troubles and biases. PLoS ONE 16, e0257521 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Catoni, M., Tsang, J. M., Greco, A. P. & Zabet, N. R. DMRcaller: a versatile R/Bioconductor package for detection and visualization of differentially methylated regions in CpG and non-CpG contexts. Nucleic Acids Res. 46, e114 (2018).

PubMed 
PubMed Central 

Google Scholar
 

Ma, H. et al. Abnormalities in human pluripotent cells due to reprogramming mechanisms. Nature 511, 177–183 (2014).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Tatton-Brown, K. et al. Mutations in the DNA methyltransferase gene DNMT3A cause an overgrowth syndrome with intellectual disability. Nat. Genet. 46, 385–388 (2014).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Cree, S. L. et al. DNA G-quadruplexes show strong interaction with DNA methyltransferases in vitro. FEBS Lett. 590, 2870–2883 (2016).

Article 
CAS 
PubMed 

Google Scholar
 

Jin, J. et al. The effects of cytosine methylation on general transcription factors. Sci. Rep. 6, 29119 (2016).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Abhishek, S., Nakarakanti, N. K., Deeksha, W. & Rajakumara, E. Mechanistic insights into recognition of symmetric methylated cytosines in CpG and non-CpG DNA by UHRF1 SRA. Int. J. Biol. Macromol. 170, 514–522 (2021).

Article 
CAS 
PubMed 

Google Scholar
 

Spruijt, C. G. et al. Dynamic readers for 5-(hydroxy)methylcytosine and its oxidized derivatives. Cell 152, 1146–1159 (2013).

Article 
CAS 
PubMed 

Google Scholar
 

Roth, G. V., Gengaro, I. R. & Qi, L. S. Precision epigenetic editing: technological advances, enduring challenges, and therapeutic applications. Cell Chem. Biol. https://doi.org/10.1016/j.chembiol.2024.07.007 (2024).

Zemach, A., McDaniel, I. E., Silva, P. & Zilberman, D. Genome-wide evolutionary analysis of eukaryotic DNA methylation. Science 328, 916–919 (2010).

Article 
CAS 
PubMed 

Google Scholar
 

Domb, K. et al. DNA methylation mutants in Physcomitrella patens elucidate individual roles of CG and non-CG methylation in genome regulation. Proc. Natl Acad. Sci. USA 117, 33700–33710 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Yaari, R. et al. RdDM-independent de novo and heterochromatin DNA methylation by plant CMT and DNMT3 orthologs. Nat. Commun. 10, 1613 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Ikeda, Y. et al. Loss of CG methylation in Marchantia polymorpha causes disorganization of cell division and reveals unique DNA methylation regulatory mechanisms of non-CG methylation. Plant Cell Physiol. 59, 2421–2431 (2018).

CAS 
PubMed 

Google Scholar
 

Zemach, A. et al. The Arabidopsis nucleosome remodeler DDM1 allows DNA methyltransferases to access H1-containing heterochromatin. Cell 153, 193–205 (2013).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Law, J. A. & Jacobsen, S. E. Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat. Rev. Genet. 11, 204–220 (2010).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Bewick, A. J. et al. Diversity of cytosine methylation across the fungal tree of life. Nat. Ecol. Evol. 3, 479–490 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Shi, J. et al. DNA methylation plays important roles in lifestyle transition of Arthrobotrys oligospora. IET Syst. Biol. 18, 92–102 (2024).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Nai, Y. S., Huang, Y. C., Yen, M. R. & Chen, P. Y. Diversity of fungal DNA methyltransferases and their association with DNA methylation patterns. Front. Microbiol. 11, 616922 (2020).

Article 
PubMed 

Google Scholar
 

Chen, Y. Y. et al. DNA methylation-dependent epigenetic regulation of Verticillium dahliae virulence in plants. aBIOTECH 4, 185–201 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

So, K. K. et al. Global DNA methylation in the chestnut blight fungus Cryphonectria parasitica and genome-wide changes in DNA methylation accompanied with sectorization. Front. Plant Sci. 9, 103 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Malagnac, F. et al. A gene essential for de novo methylation and development in Ascobolus reveals a novel type of eukaryotic DNA methyltransferase structure. Cell 91, 281–290 (1997).

Article 
CAS 
PubMed 

Google Scholar
 

Sarre, L. A., Gastellou Peralta, G. A., Romero Charria, P., Ovchinnikov, V. & de Mendoza, A. Repressive cytosine methylation is a marker of viral gene transfer across divergent eukaryotes. Mol. Biol. Evol. 42, msaf176 (2025).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

De Mendoza, A. et al. Recurrent acquisition of cytosine methyltransferases into eukaryotic retrotransposons. Nat. Commun. 9, 1341 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Sarre, L. A. et al. DNA methylation enables recurrent endogenization of giant viruses in an animal relative. Sci. Adv. 10, eado6406 (2024).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Huff, J. T. & Zilberman, D. Dnmt1-independent CG methylation contributes to nucleosome positioning in diverse eukaryotes. Cell 156, 1286–1297 (2014).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Clark, S. J., Harrison, J., Paul, C. L. & Frommer, M. High sensitivity mapping of methylated cytosines. Nucleic Acids Res. 22, 2990–2997 (1994).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Tse, O. Y. O. et al. Genome-wide detection of cytosine methylation by single molecule real-time sequencing. Proc. Natl Acad. Sci. USA 118, e2019768118 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Wang, Y., Zhao, Y., Bollas, A., Wang, Y. & Au, K. F. Nanopore sequencing technology, bioinformatics and applications. Nat. Biotechnol. 39, 1348–1365 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Kulkarni, O. et al. Comprehensive benchmarking of tools for nanopore-based detection of DNA methylation. Preprint at bioRxiv https://doi.org/10.1101/2024.11.09.622763 (2024).